Abstract

Thermal nonlinearity is known to cause bistability in Whispering Gallery Mode (WGM) resonators and to destabilize the red slope of the Lorentzian resonant curve. We demonstrate an optical technique that allows compensation of the thermal effect and forces the resonances to appear linear with both red and blue slopes stable.

©2011 Optical Society of America

1. Introduction

Whispering Gallery Mode (WGM) resonators have numerous applications in science and technology [1], including cavity QED [2,3], cavity optomechanics [4] nonlinear optics [57] and biosensing [8]. Thermal nonlinearity (caused by light absorption in the WGM) is present in virtually every WGMR and is known to cause bistability [9] at high circulating power levels. Importantly, at room temperature it renders the lower frequency slope (the “red” slope) of the WGM resonance unstable in silica resonators [10]. Observation of the actual line shape function must therefore occur at reduced power levels. Attempts have been made to cancel or reduce the thermal effect [11,12] at the expense of the optical quality factor. In this contribution we demonstrate a technique that allows one to cancel thermal nonlinearity in a WGM of choice using another WG mode in the same resonator as a stabilizer. We demonstrate the method by cooling a mechanical mode of the resonator through red detuning of a pump wave.

2. Theoretical model

Thermal shift of the optical resonator eigenfrequency is caused by the absorption of coupled laser power and subsequent heating. In WGM resonators the frequency shift Δω is caused primarily by temperature dependence of refractive index n and thermal expansion αT:

Δωω=(1nnT+αT)ΔT=βΔT

However, if another WGM in the same resonator is excited at a different wavelength by a second laser and if this laser is thermally locked [10] on the stable “blue” slope, then the optical pumping of the original WGM can be stabilized. Before describing experimental results, we first detail the numerics used to study the stabilization mechanism. A simplified model is also described in section A. The system consists of a cavity with two WGM resonances at different wavelengths, but sharing approximately the same volume. A system of coupled equations similar to those in [13,14] is used to analyze the thermal behavior. Table 1 lists the variables and definitions. Subscripts “a” and “b” denote the parameters of the corresponding resonator modes.

Tables Icon

Table 1. Parameters and variables used in computation of resonance curves in Fig. 2

We describe the electric field of the WGMs using the rotating wave approximation:

E(r,t)=a(t)E0(r)eiωt,

where the field distribution of a mode is normalized so that

|E0|2dr=1.

We introduce the equations describing the dynamics of the slowly varying amplitudes a and b in cgs units as

{a˙+a(γa+i[ω1ωa(1μ|a|2βθ)])=iF1b˙+b(γb+i[ω2ωb(1μ|b|2βθ)])=iF2θ˙+δθθ=ν(|a|2+|b|2).

Here θ=(TT0)|E0(r)|2dr is the relative temperature averaged over the volume of the modes (assumed equal for the two WGMs). The WGM volume formula given in Table 1 is an approximation computed for a sphere, and numerical simulations or other approximations may be used for spheroidal resonators. The thermal nonlinearity observed in the experiment is a result of mutual dynamics of the laser’s frequency scan and laser induced eigenfrequency θ=y5θc,change in the WGM. The effective time constant of the thermal nonlinearity depends on the laser scan rate. Static behavior of the resonator corresponds to the longest time constant describing thermal relaxation of the whole resonator.

2.1 Solution of the nonlinear system

To deal with the complex numbers in Eqs. (4), field amplitudes are defined as a=a1+ia2 and b=b1+ib2. We look for the solutions in which a1,a2,b1,b2 are real:

{a˙1=a1γa+a2(ω1ωa(1μ|a|2βθ))a˙2=a2γaa1(ω1ωa(1μ|a|2βθ))+F1b˙1=b1γb+b2(ω2ωb(1μ|b|2βθ))b˙2=b2γbb1(ω2ωb(1μ|b|2βθ))+F2θ˙=ν(a2+b2)δθθ

In order to accommodate both very large and very small quantities in a numerical solver we use non-dimensional variables. The following substitutions are made in Eqs. (5): a1=y1ac, a2=y2ac, b1=y3bc, b2=y4bc, t=τtc, and Δωa,b=ω1,2ωa,b whereac=γaωaμ,bc=γaωbμ,θc=γaωaβ, and tc=1γa. With these substitutions, the equations contain only dimensionless values which are close to unity in magnitude (derivatives here are with respect to τ):

