Abstract

In this paper we calculated, for the first time to the best of our knowledge, the cross relaxation parameter of Tm3+ ions in tellurite glasses over a wide range of concentrations: from 0.36 mol% up to 10 mol%. A new measurement approach based on emission spectra monitoring is proposed. This method is very simple and allows to measure even very highly doped samples. The obtained values of cross-relaxation parameter show a linear dependence with respect to dopant concentration over the full investigated interval, suggesting a dipole-dipole interaction process. The measured slope is 1.81x10−17 cm3 s−1 mol%−1.

© 2011 OSA

1. Introduction

Thulium (Tm3+) is an excellent candidate for infrared domain applications thanks to its broad emission spectrum at around 1.8 micron [1] that makes this kind of laser very appealing for several application from precise cut and ablation of biological tissues to LIDAR and sensing applications [25]. In addition, Tm3+ has the advantage of efficient absorption at 790 nm which is available by using commercial diodes. Various glasses including silica, fluoride and germanate have been used as laser host material [6,7]. An alternative host material is tellurite glass. Amongst of all oxide glasses, tellurite glasses have the lowest phonon energies (~750 cm−1), which lead to increase in optical efficiency and decrease in probability of non-radiative multiphonon decay. Another feature of tellurite glasses is the high rare earth ions solubility comparing with silicate and germanate glasses. That explains why the thulium laser based on tellurite glass is of a great interest [810]. Whatever is the kind of glass used, laser development and design optimization relies on accurate modeling and comparison of different concentration levels. Whilst lifetimes and cross-sections are well known, the investigation of cross-relaxation (CR) over a wide range of concentration is still missing, despite its importance [11]. Several methods have been proposed from those based on lifetime measurements [12,13] to the one which were taking into account numerical fitting of fluorescence dynamic versus pump power [14]. Several crystals [13] and glass hosts, including silica [15] and TeO2 – ZnO – Na2O (TZN) glass [14], were investigated. The first method however, is limited by the fast quenching of Tm pump level for very high doping concentrations [16] and the second one was, so far, applied to a single relatively low-doped glass sample. Therefore, modeling for different doping levels was relying on approximated data considering this fundamental parameter which has a strong impact on the pumping efficiency [17]. The aim of this paper is to investigate and characterize a set of highly Tm3+ doped tellurite glasses with doping level ranging from 0.36 mol% up to 10 mol% and to provide the corresponding value of cross-relaxation parameters. The investigation was based on our previous papers [16,18], especially regarding cross-sections and branching rations values. To overcome limitation of usual measurement methods we develop the theory of and we propose a new method to calculate the cross-relaxation parameters. This method is based on steady-state fluorescence measurement and is very simple allowing to measure the cross-relaxation parameter even for very highly-doped samples. The presented method allow us to find for the first time, to the best of our knowledge, a general formula for the cross relaxation parameter. The measurements show that it has a clear linear dependence on the doping level up to 10 mol%. The proposed method has a more general validity and can be applied to other kind of glasses.

2. Theoretical modeling and measurement procedures

Figure 1 shows for sake of clarity the energy-level diagram of the Tm3+ ion pumped at 790 nm to the 3H4 level. The 3F43H6 emission of the neighboring ion is due to the cross-relaxation process: 3H4, 3H63F4, 3F4 as indicated in Fig. 1. As the result of this process for one pump photon it is possible to achieve two ions into the 3F4 manifold [19].

 

Fig. 1 Simplified energy level diagram of Tm3+ ion and scheme of the cross-relaxation process involving two Tm ions.

