Abstract

The implications of increasing the symbol rate for a given digital-to-analog converter (DAC) sampling rate are investigated by considering the generation of 112 Gbit/s PM 16-QAM signals (14 Gsym/s) using a 21 GSa/s DAC with 6-bit resolution.

© 2011 OSA

1. Introduction

In coherent optical transmission systems, 28 Gsym/s polarization multiplexed, quadrature phase shift keying (PM QPSK) [1] and 14 Gsym/s polarization multiplexed, 16-ary quadrature amplitude modulation (PM 16-QAM) [2] can be used to achieve a bit rate of 112 Gbit/s. For PM QPSK, two-level drive signals are required for the IQ optical modulator, while for PM 16-QAM, four-level drive signals are required. The four-level drive signals can be generated using either the RF combining of two two-level signals [2] or a high-speed digital signal processor and digital-to-analog converters (DACs) [315]. The latter approach has the advantage of being able to generate modulated optical signals with more precise control of the amplitude and phase. Indeed, the flexibility to control the pulse shape is particularly important for spectrally efficient modulation formats [47]. This flexibility is achieved by satisfying the sampling theorem which requires the sampling rate to be at least twice the signal bandwidth. For a fixed DAC sampling rate, the achievable symbol rate can be increased by choosing a pulse shape that reduces the modulated signal bandwidth. This is exemplified by a pulse with a raised-cosine spectrum for which the maximum symbol rate for a bandwidth B is given by

SRmax=2B1+r
where r is the roll-off factor (0 ≤ r ≤ 1). As the symbol rate increases from B to 2B (r decreases from 1 to 0), the number of samples per symbol decreases from 2 to 1. While it is of interest to increase the symbol rate for a given sampling rate, the corresponding decrease in the size of the eye opening must be considered.

In this paper we investigate the use of a raised-cosine pulse (r = 0.5) and a rectangular pulse filtered by a Gaussian response for the generation of 112 Gbit/s PM 16-QAM using a 6-bit 21 GSa/s DAC. For a symbol rate of 14 Gsym/s (1.5 samples per symbol), the modulated signal bandwidth is 10.5 GHz.

2. Pulse shaping

For a fixed DAC sampling rate, pulses with a raised-cosine spectrum provide a straightforward approach for increasing the symbol rate by reducing the modulated signal bandwidth and hence the number of samples per symbol. In the time domain, the pulse shape is given by

d(t)=2f0[sin(2πf0t)2πf0t][cos(2πrf0t)1(4rf0t)2]
where f0 is the 6-dB bandwidth. The spectrum of d(t) is bandlimited to B = (1 + r)f0. For a sampling rate of 21 GSa/s and a symbol rate of 14 GSym/s, r = 0.5. In this case f0 = 7 GHz and B = 10.5 GHz.

For an ideal 6-bit 28 GSa/s DAC, Fig. 1 illustrates the simulated eye diagram obtained for the in-phase component of a 14 GSym/s 16-QAM signal with r = 0.5 and 2 samples per symbol (over-sampling since the signal is bandlimited to 10.5 GHz). The sample values for the modulator drive signals are obtained from the specified optical field (raised-cosine pulse with r = 0.5), back-calculation using a mathematical model for the IQ modulator [16], sampling and quantization. The quantized sample values are at t = nTs/2, n = 0, ±1, ±2, … where Ts is the symbol period. The quantized sample values are then used in a forward-calculation to determine the modulated optical signal. The digital-to-analog conversion is implemented using the interpft function in Matlab. There is no intersymbol interference (ISI) and the relatively small eye opening is due to the value r = 0.5.

 

Fig. 1 In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 2 samples per symbol with quantization.