{y˙1=y1+y2Δωa/γa+y2y12+y23+y2y5y˙2=y2y1Δωa/γay13y1y22y1y5+F1μωa/γa3y˙3=y3γb/γa+y4Δωb/γa+y4y5ωb/ωa+y4y32+y43y˙4=y4γb/γay3Δωb/γay3y5ωb/ωay33y3y42+F2μωb/γa3y˙5=y5δθ/γa+(y12+y22)νβ/(μγa)+(y32+y42)νβωa/(μγaωb). (4′)

We set all time derivatives to zero and find the static solutions of the system (4′) using the numerical solver Maple. The power circulating in resonator mode ”a”, for example, can be estimated as

Pcirc=(y12+y22)ac2ncVa(2π)2R×107[Watt].

We also check the static solutions for stability against minor deviations of variables yi in the Lyapunov sense. Stability analysis is performed as previously described in [13]. To model the experimental outcomes, we fix the frequency of the first laser ω1 and scan the frequency of the second laser to observe the stabilization effect, as shown in the next section. We disregard the cross-mode modulation via the Kerr effect as the thermal effect is the dominant nonlinearity in our case.

3. Experimental verification

We use two New Focus velocity lasers to probe the resonator. The stabilizing laser (ω1, λ1≈1550nm) excites the WGM at λ = 1543.2 nm and the probing laser (ω2, λ1≈1450nm) operates at λ = 1433.3 nm. We use a WDM coupler to combine the two lasers and to separate the optical signals passing through the resonator. A tapered fiber coupler [16,17] is used to excite the WGMs of an ellipsoidal resonator with a major radius of 29 micrometers fabricated on a silicon chip. Experimental setup diagram is shown on Fig. 1 .

 figure: Fig. 1

Fig. 1 Schematic of the experimental setup.

Download Full Size | PPT Slide | PDF

During the experiment we first scan the 1450 nm laser alone over the resonance and record the resonance with the thermal nonlinearity (red trace on the left panel of Fig. 2 ). The shape of this resonance is slightly different from the static solution due to dynamic effects. We then activate the stabilizing laser at 1550 nm and thermally lock it to the blue slope of the nearby resonance. Heating from this laser causes the 1450 nm resonance to shift by a value that depends on the pump power. With the stabilizing laser enabled, the 1450 nm WGM exhibits a more Lorentzian lineshape (blue trace on the left panel of Fig. 2).

 figure: Fig. 2

Fig. 2 A) experimental frequency scans of a WGM resonance at 1450 nm without (red) and with stabilization (blue). B) solutions of the system (4). WGM resonance with thermal effect (red dots show unstable solutions). Solutions for the same mode when the stabilizing laser is activated constitute a nearly Lorentzian lineshape. Note the frequency shift of the stabilized resonance caused by heating from the stabilizing WGM.

Download Full Size | PPT Slide | PDF

The vertical axis of the right panel gives the calculated circulating power for the experimental conditions: coupled power of 300 μW at 1550 nm, and 130 μW at 1450 nm; and loaded quality factors of 1.4 × 107 and 7 × 106, respectively.

If the Q of both modes is similar, a much higher coupled power (relative to the probe power of the stabilized mode) is required. In well fabricated WGMs, especially in spheroidal ones, most modes have high optical Q and it may be difficult to find a pair of modes with different Q. Nonetheless, the difference in Q can still be achieved by using an asymmetric coupling technique, wherein distinct transverse WGMs (different number of field maxima in vertical direction) are used. Such modes have maxima shifted in the vertical direction, enabling a strong difference in loaded Q of the two modes by a single taper waveguide. The modes in our experiment were, in fact, of a different order and the higher Q mode (3 maxima in vertical direction, l-m = 2) was more weakly loaded than the stabilized mode (2 maxima, l-m = 1). As shown in Fig. 2, the numerical model verifies the experimental results with good accuracy. The thermal relaxation rate was chosen to correspond to a quarter of resonator radius R to match experimental results.

