Abstract

A new type of index-guided photonic crystal fiber is proposed to enhance chemical sensing capability by introducing a hollow high index ring defect that consists of the central air hole surrounded by a high index GeO2 doped SiO2 glass ring. Optical properties of the fundamental guided mode were numerically analyzed using the full-vector finite element method varying the design parameters of both the defects in the center and the hexagonal air-silica lattice in the cladding. Enhanced evanescent wave interaction in the holey region and lower confinement loss by an order of magnitude were achieved simultaneously, which shows a high potential in hyper sensitive fiber-optic chemical sensing applications.

© 2011 OSA

1. Introduction

Index guiding photonic crystal fibers (PCFs) consisting of the central silica defect and periodic arrays of air holes have realized unique optical properties that could not be achieved in conventional single mode fibers (SMFs) such as endless single mode, high nonlinearity, high birefringence, and flexible chromatic dispersion, to name a few [1, 2]. Other than those transmission related properties, the evanescent wave interaction of the guided mode in index-guiding PCFs in the holes has recently brought intense interests due to its enhanced performances compared to the prior fiber-optic chemical sensing schemes such as D-shaped fiber [3] and tapered fibers [4]. Thus, PCFs have recently initiated novel chemical sensing applications for various bio-chemical analytes in both gas and liquid phases [5, 6]. Another type of PCF, the hollow core photonic band gap fiber (PBGF), has further increased light-matter interaction by maximizing the overlap between the light and analyte along the central hole [7]. However, it has suffered from narrow and discrete transmission windows that significantly reduce species of analytes as well as the inherent lack of geometrical uniformity along the axial direction. Therefore, the index guiding PCFs are regarded to provide higher potential in practical sensing applications.

In conventional index guiding PCFs, the principal waveguide parameters are: hole diameter (d), pitch size (Λ), and air filling ratio (d/Λ). It has been widely accepted that the large air-filling ratio and small pitch size (Λ<1μm) can increase the evanescent interaction [6, 8], which unavoidably induces very weak tolerance against geometrical variations and also suffers from significant fabrication difficulties. Recently, attempts to replace the solid silica defect of conventional index-guided PCFs with a smaller air hole have been reported to enhance sensing capability [9], which is schematically shown in Fig. 1-(a) . In this prior PCFs [9-11], the larger central hole diameter dc, showed the higher evanescent field fraction, nevertheless it should be less than cladding hole diameter d, to satisfy the effective index guiding criterion. Despite the improved evanescent interaction, the prior PCFs with a larger dc, suffered from an excessive confinement loss, which raised a critical trade-off between the sensitivity and the confinement loss in PCF design for sensing applications [9]. In order to cope with ever increasing demands for chemical- and bio-sensing PCF devices, there exist compelling needs to develop a novel waveguide structure to overcome this critical trade-off in prior PCFs.

 

Fig. 1 (a) prior PCF with a central air-hole defect with the diameter dc [9-11], (b) proposed PCF with a hollow high index ring defect, and (c) its enlarged view with structural parameters: central hole diameter dc, ring width wring, and the relative index difference of the ring Δring. PML is perfect matched layer used in numerical analysis. The cladding air holes are characterized by their diameter, d, and pitch, Λ. Here we assumed 5 layers of air holes.

Download Full Size | PPT Slide | PDF

In this paper, we proposed a new index-guided PCF for chemical sensing applications with a hollow GeO2-doped high index ring defect to simultaneously achieve a higher evanescent wave interaction efficiency, a lower confinement loss, and a lower splicing loss than prior PCFs, for the first time to the best knowledge of the authors. The schematic structure of the proposed PCF is shown in Fig. 1-(b), where the hollow high index ring defect at the center is depicted along with its structural parameters in Fig. 1-(c). In addition to the central hole diameter dc, the proposed defect provides two additional waveguide parameters as indicated in Fig. 1-(c): the thickness wring and relative index difference Δring, of doped ring, which can endow a new degree of freedom in waveguide design. The defect is adopted from the hollow optical fiber [12], which has a high index GeO2 doped silica ring core, and has been successfully implemented in index guiding PCFs for dispersion and polarization control [13, 14].