Download Full Size | PPT Slide | PDF

Since the average distance between two neighboring Tm3+ ions plays an important role in co-operative processes, the cross-relaxation parameter should depend on the doping level and this dependency has to be understood. The doping concentration range starts from a very low for long fiber lasers to extremely high for ultra - compact single-frequency lasers. In addition, evaluation of the cross-relaxation process will improve the predictions for a laser performance [20,21]. Tm3+ has a quite complex system of energy levels [14] but we can consider empty 3H5 level due to non radiative fast relaxation to 3F4 without losing in model accuracy. The corresponding rate-equation system used to analyze our experimental data is:

dN0dt=W03N0+N3τ30+N1τ1CRN3N0
dN1dt=N3τ31N1τ1+2CRN3N0
dN3dt=W03N0N3τ30N3τ31CRN3N0
where N0, N1, and N3 are the populations of Tm3+ ions in the 3H6, 3F4, and 3H4 levels respectively, W03 is the pump rate (s−1) and CR the cross relaxation parameter, τxy is the lifetime of the x to y transition and τx is the lifetime of level x. Note that τ3 = (τ31−1 + τ30−1)−1. The CR parameter is a function of the Tm doping level. At steady state the time derivatives in the rate equations are equal to zero. Considering the conservation law of Tm3+ ions populations, we can also write Nt = N0 + N1 + N3. The above rate equations system can be solved using a suitable numerical program. However, to optimize doping level it is important to have available parameters as a function of the concentration. Here, we were focused on the CR parameter. The cross-relaxation rate CRN0 can be estimated by using a standard model and the relation from the measurement of the experimental lifetime of 3H4 level [12,22]:
CR=1N0(1τ3+1τ3*)
where τ3* is the measured lifetime of the 3H4 level. However, as we will discuss later this requires an experimental set-up with time resolution of the order of 1 μs or below [16] and the sensitivity fail to provide reliable values for very highly-doped samples. To overcome this limitation we propose to investigate the steady-state emission from 3H4 and the 3F4 levels. In steady-state condition from Eq. (2) follows:

CR=12N0[1τ31+N1N3τ1]

We can now use the Fuchtbauer-Landenburg rule [23] and the relationship that provides the amount of the spontaneous emission [24]. The first rule relates the transition lifetime to emission spectra and emission cross section, the second one the amount of emitted spontaneous photons to the number of excited ions and their emission cross section. Therefore, the emission cross section can be written as:

σe,ij(λp,ij)=Kλp,ij4Ai,j,normn2(λp,ij)τij=HΦij(λp,ij)NiΔν
where σij, Aij,norm, τij are the emission cross section, the area of emission spectrum normalized to the maximum and the transition radiative lifetime of the transition from level i to level j; respectively. The parameters H and K are constants independent from the transition, n is the glass refractive index at the transition wavelength; Φij is the number of photons emitted at peak wavelength in the frequency interval Δν, Ni is the excited ion population, and λp,ij is the emission peak wavelength of the transition labeled as ‘ij’. By combining the two above written equations we have:

NiτijΦij(λp,ij)Δνpλp,ij4Aij,normn2(λp,ij)

Please, note we are not interested in the exact value of the ratio. If we now rewrite the Eq. (6) and use Eq. (8) for the 1800 nm (i = 1, j = 0) and 1470 nm (i = 3, j = 1) transitions, we have:

CR=β312N0τ3[Δνp,31Φ10λp,314A10,normn2(λp,10)Δνp,10Φ31λ4p,10A31,normn2(λp,31)τ1,0τ11]
where β31 is the branching ratio of the 1470 nm transition and is equal to 0.076 [20] and τ10 is the lifetime of 3F4 level for an isolated ion. In the paper we will use this formula to calculate the cross relaxation even for the highest doped samples were Eq. (5) fails due to experimental resolutions limits.

3. Experimental set-up

All samples had the same host composition 75TeO2-20ZnO-5Na2O (mol%), labeled as TZN, and were doped with Tm3+ concentrations ranging from 0.36 mol% to 10 mol% [16]. In our set-up the excited pump beam from a 785 nm laser diode was first collimated and then focused on the sample edge to reduce undesired effects of radiation trapping and re-absorption that may alter the measurement. The signal was collected orthogonally with respect to the excited beam by a low N.A. lens (N.A. = 0.25). This reduced the signal intensity but at the same time reduced the lifetime measurement errors due to reabsorption. Before the photodiode a long-pass filter with cut-off at around 1500 nm was used to measure the 3F4 level lifetime whilst a 1450 nm pass-band filter was used to measure the 3H4 lifetime. The spectra were recorded by an array of ccd covering the 900 nm – 2500 nm wavelength interval.