Download Full Size | PPT Slide | PDF

The eye diagram for the in-phase component of the 16-QAM signal is shown in Fig. 2 when the sampling rate is reduced to 21 GSa/s (1.5 samples per symbol). The sample values are at t = 2nTs/3, n = 0, ±1, ±2, … . For this case, every other pulse has a sample at the symbol center. The eye diagram obtained with commscope.eyediagram in Matlab shows the difference in the signal for alternating symbols when 2 symbol periods are displayed. For the symbols with a sample at the symbol center, the ISI is very small, while for the symbols without a sample at the symbol center, the ISI is increased. This is caused by quantization and the nonlinear response of the IQ modulator which is used to obtain the modulator drive signals by the back-calculation. For a fictitious modulator with a linear response and without quantization, the ISI is zero as expected since the sampling theorem is satisfied (signal bandwidth of 10.5 GHz for r = 0.5 and a sampling rate of 21 GSa/s).

 

Fig. 2 In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 1.5 samples per symbol with quantization.

Download Full Size | PPT Slide | PDF

The asymmetry in the signal in Fig. 2 can be reduced by using offset sampling times t = Ts/6 + 2nTs/3, n = 0, ±1, ±2, … so that there is a sample value either Ts/6 or - Ts/6 away from the center of each symbol period. The effect of this offset sampling is illustrated in Fig. 3 .

 

Fig. 3 In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 1.5 samples per symbol with quantization and offset sampling.

Download Full Size | PPT Slide | PDF

The raised-cosine pulse with r = 0.5 exhibits a relatively small eye opening and thus is sensitive to noise and timing jitter in the receiver. While the symbol rate can be increased further by reducing r (for a fixed sampling rate), this yields a yet smaller eye opening. As an alternative to the raised-cosine pulse, we consider a pulse obtained by filtering an ideal square pulse with a Gaussian response. The filtered pulse is then bandlimited to 10.5 GHz using a rectangular response. For a 3-dB Gaussian filter bandwidth of 9 GHz, Fig. 4 shows the in-phase eye diagram for the case of 28 GSa/s (2 samples per symbol) with quantization of the sample values. In comparison to Fig. 2, the eye opening is larger at the expense of a small increase in the ISI. Figure 5 illustrates the eye diagram for 21 GSa/s (1.5 samples per symbol) with quantization and offset sampling. The eye opening is appreciably larger than the corresponding result in Fig. 3 for the raised-cosine pulse (r = 0.5).

 

Fig. 4 In-phase eye diagram for a Gaussian filtered rectangular pulse using 2 samples per symbol with quantization.

Download Full Size | PPT Slide | PDF

 

Fig. 5 In-phase eye diagram for a Gaussian filtered rectangular pulse using 1.5 samples per symbol with quantization and offset sampling.

Download Full Size | PPT Slide | PDF

3. Experimental setup

A simplified illustration of the experimental setup for back-to-back measurements of the transmitter performance is shown in Fig. 6 . Measured results were obtained for an angle differential encoded 112 Gbit/s PM 16-QAM signal [17,18] generated with a DAC sampling rate of 21 GSa/s (1.5 samples per symbol). For comparison, results were also obtained for an angle differential encoded 85.672 Gbit/s PM 16-QAM signal generated with a DAC sampling rate of 21.418 GSa/s (2 samples per symbol). A 216 de Bruijn bit sequence was used for bit to symbol mapping and the generation of the in-phase and quadrature signals. The output from the IQ modulator was split and then recombined in orthogonal polarizations after delaying one of the signals to decorrelate it from the other signal. The received signal was amplified and filtered (1.3 nm bandwidth) before detection by a polarization- and phase-diverse coherent receiver. The transmitter and local oscillator lasers had nominal linewidths of 100 KHz. The four signals from the balanced photodetectors were digitized by 40 GSa/s analog-to-digital converters using a real-time oscilloscope with a 16 GHz electrical bandwidth. The off-line signal processing included (i) quadrature imbalance compensation [19], (ii) down-sampling to 28 or 21.418 GSa/s (corresponding to the bit rates of 112 and 85.672 Gbit/s, respectively), (iii) digital square and filter clock recovery [20], (iv) polarization recovery and residual distortion compensation using 11-tap adaptive equalizers in a butterfly configuration, (v) carrier frequency recovery using a spectral domain algorithm [21], (vi) phase recovery using a blind phase search algorithm [22], (vii) symbol decisions and (viii) angle differential decoding. The adaptive equalizer used a constant modulus algorithm for pre-convergence followed by a radius directed algorithm [23]. Variable amounts of amplified spontaneous emission (ASE) noise from a broadband source were added in order to measure the dependence of the bit error ratio (BER) on the optical signal-to-noise ratio (OSNR). The OSNR was obtained using the measurement function of an optical spectrum analyzer. The BER was obtained by direct bit error counting using rectilinear decision boundaries.