In this paper, the proposed structure efficiently decreases the confinement loss by the single hollow high index ring defect at the center that can replace a number of additional air holes in the outer rings in prior PCFs. Moreover, it also allows a new degree of freedom to control the diameter of the central defect equal or larger than those of cladding holes in order to further enhance the sensitivity, which has not been possible in prior PCFs. Due to the unique adiabatic collapse of the Ge-doped ring into a solid high index core, the proposed PCF also provides an order of magnitude lower splice loss. Throughout the whole analyses, we assumed 5 layers of air holes in the cladding with the diameter d = 1.4μm, the hole to hole pitch Λ = 2.3μm, and the refractive index of holey region to be ns = 1 for both PCFs in Fig. 1-(a) and (b).

2. Numerical analysis on optical properties

In order to investigate optical properties of the proposed PCF, a full-vectorial finite element method (FEM) was applied for solving Maxwell’s equations, because of its well-proven reliability and accuracy for PCF analyses [15,16]. We assumed the circular perfectly matched layer (PML) [17], where the electric field satisfies Maxwell’s equations:

×(μr1×E)k02(εrjσωε0)E=0.

Here μr and εr are relative permeability and permittivity, respectively. k0 is the free-space wave number, ω is angular frequency, and σ is electric conductivity. Material dispersion of SiO2 glass [18] and germanosilicate glass (GeO2-SiO2) [19] were also used for precise calculation of effective indices of the guided modes.

In real PCFs, the holey cladding region is surrounded by the outer silica clad to result in a confinement loss (dB/m), which is given in terms of neff is the complex effective refractive index of the guided mode and λ is the light wavelength [20, 21]:

confinement loss=8.686Im[2πλneff],

If the index contrast between the core and the clad gets weaker by the central air hole as in the prior PCF in Fig. 1-(a), a significantly high confinement loss occurs to trade off the sensing capability [9-11]. In prior PCFs, reduction of the confinement loss have been attempted by increasing the number of hole layers in the cladding [21, 22]. However, imbedding additional air hole layers into PCFs requires highly elaborated processes in practical manufacturing, especially to keep the hole uniformity along both the lateral and axial directions. For example, if we add more air hole layers, it requires to have additional 36 capillaries in the 6th layer and 42 capillaries in the 7th layer properly arranged in the hexagonal structure. Even in the state of art PCF fabrication process, it is very demanding to keep the uniformity of extra 36~78 layers in addition to 91 holes of the 5 layer hexagonal structure. Non-uniformity in holes will inevitably result in an irregular length-dependent mode field distribution, and chromatic dispersion to seriously damage the repeatablity of optical measurements [23]. Here we proposed a unique and efficient method to decrease the confinement loss by the single hollow high index ring defect at the center that can replace 36~78 additional air holes in the outer rings in prior PCFs.

According to the modified Beer-Lambert law [24], absorbance, A, is given by:

A=logI0IT=rεLC,r=nsRe[neff]f,
where I0 and IT are the intensity of incident and transmitted light, respectively. ε is the molar absorptivity, L is the path length, and C is the concentration of the absorbing material. The relative sensitivity coefficient r, is derived from the real part of the effective refractive index of the guided mode neff, and ns is the refractive index of the absorbing material. The sensitivity f, is the ratio of the optical power over the sample area (the holes in PCFs) to the total cross section of the incident beam,
f=sampleRe(ExHy*EyHx*)dxdy/totalRe(ExHy*EyHx*)dxdy,
where Ex,y and Hx,y are the transverse electric and magnetic field components of the guided mode.

Using FEM, the impact of the proposed ring defect over Re[neff(λ)] was analyzed, and the results are summarized in Fig. 2 . We will use the term “effective index” to represent Re[neff(λ)] in the following discussion. In Fig. 2, we could confirm that the effective index can be flexibly controlled by either the ring thickness wring or the relative index difference Δring of the proposed PCF, which enables the control of the light intensity distribution near the center and over the air holes.

 

Fig. 2 Effective index (Re[neff]) of the fundamental mode by (a) relative index difference (Δring) and (b) doping width (wring). Here we set Λ = 2.3μm, d = 1.4μm for the cladding, dc = 1.2μm for the central hole, and ns = 1.

Download Full Size | PPT Slide | PDF

The modal intensity distribution of the fundamental mode for the proposed PCF and the prior PCF at λ = 1.5μm are shown in Fig. 3 . For both PCFs, the central hole diameter was set as dc = 0.8μm and dc = 1.2μm in Fig. 3-(a) and (b). In the proposed PCF, we set the relative index difference Δring = 1.2% and the ring width wring = 0.6μm.