4. Cross-relaxation measurement

As it is described in the theoretical investigation, in order to obtain the CR parameter it is necessary to measure the lifetime of 3H4 level for all samples or, alternatively, the lifetime of 3F4 level and the emission spectra. We measured the lifetime of 3H4 and 3F4 levels and fitted the experimental lifetime values using the formula proposed by Auzel et al [25]:

τ=τ0(1+92π(NNq)2)
where τ is the measured lifetime at a given concentration N, τ0 is the lifetime of a single isolated ion, and Nq the quenching concentration. Figure 2a and Fig. 2b show the measured values. Note that for our purpose we do not need to measure the highest-doped samples.

 

Fig. 2 Measured lifetimes for: (a) 3F4 level, and (b) 3H4 level versus Tm3+ concentration.

Download Full Size | PPT Slide | PDF

The quenching concentration for 3F4 and 3H4 levels obtained by the Eq. (10) were ~1.6 and 1 mol%, respectively. The lifetime τ0 for 3H4 was 0.37 ms whilst for 3F4 equal to 2.7 ms. For the samples doped with concentrations higher than 4 mol% the lifetime of 3H4 level was affected by the response time of our photodiode that is of about few microsecond. To calculate the cross-relaxation parameter for samples with higher doping concentration we measured the emission spectra. Again, samples of Tm-doped tellurite glasses were excited at the wavelength of 785 nm and the two transition bands centered at 1.47 and 1.8 µm, which corresponding to 3H43F4 and 3F43H6 respectively, were observed and are shown in Fig. 3a where we normalized all curves to the peak of 3H43F4 transition at 1.47 μm. The ratio between the emission peak from 3F4 and 3H4 levels is reported in Fig. 3b. We were using the peak ratios and not the integral value since the emission shape was not changing significantly.

 

Fig. 3 (a) Emission spectra, inset magnifies the of 3H43F4 transition at 1.47 μm; (b) Ratio between the emission from 3F4 and 3H4 levels.

Download Full Size | PPT Slide | PDF

Using data from emission spectra and Eq. (9) we calculated the CR parameter. Since the detector bandwidth was similar at 1470 nm and at 1800 nm and the refractive index difference if less than 1% [16], we used the followed approximated equation:

CR=12N0τ31[kR1]

Where R = (Φ1030)(τ1,01) depends on the measurements and ‘k’ contains all other constants k = (λp,31/ λp,10)4 (Δνp,31/ Δνp,10) (A10,norm/A31,norm). Since the two peak wavelengths are 1470 nm and 1800 nm and the normalized area of the A31,norm is half the normalized area A10,norm so we have k = 1.33. The final value of ‘k’ was also calculated considering frequency interval Δν. The measurement of output spectra were carried out using a similar interval in the wavelength domain, therefore the ratio between frequency intervals were scaled considering Δν = c Δλ/λ2 where c is the speed of light. Figure 4 shows as triangles the values calculated by using Eq. (11). We can note a quite clear linear increase even for highest doped samples where, however the slope is slightly reduced.

 

Fig. 4 Cross-relaxation parameter versus Tm concentration.

Download Full Size | PPT Slide | PDF

From the experimental data the fitted CR is 1.81x10−17 cm3 s-1%mol−1 is obtained. This value is below the one previously reported in TZN glass [14] but is consisted with the one used for silica fiber modeling [17]. To verify our results further, we used the common method of calculating CR parameter from Eq. (5) and results are shown in Fig. 4. The linear dependence on concentration of the cross-relaxation parameter is in agreement with the behavior of the concentration quenching of the lifetimes, as predicted by Auzel in the framework of dipole-dipole interaction processes [26]. We can notice an excellent agreement between the two methods until 4 mol%, the highest-doped sample we were able to measure with a suitable accuracy. We believe that the data here reported will be useful to model and design laser in TZN glasses. This measurement method can be easily extended to other type of glasses.