We further tested the stability of the 1450nm mode by manually tuning the probing laser to the blue and red slopes. The induced stability allowed us to apply optomechanical cooling and amplification to a mechanical mode present in our optical resonator (symmetrically on both slopes of the optical resonance). Doing so in the unresolved sideband regime we obtained modest but measurable cooling and amplification, as shown in Fig. 3 . It is important to note that cooling (i.e., stable operation on the red slope) was not possible in the thermally unstabilized system.

 figure: Fig. 3

Fig. 3 Optical cooling and amplification of a 70 MHz mechanical mode of the optical resonator. Broadening and narrowing of the mechanical spectrum occurs due to optomechanical cooling and amplification in the unresolved sideband regime. Colored lines represent Lorentzian fits of the experimentally recorded spectra. Inset shows an optical photograph of the resonator near the fiber coupler.

Download Full Size | PPT Slide | PDF

To further explain the data presented in Fig. 3, laser light passing through the optical resonator is modulated by cavity vibrations which impose optical sidebands. These are demodulated by a photodetector, which provides an electronic signal with signatures of the mechanical resonances. This signal is then displayed by the electrical spectrum analyzer and the linewidth of the mechanical oscillator can be analyzed [4]. The spectra presented here were obtained by detecting the optical signal at 1550 nm that was thermally locked to the cavity resonance.

4. Conclusion

We have demonstrated an all-optical technique that makes it possible to counteract thermal nonlinearity in WGM resonators and makes the red slope of the resonant curve accessible. To demonstrate the technique we have applied it to optical cooling of the mechanical mode of an optomechanical resonator by pumping the resonator mode in the red detuned regime. This application to optomechanical cooling should be considered only illustrative as there are potential problems in applying the method to achieve large amounts of cooling. Among these is the onset of parasitic oscillation of mechanical modes as well as heating of the resonator by the stabilizing pump wave. Nonetheless, the method might find use in applications wherein it is necessary to observe stable resonances at higher power levels.

Appendix A. Analytical model

To understand the underlying stabilization mechanism, we develop a simple nonlinear dynamics model. In the case of a single WGM excitation, cavity heating by the pump laser depends on the pump power, the optical coupling efficiency, and detuning from the resonance frequency. Based on the conservation of energy, the net heating of the cavity is the laser pump heating (qin) minus the thermal dissipation (qout) [10]:

Cθ˙=q˙inq˙out=Wh1[(ω2ωb,0(1βθ))/γb]2+1Kθ.

Here ω2is the laser frequency; ωb=ωb,0(1βθ)is the resonance frequency; and we have defined the effective laser power Wh=WηQtotQabs, where Qabsis the absorption quality factor of the cavity and η is the coupling efficiency. The stability of WGM can be inferred by investigating the stability of the steady solution to Eq. (A1). The rearrangement of Eq. (A1) yields

CK{[ω2ωb,0(1βθ)]2+γb2}θ˙=f(θ,ω2,Wh)=β2ωb,02θ3+2βωb,0(ωb,0ω2)θ2[(ω2ωb,0)2+γb2]θ+γb2WhK

The steady state solutions for θ˙=0and their stability can be determined from the phase diagram (Fig. 4 ). For blue detuning of the pump laser (ω2>ωb), the monotonic form of f(θ,ω2,Wh) leads to a single, stable, steady state; whereas on red side (ω2<ωb), thermal bistability may arise at sufficient pump power (Wh). The bistability would emerge as the saddle-node bifurcation when WhKis above a certain threshold (i.e. large pump power or small thermal dissipation). In other words, the increase of thermal conductivity or the decrease of pump power would eliminate this bistability. In the present system, the blue-detuned excitation of another (stabilizing) WGM compensates the thermal nonlinearity by creating an “effective” enhancement to thermal conductivity. The stabilizing mode adds a second term to the dynamical equation as follows:

 figure: Fig. 4

Fig. 4 Left panel: Phase diagram of temperature change of the cavity upon application of a blue detuned pump. There is always a single, stable steady-state solution. Right panel: Phase diagram of temperature change of the cavity upon using a red detuned pump. The thermal bistability may arise at sufficient pump power. The excitation of a stabilizing mode can compensate the nonlinearity via a saddle-node bifurcation.

Download Full Size | PPT Slide | PDF

Cθ˙=Wh1[(ω2ωb)/γb]2+1Kθ+Ws,c(θ)=Wh,c(θ)Kθ+Ws,c(θ).