 

Fig. 3 Comparison of the modal intensity distribution (a)-(b), confinement loss (c) and relative sensitivity (d) between the proposed PCF and the prior PCF and with the same central hole diameter dc. We set the wavelength at λ = 1.5μm for modal distribution comparison, (a)-(d). The proposed PCF had Δring = 1.2% and wring = 0.6μm. Here we set Λ = 2.3μm, d = 1.4μm for the cladding, dc = 1.2μm for the central hole, and ns = 1.

Download Full Size | PPT Slide | PDF

It is noted that the ring defect in the proposed PCF is tightly binding the fundamental mode as shown in Fig. 3-(a). In contrast, in the prior PCFs, the mode spreads throughout the silica cladding region as in Fig. 3-(b). This trend gets more prominent with the larger central hole diameter, dc = 1.2μm: the mode did spread out further beyond the third hole layers of the prior PCF. In Fig. 3-(c) and (d), the proposed PCF with a larger central hole diameter d c = 1.2μm simultaneously provided an almost equivalent relative sensitivity and orders of magnitude lower confinement loss in comparison to prior PCF, which confirms that the proposed PCF can efficiently deal with the critical issue of trade-off between the confinement loss and the sensitivity that has been a design bottleneck in prior PCF. In the following sections, we will focus on the cases of d c≥1.2μm.

2.1 Achievement of a lower confinement loss in the proposed PCF (dc<d)

We investigated the effects of the relative index difference Δring and the ring width wring in the proposed defect on the confinement loss assuming gas sensing, ns = 1. The spectral range (λ) was confined to the near infrared from 0.8 to 2.0μm where the absorption lines of various standard sensing gas molecules are located [25, 26]. For instance stretch bands and their overtones of C-H, N-H, and O-H bonds are located in the spectral range [27]. We especially focused on the longer wavelength region to take the advantage of stronger absorption intensity of lower order overtones of molecular vibrations.

In the proposed PCF, Δring was varied from 0.4 to 2.0% and its effects over the confinement loss and relative sensitivity were analyzed in Fig. 4-(a) and -(b), respectively. Here we fixed other parameters; Λ = 2.3μm, d = 1.4μm for the cladding, and dc = 1.2μm, and wring = 0.6 μm for the hollow ring defect. Higher Δring could reduce the confinement loss by orders of magnitude, to achieve a low confinement loss less than 8.1dB/m in the whole operating wavelength range for Δring = 2.0%. At the wavelength of λ = 1.5μm, the confinement loss of the proposed PCF was 0.023dB/m, while that of the prior PCF was as large as 32dB/m.

 

Fig. 4 Comparison of optical properties (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we varied the relative index differences Δring of the proposed PCF with the fixed wring = 0.6μm and set the central hole size dc = 1.2μm along with Λ = 2.3μm, d = 1.4μm, and ns = 1.

Download Full Size | PPT Slide | PDF

Similar results were obtained by increasing wring or equivalently expanding the GeO2 doped region as shown in Fig. 5-(a) and -(b). We varied the ring width wring from 0.2 to 0.8μm while the other parameters were set as Λ = 2.3μm, d = 1.4μm, ns = 1, dc = 1.2μm, and Δring = 1.2%. The wider wring provided the lower confinement loss as in Fig. 5-(a). For wring = 0.8 μm, the confinement loss of the proposed PCF was less than 15dB/m in the whole operating wavelength range, and at λ = 1.5 μm, it was 0.026dB/m, which is two orders of magnitude smaller than the prior PCF. On the other hand, the relative sensitivity did not show significant variation for modification of Δring and wring, especially in the shorter wavelength range as shown in Fig. 4-(b) and Fig. 5-(b).

 

Fig. 5 Comparison of optical properties - (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we varied the ring width wring of the proposed PCF and set the central hole size dc = 1.2μm along with Λ = 2.3μm, d = 1.4μm, ns = 1, and Δring = 1.2%.

Download Full Size | PPT Slide | PDF

The effective V number of the proposed PCF increases either by thicker ring width wring or higher index difference Δring, which can allow higher order modes guidance. For example, when we take the extreme defect parameters of wring = 0.6μm and Δring = 2.0%, the proposed PCF guides 2 modes at λ = 1.5 μm. In the intensity based sensing using a few-mode PCF, it is reported that the effective sensitivity can be approximated with a fair accuracy to an average sensitivity of individual modes, if the modes have similar field overlap with the analytes [28]. We confirmed that all the core modes of the proposed PCF did have almost the same power fraction in the air holes with the average value of 4.07% and the maximum of 5.39% in the relative standard deviation in the entire wavelength range of interests. This is due to the nature of the ring defect to confine the higher order mode around the central defect [12].