5. Conclusion

We experimentally calculated the cross relaxation parameter of Tm3+ ions in tellurite glasses over a wide range of concentrations: from 0.36 mol% up to 10 mol%. A new and simple approach based on the emission spectra measurements was developed to investigate samples with very high doping levels. This approach demonstrates to be very sensitive and can be further applied to other kind of glasses. The obtained values of cross-relaxation show a linear dependence with dopant concentration. The value of the linear fit slope was 1.81x10−17 cm−3 s-1%mol−1. This value allows a proper modeling of Tm-doped tellurite glass laser using a suitable value for the cross-relaxation parameter.

Acknowledgments

We acknowledge the support by FP7 LIFT project (Leadership in Fiber Technology, Grant #228587), and the collaboration within COST Action MP0702. R. Balda acknowledges financial support from the Spanish Government under project MAT2009-14282-C02-02.

References and links

1. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988). [CrossRef]  

2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002). [CrossRef]   [PubMed]  

3. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989). [CrossRef]  

4. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004). [CrossRef]  

5. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2004).

6. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000). [CrossRef]  

7. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994). [CrossRef]  

8. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006). [CrossRef]  

9. Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010). [CrossRef]  

10. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 2 μm doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008). [CrossRef]   [PubMed]  

11. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009). [CrossRef]  

12. A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002). [CrossRef]  

13. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992). [CrossRef]  

14. C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Theoretical modeling of a 2 μm Tm3+ doped Tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009). [CrossRef]  

15. D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006). [CrossRef]  

16. H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

17. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999). [CrossRef]  

18. H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009). [CrossRef]  

19. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006). [CrossRef]  

20. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007). [CrossRef]   [PubMed]  

21. J. Wu, S. Jiang, T. Qiu, M. Morrell, A. Schulzgen, and N. Peyghambarian, “Cross-relaxation energy transfer in Tm3+ doped tellurite glass,” in Optical Components and Materials II (San Jose, CA, USA, 2005) 152–161.

22. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007). [CrossRef]   [PubMed]  

23. C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991). [CrossRef]  

24. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991). [CrossRef]  

25. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001). [CrossRef]  

26. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
    [CrossRef]
  2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
    [CrossRef] [PubMed]
  3. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
    [CrossRef]
  4. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
    [CrossRef]
  5. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2004).
  6. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [CrossRef]
  7. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
    [CrossRef]
  8. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
    [CrossRef]
  9. Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
    [CrossRef]
  10. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 2 μm doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [CrossRef] [PubMed]
  11. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [CrossRef]
  12. A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
    [CrossRef]
  13. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
    [CrossRef]
  14. C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Theoretical modeling of a 2 μm Tm3+ doped Tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009).
    [CrossRef]
  15. D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
    [CrossRef]
  16. H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).
  17. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [CrossRef]
  18. H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
    [CrossRef]
  19. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
    [CrossRef]
  20. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [CrossRef] [PubMed]
  21. J. Wu, S. Jiang, T. Qiu, M. Morrell, A. Schulzgen, and N. Peyghambarian, “Cross-relaxation energy transfer in Tm3+ doped tellurite glass,” in Optical Components and Materials II (San Jose, CA, USA, 2005) 152–161.
  22. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
    [CrossRef] [PubMed]
  23. C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
    [CrossRef]
  24. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
    [CrossRef]
  25. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
    [CrossRef]
  26. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
    [CrossRef]

2010 (2)

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

2009 (3)

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Theoretical modeling of a 2 μm Tm3+ doped Tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009).
[CrossRef]

2008 (1)

2007 (2)

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

2006 (3)

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

2004 (1)

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

2003 (1)

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

2002 (2)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

2001 (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

1999 (1)

1994 (1)

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

1992 (1)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

1991 (2)

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[CrossRef]

1989 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

1988 (1)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Balda, R.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Barnes, N. P.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Baxter, G. W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Binks, D.