 

Fig. 6 Experimental setup. IQM: IQ modulator. EDFA: erbium doped fiber amplifier. VOA: variable optical attenuator. BBS: broadband source. OBPF: optical bandpass filter. OSA: optical spectrum analyzer.

Download Full Size | PPT Slide | PDF

4. Results

Figures 7 and 8 show constellation diagrams for the X polarization signals for 85.672 and 112 Gbit/s PM 16-QAM signals without added ASE noise. These results are for data sets comprised of 54,256 and 69,850 symbols, respectively.

 

Fig. 7 Constellation diagram for the X-polarization of the 85.672 Gbit/s PM 16-QAM signal.

Download Full Size | PPT Slide | PDF

 

Fig. 8 Constellation diagram for the X-polarization of the 112 Gbit/s PM 16-QAM signal.

Download Full Size | PPT Slide | PDF

The dependence of the BER on the OSNR is shown in Fig. 9 for the 85.672 Gbit/s PM 16-QAM signal. In this case, a raised-cosine pulse shape with r = 1 was used. Theoretical results are also shown without and with differential encoding [17,22]. The convergence parameter for the adaptive equalizer was μ=4×106. The implementation penalty for BER=103is 3 dB, in part due to the combined bandwidth limitation of the DACs and drive amplifiers. Each value of the BER is based on 271,820 symbols.

 

Fig. 9 Dependence of the bit error ratio on the optical signal-to-noise ratio (noise bandwidth of 0.1 nm) for 85.672 Gbit/s PM 16-QAM (raised-cosine pulse with r = 1).

Download Full Size | PPT Slide | PDF

Figure 10 illustrates optical spectra for the 112 Gbit/s PM 16-QAM signal using the raised-cosine pulse (r = 0.5) and Gaussian filtered rectangular pulse. The resolution bandwidth of the optical spectrum analyzer was set to 0.01 nm. The 3 and 20 dB bandwidths are very similar for the two pulse shapes.

 

Fig. 10 Optical spectra for 112 Gbit/s PM 16-QAM (Gaussian filtered rectangular pulse and raised-cosine pulse with r = 0.5). The resolution bandwidth is 0.01 nm.

Download Full Size | PPT Slide | PDF

The dependence of the BER on the OSNR is shown in Fig. 11 for the 112 Gbit/s PM 16-QAM signal. Theoretical results are also shown without and with differential encoding [16, 21]. The convergence parameter for the adaptive equalizer was μ=2×106. The implementation penalty for BER=103is 4.8 dB for the Gaussian filtered rectangular pulse and 5.8 dB for the raised-cosine pulse (r = 0.5). Each value of the BER is based on 349,250 symbols.

 

Fig. 11 Dependence of the bit error ratio on the optical signal-to-noise ratio (noise bandwidth of 0.1 nm) for 112 Gbit/s PM 16-QAM (Gaussian filtered rectangular pulse and raised-cosine pulse with r = 0.5).