2.2 Higher sensitivity and lower confinement loss with optimal parameters (dc = d)

The prior PCF is known to provide a higher relative sensitivity, r, with increasing central air hole diameter dc [9]. However, dc must be kept smaller than the cladding air hole diameter d, (dc<d), otherwise the effective index guiding is not realized physically. One of the contrasting advantages of the proposed PCF is that the diameter of the central hole can be enlarged to be the same as the cladding holes (dc = d) due to the high index ring.

By systematic analyses, we found optimal waveguide parameters for the proposed PCF: dc = d = 1.4 μm, Λ = 2.3 μm, wring = 0.6μm, and Δring = 1.2%. As shown in the orange plot in Fig. 6 , the optimal PCF provides not only a lower confinement loss but also a higher relative sensitivity for the entire spectral range than prior PCF. As indicated by the arrows in Fig. 6, at λ = 1.5μm, the relative sensitivity, r, of the optimal PCF was 5.09% significantly larger than 4.79% of the prior PCFs. The confinement loss of the optimal PCF was 1.25dB/m, while that of the prior PCFs was 32.4dB/m. In this optimal condition, the proposed PCF provided a tighter confinement of optical field than the prior PCF, especially at holes at the center and the first ring. This local confinement capability of the optical PCF contributed to a larger power fraction in the air holes and subsequently a higher relative sensitivity. Therefore, we could confirm that the proposed PCF can successfully overcome the critical trade-off between the confinement loss and sensitivity in prior PCFs, providing a fundamentally new degree of freedom in waveguide design to explore sensing application capabilities.

 

Fig. 6 Comparison of optical properties - (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we further increased the central hole size to be the same as the cladding hole diameter, dc = d = 1.4μm (orange colored plot). We set Λ = 2.3μm, ns = 1, and wring = 0.6μm, Δring = 2.0%.

Download Full Size | PPT Slide | PDF

To measure the absorbance after filling the chemical analyte into the sensing PCF, efficient light launching is highly demanded. Fusion splicing between conventional single mode fiber (SMF) and PCF has been widely used, yet it requires sophisticate optimization of arc parameters. Especially, the air holes in PCFs are easily collapsed by high temperature arcs as schematically shown in Fig. 7-(a) [29]. The GeO2 doped ring in the proposed PCF adiabatically collapses to a solid core [13] and keeps the guided beam confined to the center to have a larger overlap with the fundamental mode of SMF. In Fig. 7-(b), the splicing loss between SMF and PCFs were estimated as a function of collapsed hole diameter using the reported formulae in reference [29]. The proposed PCF showed a significantly lower loss as the air hole collapses and its splicing loss was estimated to be as low as 0.22dB in contrast to 12.75dB of prior PCF.

 

Fig. 7 (a) The schematic diagram of splicing between conventional single mode fibers (SMF) and PCFs. The dark regions correspond to the GeO2 doped silica. The modal intensity distributions at the splice interface are shown in the inset. (b) Estimated splicing as a function of the collapsed hole diameter.

Download Full Size | PPT Slide | PDF

3. Conclusion

A novel index-guided photonic crystal fiber for sensing applications was successfully demonstrated to provide a unique solution to the trade-off between the confinement loss and the sensitivity in prior designs, by embedding a hollow high index ring defect at the center. The proposed defect provided new waveguide design parameters: the ring index difference Δring and the ring width wring to efficiently control the optical guidance and the power fraction over the air holes. At λ = 1.5μm, the proposed PCF with optimal parameters provided a high relative sensitivity of 5.09% significantly improved from 4.79% of the prior PCFs, and a low confinement loss of 1.25dB/m, an orders of magnitude reduced from 32.4dB/m of the prior PCFs. This excellent optical properties were made possible by extending the central hole diameter dc to the cladding hole diameter d (dc = d), which was not achievable in prior PCFs. A low splicing loss of 0.22dB was also estimated between the conventional single mode fiber due to adiabatic mode conversion along the GeO2-doped ring defect, which enables practical applications in chemical sensing.

Acknowledgement

This work was supported in part by the Brain Korea 21 Project and in part by the National Research Foundation of Korea (NRF) grant funded by the Korean Ministry of Education, Science, and Technology (MEST) (Nos. 2010-0018442, 2009-00479, EC-FP7/2007-2013, 219299 GOSPEL, and 2010-0017286).