Here, the effective laser power for the stabilizing mode, Ws is defined in the same fashion as Wh. Ws,c=Ws/{[(ω1ωa)/γa]2+1} and Wh,c=Wh/{[(ω2ωb)/γb]2+1}are the coupled power from the stabilizing and original pump mode. We are interested in the stabilizing effect of this additional term Ws,c and explore stability of the steady state solutions θs of (A3) against small deviations. With a substitution of θ=θs+δTinto Eq. (A3) we get

CδT˙=Wh,cθδTKδT+Ws,cθδT=Wh,cθδT(K+ωaβWs,cωa)δT

When the stabilizing mode is excited on the blue side, the positive Ws,cωa will effectively increase the thermal conductivity and eliminate the bistability via a saddle-node bifurcation. For the pump mode, Wh,cθ= ωbβWh,cωb is negative on the blue slope and the solution is always stable. On the red slope, Wh,cθ is positive and the coefficient of δT on the right hand side of (A4) must be negative to ensure the stability, leading to stability condition:

|Wh,cθ|<(K+ωaβWs,cωa)ωbβ|Wh,cωb|<(K+ωaβ|Ws,cωa|)

For optimal pump detuning of the stabilizing mode (maximum value of |Ws,cωa|), we find |Ws,cωa|opt=334WsQaωa, and the right hand side of Eq. (A5) has to be greater than the maximum value ofωaβ |Wh,cωb|. We finally get the stability condition:

334WhQb<334WsQa+Kβ

Acknowledgments

We would like to acknowledge the support from DARPA.

References and links

1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef]   [PubMed]  

2. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005). [CrossRef]  

3. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006). [CrossRef]   [PubMed]  

4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef]   [PubMed]  

5. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006). [CrossRef]  

6. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef]   [PubMed]  

7. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef]   [PubMed]  

8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef]   [PubMed]  

9. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

10. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef]   [PubMed]  

11. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008). [CrossRef]  

12. H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010). [CrossRef]  

13. I. S. Grudinin and K. J. Vahala, “Thermal instability of a compound resonator,” Opt. Express 17(16), 14088–14097 (2009). [CrossRef]   [PubMed]  

14. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22(2), 459–465 (2005). [CrossRef]  

15. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Measurement of the dc Kerr and electrostrictive phase modulation in silica,” J. Opt. Soc. Am. B 18(2), 187–194 (2001). [CrossRef]  

16. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000). [CrossRef]   [PubMed]  

17. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
    [Crossref]
  3. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
    [Crossref] [PubMed]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
    [Crossref] [PubMed]
  5. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [Crossref]
  6. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref] [PubMed]
  7. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref] [PubMed]
  8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  9. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  10. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  11. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [Crossref]
  12. H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
    [Crossref]
  13. I. S. Grudinin and K. J. Vahala, “Thermal instability of a compound resonator,” Opt. Express 17(16), 14088–14097 (2009).
    [Crossref] [PubMed]
  14. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22(2), 459–465 (2005).
    [Crossref]
  15. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Measurement of the dc Kerr and electrostrictive phase modulation in silica,” J. Opt. Soc. Am. B 18(2), 187–194 (2001).
    [Crossref]
  16. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  17. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]

2010 (1)

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

2009 (1)

2008 (2)

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

2005 (2)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22(2), 459–465 (2005).
[Crossref]

2004 (2)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1992 (1)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Armani, A. M.

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Carmon, T.

Choi, H. S.

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Digonnet, M. J. F.

Dong, C.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Fomin, A. E.

Gaddam, V.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Gorodetskii, M. L.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Gorodetsky, M. L.

Grudinin, I. S.

He, L.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22(2), 459–465 (2005).
[Crossref]

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kino, G. S.

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Liu, A. C.

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Vahala, K. J.

I. S. Grudinin and K. J. Vahala, “Thermal instability of a compound resonator,” Opt. Express 17(16), 14088–14097 (2009).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Xiao, Y.-F.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Yang, L.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Zhu, J.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Appl. Phys. Lett. (2)

