Abstract

A new polarization-independent and fast-response adaptive microlens array using a polymer-stabilized blue phase liquid crystal is proposed. With a curved top electrode and planar bottom electrode, gradient electric fields are generated and lens-like phase profile obtained. Optimization process leads to an ideal parabolic phase profile for suppressing spherical aberration.

©2011 Optical Society of America

1.Introduction

Adaptive liquid crystal (LC) lens offers a tunable focal length and is useful for auto-focusing [1,2], 2D/3D switchable displays [3], and tunable photonic devices [4,5]. The basic operation principle of an LC lens is to generate gradient refractive index profile across the LC layer [611]. Most LC lenses developed so far employ nematic LCs, which offer a large birefringence for achieving a short focal length. However, two urgent issues remain to be overcome: polarization dependency and slow response time, especially when a thick LC layer is involved.

Recently, polymer-stabilized blue-phase liquid crystal (BPLC) based on Kerr effect [1216] is emerging as a promising candidate for new photonics applications. The major attractions of BPLC are twofold: 1) its response time is in submillisecond range which is about 10X faster than that of nematic LCs, and 2) it does not require any molecular alignment layer, which greatly simplifies the fabrication process. A hole-patterned microlens using a polymer-stabilized BPLC has been recently demonstrated experimentally [17]. It offers several attractive features, such as fast response time and no need for a polarizer. In the voltage-off state (V=0), the BPLC is optically isotropic so that the refractive index is uniform, resulting in zero optical power. When a voltage is applied across the top aluminum electrode (with a hole in the center as the aperture) and the bottom planar ITO (indium tin oxide) electrode, inhomogeneous electric fields are generated along the lens radius. Because the LC refractive index is spatially modulated by the electric fields, a lens profile is obtained. However, the performance of this lens could still be improved. For instance, this lens has a compromised image quality due to non-ideal shape of the refractive index profile, and the two orthogonal polarizations (TE and TM) will have a slightly different focal length because of the strong horizontal electric fields near the edge of the hole.

In this paper, we propose a new adaptive microlens structure using a polymer-stabilized BPLC. By varying the voltage on the concave (or convex) electrodes, we can tune the focal length continuously. Our simulation results show that indeed the device is polarization independent. Moreover, our design has a lower operating voltage and better phase profile than the hole-patterned microlens array [17]. After optimization, an ideal parabolic phase profile is obtained which helps to suppressing spherical aberration.

2. Device structure and principle

Figure 1 shows the side-view (x-z plane) of the proposed microlens array. It consists of two glass substrates. The top glass substrate has microlens array structure, which could be concave or convex. A transparent ITO electrode is coated on the inner surface of the top substrate and then flattened by a polymer layer. The bottom substrate has a planar ITO electrode on the inner side. Sandwiched between these two substrates is a polymer-stabilized BPLC with a thickness of dLC. The thickness of the polymer layer at the center of the lens is d1, and that at the edge is d2; and the aperture radius of each individual microlens in the x-y plane is R.

 figure: Fig. 1

Fig. 1 Side view of the proposed adaptive BPLC microlens array structure.

Download Full Size | PPT Slide | PDF

The pink lines in Fig. 1 denote the generic beam path, in which the refraction between the top glass and polymer interface is neglected. At V=0, the BPLC is optically isotropic and does not contribute to the optical power. As the applied voltage increases, vertical electric fields are generated in the BPLC layer. According to Extended Kerr Effect [18], the electric field induced birefringence is:

Δnind(E)=Δns[1exp((E/Es)2],
where ∆ns is saturation induced birefringence of the BPLC composite and Es is the saturation electric field. For a normally incident light, it experiences an ordinary refractive index which depends on E as
no(E)niΔnind(E)/3,
regardless of polarization. In a structure with concave top glass substrate as Fig. 1 shows, the electric field in the lens center is weaker than that near the edges because of the longer distance between top and bottom electrodes. As a result, the induced birefringence ∆nind is smaller (i.e., no is larger) in the center than that in the edges. So the phase profile over the aperture is like a positive lens. On the other hand, if the top glass substrate is convex, a tunable negative focal length could be achieved. By varying the voltage, the focal length of the LC layer could be tuned continuously. The focal length can be expressed as [10, 11]
fLC=R2/2δn(E)dLC,
where δn(E) is the index difference between the lens’ center and edge. If the indices of polymer (np) and glass (ng) do not match, there will be an initial focal length fin=rC/(npng) where rC is the radius of curvature in the center of the lens. This fincould be positive or negative depending on the index difference and the shape of top ITO [10]. Therefore, the total focal length (ft) which can be found from 1/ft=1/fin+1/fLC would change sign as fLC is tuned. This BPLC lens, similar to other nematic LC lenses, still has chromatic aberration because of the LC refractive index dispersion [19]. Therefore, the focal length is longer for a longer wavelength. However, with the initial focal length, the achromatic aberration could be reduced by choosing the employed LC, polymer, and glass to have similar dispersive properties.

3. Simulation results

We carried out simulations to validate the device concepts. We first use commercial software Dimos (AUTRONIC-MELCHERS, Germany) to obtain the electric potential distribution and then calculate the optical properties based on extended 2x2 Jones Matrix [20]. We assume the BPLC has a saturation birefringence ∆ns~0.2 (at λ=633 nm), saturation electric field ES~5.6x106 V/m, and Kerr constant K≈∆ns/λEs2=10 nm/V2 [18]. In our design, R=225 µm, d1=76 µm, d2=2 µm, and dLC=17 µm. For simplicity we assume the index between the glass and polymer is matched, and therefore ft=fLC.

For the structure where the top substrate is spherical and concave as in Fig. 1, we calculate the phase profile across the lens for TM and TE waves. For comparison purpose, a similar structure using hole-patterned electrode [17] is also calculated with dLC=17 µm and aperture radius R=225 µm. Figure 2 depicts the relative phase profiles of both structures at V=100Vrms. The phase at the center of each microlens is offset to be zero for easy reading. The blue solid curve and red dashed curve represent TM and TE polarization in the proposed microlens array respectively, while the black and green curves represent TM and TE for the hole-patterned microlens array respectively.

 figure: Fig. 2

Fig. 2 Simulated phase profiles across the lens at V=100Vrms for TM and TE waves in the proposed microlens array (blue and red) and hole-patterned microlens array (black and green).

Download Full Size | PPT Slide | PDF

In comparison to the hole-patterned microlens structure, our design exhibits following advantages:

  • 1. For a given voltage (say, 100Vrms), our microlens array has a larger relative phase, resulting in a shorter focal length. This is because in the hole-patterned design, the aperture area has no top electrode and the electric fields decrease very quickly as the radius decreases. For instance, the relative phase at the radius of 150 µm is only about 1/10 of that at the edge of the lens. However, in our design the electric fields are generated between top and bottom ITO electrodes across the whole aperture, and the intensity of fields is utilized effectively. This indicates that our design has a lower operating voltage to achieve the same phase change than the hole-patterned structure.
  • 2. In the hole-patterned structure, TM and TE polarizations make a noticeable difference near the edge. This undesirable polarization dependence is due to the strong horizontal field components near the edge of top aluminum electrode. The horizontal electric field component would generate birefringence in the horizontal direction. Thus, one polarization would experience an increased refractive index ne(E)≈ni+2∆nind(E)/3, while the other a decreased index no(E)≈ni-∆nind(E)/3. As a result, the TE wave will have a larger phase change, i.e., shorter focal length than the TM wave. In our design, although curved electric fields still exist near the top ITO electrode due to its curved shape, the polymer layer shields most of the horizontal components. With the electric fields almost vertical in the BPLC layer, both TE and TM experience the same ordinary index no(E)≈ni-∆nind(E)/3, and the polarization dependency is suppressed substantially.
  • 3. Last but not least, the shape of the phase profile could be precisely controlled in our design by the shape of the top ITO. Figures 3(a) , 3(b) and 3(c) depict three structures with different ITO shapes; and Fig. 3(d) compares their phase profiles at 100Vrms with a perfect parabolic shape (red curve). Figure 3(a) shows a structure with spherical top ITO as we discussed previously; Fig. 3(b) depicts a structure with a cone-shape (or triangle from side view) top ITO electrode; and Fig. 3(c) has an Eiffel-Tower-like top ITO electrode. The center polymer thickness d1, edge polymer thickness d2, LC cell gap dLC and aperture radius R are all kept the same as in the previous calculations (R=225 µm, d1=76 µm, d2=2 µm, and dLC=17 µm.). Since the device is polarization independent, we only plot one polarization in Fig. 3(d) for easy reading. As shown in Fig. 3(d), the structure in Fig. 3(c) has more desirable phase profile than the other two, because a parabolic phase profile is helpful for suppressing spherical aberration which in turn improves the image quality.
     figure: Fig. 3