References and links

1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef]   [PubMed]  

2. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef]   [PubMed]  

3. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997). [CrossRef]  

4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273. [CrossRef]   [PubMed]  

5. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008). [CrossRef]   [PubMed]  

6. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001). [CrossRef]  

7. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080. [CrossRef]   [PubMed]  

8. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509. [CrossRef]   [PubMed]  

9. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]  

10. Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008). [CrossRef]  

11. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008). [CrossRef]  

12. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524. [CrossRef]  

13. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164. [CrossRef]   [PubMed]  

14. S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039. [CrossRef]   [PubMed]  

15. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]  

16. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000). [CrossRef]  

17. P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in Proceedings of the COMSOL Multiphysics User’s Conference, Paris, 15 Nov. 2005, http://www.comsol.com/papers/1083/

18. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205. [CrossRef]  

19. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486. [CrossRef]   [PubMed]  

20. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660. [CrossRef]  

21. K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003). [CrossRef]  

22. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314. [PubMed]  

23. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433. [CrossRef]  

24. K. T. V. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 4 (Kluwer Academic, Dordrecht, The Netherlands, 1999), Chap. 2.

25. G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

26. S. L. Gilbert, and W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001)

27. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]  

28. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056. [CrossRef]   [PubMed]  

29. Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  3. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
    [CrossRef]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
    [CrossRef] [PubMed]
  5. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
    [CrossRef] [PubMed]
  6. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [CrossRef]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
    [CrossRef] [PubMed]
  8. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
    [CrossRef] [PubMed]
  9. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  10. Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
    [CrossRef]
  11. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
    [CrossRef]
  12. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
    [CrossRef]
  13. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
    [CrossRef] [PubMed]
  14. S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
    [CrossRef] [PubMed]
  15. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  16. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
    [CrossRef]
  17. P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in Proceedings of the COMSOL Multiphysics User’s Conference, Paris, 15 Nov. 2005, http://www.comsol.com/papers/1083/
  18. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205 .
    [CrossRef]
  19. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486 .
    [CrossRef] [PubMed]
  20. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
    [CrossRef]
  21. K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
    [CrossRef]
  22. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
    [PubMed]
  23. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
    [CrossRef]
  24. K. T. V. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 4 (Kluwer Academic, Dordrecht, The Netherlands, 1999), Chap. 2.
  25. G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).
  26. S. L. Gilbert, and W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001)
  27. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
    [CrossRef]
  28. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
    [CrossRef] [PubMed]
  29. Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
    [CrossRef]

2009 (2)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

2008 (3)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

2006 (2)

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

2005 (3)

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
[CrossRef] [PubMed]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
[CrossRef]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
[CrossRef] [PubMed]

2004 (2)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

2003 (4)

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

2002 (3)

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

2001 (2)

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

2000 (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

1997 (1)

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

1991 (1)

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

1984 (1)

J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486 .
[CrossRef] [PubMed]

1965 (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205 .
[CrossRef]

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Barbe, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Barretto, E. C. S.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Benner, D. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Birk, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Botten, L. C.

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

Boudon, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Brito Cruz, C. H.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Brown, L. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Campargue, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Champion, J.-P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Chesini, G.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Choi, S.

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
[CrossRef]

Clark, D. F.

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Cordeiro, C. M. B.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

Culshaw, B.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

de Sterke, C. M.

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

Duan, K.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Fang-di, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Ferrarini, D.

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Fleming, J. W.

J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486 .
[CrossRef] [PubMed]

Franco, M. A. R.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Hansen, T.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Ho, H. L.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

Hoo, Y. L.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

Jin, W.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Jung, Y.

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
[CrossRef]

Kim, S.

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
[CrossRef] [PubMed]

Kirchhof, J.

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Kobelke, J.

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

Koshiba, M.

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Kwok, Y. C.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Large, M. C. J.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Lee, J. W.

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
[CrossRef]

Liu, Z.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Ludvigsen, H.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Lwin, R.

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

Malitson, I. H.

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205 .
[CrossRef]

Mansuripur, M.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
[CrossRef] [PubMed]

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

McPhedran, R. C.

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

Min, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Ngo, N. Q.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Norris, J.

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Oh, K.

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
[CrossRef] [PubMed]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
[CrossRef]

Paek, U.

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
[CrossRef] [PubMed]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Pei-da, Y.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Petersen, J.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Peyghambarian, N.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
[CrossRef] [PubMed]

Polynkin, A.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
[CrossRef] [PubMed]

Polynkin, P.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
[CrossRef] [PubMed]

Ren, G. B.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Ritari, T.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Ruan, S. C.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Schuster, K.