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nature (3)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Phys. Rev. Lett. (3)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup.
Fig. 2
Fig. 2 A) experimental frequency scans of a WGM resonance at 1450 nm without (red) and with stabilization (blue). B) solutions of the system (4). WGM resonance with thermal effect (red dots show unstable solutions). Solutions for the same mode when the stabilizing laser is activated constitute a nearly Lorentzian lineshape. Note the frequency shift of the stabilized resonance caused by heating from the stabilizing WGM.
Fig. 3
Fig. 3 Optical cooling and amplification of a 70 MHz mechanical mode of the optical resonator. Broadening and narrowing of the mechanical spectrum occurs due to optomechanical cooling and amplification in the unresolved sideband regime. Colored lines represent Lorentzian fits of the experimentally recorded spectra. Inset shows an optical photograph of the resonator near the fiber coupler.
Fig. 4
Fig. 4 Left panel: Phase diagram of temperature change of the cavity upon application of a blue detuned pump. There is always a single, stable steady-state solution. Right panel: Phase diagram of temperature change of the cavity upon using a red detuned pump. The thermal bistability may arise at sufficient pump power. The excitation of a stabilizing mode can compensate the nonlinearity via a saddle-node bifurcation.

Tables (1)

Tables Icon

Table 1 Parameters and variables used in computation of resonance curves in Fig. 2

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ω = ( 1 n n T + α T ) Δ T = β Δ T
E ( r , t ) = a ( t ) E 0 ( r ) e i ω t ,
| E 0 | 2 d r = 1.
{ a ˙ + a ( γ a + i [ ω 1 ω a ( 1 μ | a | 2 β θ ) ] ) = i F 1 b ˙ + b ( γ b + i [ ω 2 ω b ( 1 μ | b | 2 β θ ) ] ) = i F 2 θ ˙ + δ θ θ = ν ( | a | 2 + | b | 2 ) .
{ a ˙ 1 = a 1 γ a + a 2 ( ω 1 ω a ( 1 μ | a | 2 β θ ) ) a ˙ 2 = a 2 γ a a 1 ( ω 1 ω a ( 1 μ | a | 2 β θ ) ) + F 1 b ˙ 1 = b 1 γ b + b 2 ( ω 2 ω b ( 1 μ | b | 2 β θ ) ) b ˙ 2 = b 2 γ b b 1 ( ω 2 ω b ( 1 μ | b | 2 β θ ) ) + F 2 θ ˙ = ν ( a 2 + b 2 ) δ θ θ
{ y ˙ 1 = y 1 + y 2 Δ ω a / γ a + y 2 y 1 2 + y 2 3 + y 2 y 5 y ˙ 2 = y 2 y 1 Δ ω a / γ a y 1 3 y 1 y 2 2 y 1 y 5 + F 1 μ ω a / γ a 3 y ˙ 3 = y 3 γ b / γ a + y 4 Δ ω b / γ a + y 4 y 5 ω b / ω a + y 4 y 3 2 + y 4 3 y ˙ 4 = y 4 γ b / γ a y 3 Δ ω b / γ a y 3 y 5 ω b / ω a y 3 3 y 3 y 4 2 + F 2 μ ω b / γ a 3 y ˙ 5 = y 5 δ θ / γ a + ( y 1 2 + y 2 2 ) ν β / ( μ γ a ) + ( y 3 2 + y 4 2 ) ν β ω a / ( μ γ a ω b ) .
P c i r c = ( y 1 2 + y 2 2 ) a c 2 n c V a ( 2 π ) 2 R × 10 7 [ W a t t ] .
C θ ˙ = q ˙ i n q ˙ o u t = W h 1 [ ( ω 2 ω b , 0 ( 1 β θ ) ) / γ b ] 2 + 1 K θ
C K { [ ω 2 ω b , 0 ( 1 β θ ) ] 2 + γ b 2 } θ ˙ = f ( θ , ω 2 , W h ) = β 2 ω b , 0 2 θ 3 + 2 β ω b , 0 ( ω b , 0 ω 2 ) θ 2 [ ( ω 2 ω b , 0 ) 2 + γ b 2 ] θ + γ b 2 W h K
C θ ˙ = W h 1 [ ( ω 2 ω b ) / γ b ] 2 + 1 K θ + W s , c ( θ ) = W h , c ( θ ) K θ + W s , c ( θ ) .
C δ T ˙ = W h , c θ δ T K δ T + W s , c θ δ T = W h , c θ δ T ( K + ω a β W s , c ω a ) δ T
| W h , c θ | < ( K + ω a β W s , c ω a ) ω b β | W h , c ω b | < ( K + ω a β | W s , c ω a | )
3 3 4 W h Q b < 3 3 4 W s Q a + K β

Metrics