Blanc, W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Boulon, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

Burrus, C. A.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Caponi, R.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Chang, J.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Chaussedent, S.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Chen, G. X.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

Chen, Q.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Collins, S. F.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

de Camargo, A. S. S.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

de Oliveira, S. L.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

de Sousa, D. F.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Desurvire, E.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[CrossRef]

DiGiovanni, D.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Dussardier, B.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Dutta, N. K.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Evans, C. A.

Fernandez, J.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Ferrari, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Ferraris, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Gamulin, O.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Gebavi, H.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Geng, J.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Gibbs, W. E. K.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Giles, C. R.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[CrossRef]

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Hanna, D. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Harrison, P.

Hewak, D. W.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Huang, Q.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Ikonic, Z.

Ivanda, M.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Jackson, S. D.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
[CrossRef]

Jani, M. G.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Jauncey, I. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Jha, A.

Jiang, S.

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Jiang, Z. H.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

King, T. A.

Kokta, M.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Komukai, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

Liao, G.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Liu, Z.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Lousteau, J.

Luo, T.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Milanese, D.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Miyajima, Y.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

Monnom, G.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Ng, L. N.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Nilsson, J.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Nunes, L. A. O.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Pagano, A.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Percival, R. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Perry, I. R.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Petrin, R. R.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Peyghambarian, N.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

Potenza, M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Powell, R. C.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Raybon, G.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Richards, B.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Simpson, D. A.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Smart, R. G.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Sordo, B.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Suni, P. J.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Taccheo, S.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Taylor, E. R. M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Townsend, J. E.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Tropper, A. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Tsang, Y.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Wang, Q.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Wu, J.

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Yamamoto, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

Yang, G. F.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

Yao, Z.

Yu, G.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Zhang, Q. Y.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

Zhang, X.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Zong, J.

Electron. Lett. (3)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Appl. Phys. (1)

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

J. Fluoresc. (1)

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (3)

J. Lumin. (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

J. Non-Cryst. Solids (2)

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

J. Phys. Condens. Matter (1)

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Laser Phys. (1)

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Mater. (2)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

Phys. Rev. B (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Other (2)

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2004).

J. Wu, S. Jiang, T. Qiu, M. Morrell, A. Schulzgen, and N. Peyghambarian, “Cross-relaxation energy transfer in Tm3+ doped tellurite glass,” in Optical Components and Materials II (San Jose, CA, USA, 2005) 152–161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified energy level diagram of Tm3+ ion and scheme of the cross-relaxation process involving two Tm ions.

Fig. 2
Fig. 2

Measured lifetimes for: (a) 3F4 level, and (b) 3H4 level versus Tm3+ concentration.

Fig. 3
Fig. 3

(a) Emission spectra, inset magnifies the of 3H43F4 transition at 1.47 μm; (b) Ratio between the emission from 3F4 and 3H4 levels.

Fig. 4
Fig. 4

Cross-relaxation parameter versus Tm concentration.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d N 0 dt = W 03 N 0 + N 3 τ 30 + N 1 τ 1 C R N 3 N 0
d N 1 dt = N 3 τ 31 N 1 τ 1 +2 C R N 3 N 0
d N 3 dt = W 03 N 0 N 3 τ 30 N 3 τ 31 C R N 3 N 0
C R = 1 N 0 ( 1 τ 3 + 1 τ 3 * )
C R = 1 2 N 0 [ 1 τ 31 + N 1 N 3 τ 1 ]
σ e,ij ( λ p,ij )=K λ p,ij 4 A i,j,norm n 2 ( λ p,ij ) τ ij =H Φ ij ( λ p,ij ) N i Δν
N i τ ij Φ ij ( λ p,ij ) Δ ν p λ p,ij 4 A ij,norm n 2 ( λ p,ij )
C R = β 31 2 N 0 τ 3 [ Δ ν p,31 Φ 10 λ p,31 4 A 10,norm n 2 ( λ p,10 ) Δ ν p,10 Φ 31 λ 4 p,10 A 31,norm n 2 ( λ p,31 ) τ 1,0 τ 1 1 ]
τ= τ 0 ( 1+ 9 2π ( N N q ) 2 )
C R = 1 2 N 0 τ 31 [ kR1 ]

Metrics