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

Selleri, S.

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
[CrossRef]

Shi, C.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

Shum, P.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Simonsen, H.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Sørensen, T.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Steel, M. J.

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

Stewart, G.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

Sun, Y.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Tuominen, J.

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

Vincetti, L.

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

Wang, Y.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

White, T. P.

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Xu, Z.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Yu, X.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Zhao, W.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Zhi-guo, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Zoboli, M.

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
[CrossRef]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 .
[CrossRef] [PubMed]

J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486 .
[CrossRef] [PubMed]

Int. J. Optoelectron. (1)

G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).

J. Lightwave Technol. (2)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 .
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 .
[CrossRef]

J. Opt. Soc. Am. (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205 .
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009).
[CrossRef]

J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Meas. Sci. Technol. (2)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009).
[CrossRef]

Opt. Express (4)

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 .
[CrossRef] [PubMed]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 .
[PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
[CrossRef] [PubMed]

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 .
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Opt. Laser Technol. (1)

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008).
[CrossRef]

Opt. Lett. (3)

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 .
[CrossRef]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 .
[CrossRef] [PubMed]

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 .
[CrossRef] [PubMed]

Photon. Technol. Lett. (2)

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Other (3)

P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in Proceedings of the COMSOL Multiphysics User’s Conference, Paris, 15 Nov. 2005, http://www.comsol.com/papers/1083/

K. T. V. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 4 (Kluwer Academic, Dordrecht, The Netherlands, 1999), Chap. 2.

S. L. Gilbert, and W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) prior PCF with a central air-hole defect with the diameter dc [9-11], (b) proposed PCF with a hollow high index ring defect, and (c) its enlarged view with structural parameters: central hole diameter dc , ring width wring, and the relative index difference of the ring Δring . PML is perfect matched layer used in numerical analysis. The cladding air holes are characterized by their diameter, d, and pitch, Λ. Here we assumed 5 layers of air holes.

Fig. 2
Fig. 2

Effective index (Re[neff ]) of the fundamental mode by (a) relative index difference (Δring ) and (b) doping width (wring ). Here we set Λ = 2.3μm, d = 1.4μm for the cladding, dc = 1.2μm for the central hole, and ns = 1.

Fig. 3
Fig. 3

Comparison of the modal intensity distribution (a)-(b), confinement loss (c) and relative sensitivity (d) between the proposed PCF and the prior PCF and with the same central hole diameter dc . We set the wavelength at λ = 1.5μm for modal distribution comparison, (a)-(d). The proposed PCF had Δring = 1.2% and wring = 0.6μm. Here we set Λ = 2.3μm, d = 1.4μm for the cladding, dc = 1.2μm for the central hole, and ns = 1.

Fig. 4
Fig. 4

Comparison of optical properties (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we varied the relative index differences Δring of the proposed PCF with the fixed wring = 0.6μm and set the central hole size dc = 1.2μm along with Λ = 2.3μm, d = 1.4μm, and ns = 1.

Fig. 5
Fig. 5

Comparison of optical properties - (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we varied the ring width wring of the proposed PCF and set the central hole size dc = 1.2μm along with Λ = 2.3μm, d = 1.4μm, ns = 1, and Δring = 1.2%.

Fig. 6
Fig. 6

Comparison of optical properties - (a) confinement loss and (b) relative sensitivity of the proposed PCF (solid lines) with those of the prior PCF (dotted line). Here, we further increased the central hole size to be the same as the cladding hole diameter, dc = d = 1.4μm (orange colored plot). We set Λ = 2.3μm, ns = 1, and wring = 0.6μm, Δring = 2.0%.

Fig. 7
Fig. 7

(a) The schematic diagram of splicing between conventional single mode fibers (SMF) and PCFs. The dark regions correspond to the GeO2 doped silica. The modal intensity distributions at the splice interface are shown in the inset. (b) Estimated splicing as a function of the collapsed hole diameter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

× ( μ r 1 × E ) k 0 2 ( ε r j σ ω ε 0 ) E = 0.
confinement loss = 8.686 Im [ 2 π λ n e f f ] ,
A = log I 0 I T = r ε L C , r = n s Re [ n e f f ] f ,
f = s a m p l e Re ( E x H y * E y H x * ) d x d y / t o t a l Re ( E x H y * E y H x * ) d x d y ,

Metrics