    Fig. 3 Effect of top substrate shape on the generated phase profile. (a), (b) and (c) are structures with different top ITO shapes. (d) The simulated phase profiles: black line for structure (a), green for structure (b), blue line for structure (c), and red dashed lines for an ideal parabolic shape.

    Download Full Size | PPT Slide | PDF

Here, we briefly describe the procedures how we obtain the device structure shown in Fig. 3(c). In the low field region, extended Kerr Effect is reduced to Kerr Effect as:

Δnind=λKE2.

In order to have a parabolic phase profile along the radius, the refractive index difference δn(r) should be proportional to r2, where r is the distance to the center of the lens. Under such a circumstance, we can write

δn(r)=ρr2=ni(r)no(r)Δnind(E)/3=λKV2/3d2(r),
where ρ is a scaling parameter, and each ρ corresponds to a certain focal length, V is the applied voltage across the electrodes, and d(r) is the vertical distance between top and bottom electrode at a specific radius r. From Eq. (5), we find

d(r)=λK/3ρ(V/r).

And accordingly, the shape of the top ITO is obtained. When high fields are involved, the calculation is more complicated. But for each operating voltage, the ITO shape could always be calculated. By optimizing our design at 100Vrms, we have kept the phase profile almost parabolic from 12Vrms to 100Vrms. However, for such a structure it is preferred that polymer and glass have the same refractive index. Otherwise, aberrations and total internal reflection might be introduced by the curved polymer-glass interface.

Figure 4 is a plot of the voltage-dependent focal length for the structure in Fig. 3(c). The blue curve is for TM polarization, and the red one is for TE polarization. As the voltage varies, the focal length of TM and TE polarization keeps the same, which further proves that this design is indeed polarization insensitive. As expected, the focal length gets shorter as the voltage increases. At 100Vrms, a 4-cm focal length is obtained. In the low voltage region, the change of focal length is more dramatic, while in the high voltage region the slope becomes flatter. The primary reason is that the focal length f is inversely proportional to the phase change as described in Eq. (3), and the secondary reason is that the induced birefringence gradually saturates at high fields.

 figure: Fig. 4

Fig. 4 Simulated voltage dependent focal length of the proposed BPLC microlens.

Download Full Size | PPT Slide | PDF

The polymer layer thickness plays a critical role in our design. If it is too thin, the strong curved electric fields will penetrate to the BPLC layer and result in more noticeable polarization dependence. If it is too thick, then the electric field would be weakened, and a higher voltage is required in order to achieve the same focal length.

3. Conclusion

We have proposed a fast-response and polarization-independent microlens array using a polymer-stabilized BPLC. By varying the applied voltage from 0 to 100Vrms, the focal length of the LC layer could be continuously tuned from ∞ to 4 cm. If there is index mismatch between the employed polymer and glass, an initial optical power would exist, and the focal length of the whole system could be tuned from negative to positive (or from positive to negative). By optimizing the shape of top ITO electrode, a parabolic phase profile is obtained, which is desirable for achieving high image quality. Simulation results show that our device is indeed polarization independent, and has a lower operating voltage and better profile shape than the previously reported hole-patterned structure. Such a device would be very attractive for display and photonics applications.

Acknowledgements

The authors are indebted to Jin Yan, Su Xu and Dr. James E. Harvey for useful discussion and the financial support from Industrial Technology Research Institute (Taiwan).

References and links

1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]  

2. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997). [CrossRef]   [PubMed]  

3. M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006). [CrossRef]  

4. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996). [CrossRef]  

5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996). [CrossRef]  

6. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994). [CrossRef]   [PubMed]  

7. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998). [CrossRef]  

8. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003). [CrossRef]  

9. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004). [CrossRef]   [PubMed]  

10. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005). [CrossRef]  

11. E. Hecht, Optics 4th Ed. (Addison Wesley, New York, 1998).

12. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007). [CrossRef]   [PubMed]  

13. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002). [CrossRef]  

14. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005). [CrossRef]  

15. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009). [CrossRef]  

16. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009). [CrossRef]  

17. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010). [CrossRef]  

18. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010). [CrossRef]  

19. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986). [CrossRef]   [PubMed]  

20. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
    [Crossref] [PubMed]
  3. M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
    [Crossref]
  4. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
    [Crossref]
  5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [Crossref]
  6. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [Crossref] [PubMed]
  7. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref]
  8. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
    [Crossref]
  9. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [Crossref] [PubMed]
  10. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005).
    [Crossref]
  11. E. Hecht, Optics 4th Ed. (Addison Wesley, New York, 1998).
  12. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  13. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref]
  14. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
    [Crossref]
  15. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
    [Crossref]
  16. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
    [Crossref]
  17. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  18. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [Crossref]
  19. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  20. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
    [Crossref]

2010 (2)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

2009 (2)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

2007 (1)

2006 (1)

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[Crossref]

2005 (2)

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

2004 (1)

2003 (1)

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

1998 (1)

1997 (1)

1996 (2)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

1994 (1)

1990 (1)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[Crossref]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Bos, P. J.

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Cheng, H. C.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Chien, L. C.

Choi, Y.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

de Zwart, S. T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[Crossref]

Dejule, M. C.

Dekker, T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[Crossref]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Fan, Y. H.

Ferstl, M.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

Fox, D. W.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Frisch, A.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

Gauza, S.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Ge, Z.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Guralnik, I. R.

Haseba, Y.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Hiddink, M. G. H.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Jiao, M.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Kikuchi, H.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Kim, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Lee, S. D.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Lee, S. H.

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Li, J.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, Y.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Liang, X.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[Crossref]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Loktev, M. Yu.

Masuda, S.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Naumov, A. F.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Nose, T.

Park, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Rao, L.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Ren, H.

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Riza, N. A.

Sato, S.

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Vdovin, G.

Wang, H.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Willemsen, O. H.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[Crossref]

Wu, B.

Wu, S. T.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[Crossref] [PubMed]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Xianyu, H.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Yan, J.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Appl. Phys. Lett. (5)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[Crossref]

J. Display Technol. (1)

J. Mod. Opt. (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Phys. Rev. A (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Soc. Inf. Display Tech. Dig. (1)

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[Crossref]

Other (1)

E. Hecht, Optics 4th Ed. (Addison Wesley, New York, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Side view of the proposed adaptive BPLC microlens array structure.
Fig. 2
Fig. 2 Simulated phase profiles across the lens at V=100Vrms for TM and TE waves in the proposed microlens array (blue and red) and hole-patterned microlens array (black and green).
Fig. 3
Fig. 3 Effect of top substrate shape on the generated phase profile. (a), (b) and (c) are structures with different top ITO shapes. (d) The simulated phase profiles: black line for structure (a), green for structure (b), blue line for structure (c), and red dashed lines for an ideal parabolic shape.
Fig. 4
Fig. 4 Simulated voltage dependent focal length of the proposed BPLC microlens.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n i n d ( E ) = Δ n s [ 1 exp ( ( E / E s ) 2 ] ,
n o ( E ) n i Δ n i n d ( E ) / 3 ,
f L C = R 2 / 2 δ n ( E ) d L C ,
Δ n i n d = λ K E 2 .
δ n ( r ) = ρ r 2 = n i ( r ) n o ( r ) Δ n i n d ( E ) / 3 = λ K V 2 / 3 d 2 ( r ) ,
d ( r ) = λ K / 3 ρ ( V / r ) .

Metrics