Download Full Size | PPT Slide | PDF

Finally, Fig. 12 illustrates the constellation diagram for the X-polarization signal for the 112 Gbit/s PM 16-QAM signal with an OSNR of 23 dB. The red constellation points indicate the symbol errors, the distribution of which indicates a properly biased IQ modulator.

 

Fig. 12 Constellation diagram for the X-polarization of the 112 Gbit/s PM 16-QAM signal. The red open constellation points indicate the symbol errors.

Download Full Size | PPT Slide | PDF

5. Conclusion

The required sampling rate for the generation of 112 Gbit/s PM 16-QAM signals can be reduced by decreasing the modulated signal bandwidth. For a sampling rate of 21 GSa/s (1.5 samples per symbol), a Gaussian filtered rectangular pulse provides a significantly larger eye opening compared to a raised-cosine pulse with a roll-off factor of 0.5. For BER=103in a back-to-back system configuration, the Gaussian filtered rectangular pulse exhibits a 1 dB advantage in terms of the required OSNR.

References and links

1. K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009). [CrossRef]  

2. P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010). [CrossRef]  

3. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11×171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.1.

4. M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.

5. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010). [CrossRef]  

6. B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

7. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMA5.

8. A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011). [CrossRef]  

9. Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/s 6b DAC in 65nm CMOS with 256×6b memory,” in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 194–196.

10. N. Kikuchi and S. Sasaki, “Long-distance standard single-mode fiber transmission of 40-Gbit/s 16QAM signal with optical delay-detection and digital pre-distortion of chromatic dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThE3.

11. T. Sugihara and T. Kobayashi, T, Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.B.2.

12. S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80×224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical preamplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.7.

13. J. C. Cartledge, J. D. Downie, J. Hurley, A. S. Karar, Y. Jiang, and K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.A.5.

14. K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011). [CrossRef]  

15. P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011). [CrossRef]  

16. J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011). [CrossRef]  

17. J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008). [CrossRef]  

18. I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010). [CrossRef]  

19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008). [CrossRef]  

20. H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.

21. M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper P3.08.

22. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009). [CrossRef]  

23. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
    [Crossref]
  2. P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [Crossref]
  3. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11×171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.1.
  4. M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.
  5. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
    [Crossref]
  6. B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).
  7. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMA5.
  8. A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
    [Crossref]
  9. Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/s 6b DAC in 65nm CMOS with 256×6b memory,” in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 194–196.
  10. N. Kikuchi and S. Sasaki, “Long-distance standard single-mode fiber transmission of 40-Gbit/s 16QAM signal with optical delay-detection and digital pre-distortion of chromatic dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThE3.
  11. T. Sugihara and T. Kobayashi, T, Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.B.2.
  12. S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80×224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical preamplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.7.
  13. J. C. Cartledge, J. D. Downie, J. Hurley, A. S. Karar, Y. Jiang, and K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.A.5.
  14. K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
    [Crossref]
  15. P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
    [Crossref]
  16. J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
    [Crossref]
  17. J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
    [Crossref]
  18. I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
    [Crossref]
  19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
    [Crossref]
  20. H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.
  21. M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper P3.08.
  22. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  23. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [Crossref]

2011 (4)

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[Crossref]

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[Crossref]

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

2010 (4)

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[Crossref]

P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[Crossref]

2009 (3)

2008 (2)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[Crossref]

Awadalla, A.

Becker, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Berdaguer, P.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Borowiec, A.

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[Crossref]

Bower, P.

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[Crossref]

Buhl, L. L.

Cartledge, J. C.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Chagnon, M.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Châtelain, B.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Chiu, Y.-L.

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[Crossref]

Dedic, I.

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[Crossref]

Doerr, C. R.

Dreschmann, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Dupuy, J.-Y.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Freude, W.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Gagnon, F.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Gnauck, A. H.

Godin, J.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Harley, J.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

Hillerkuss, D.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Hoffmann, S.

Huebner, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Hwang, J.-K.

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[Crossref]

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Jiang, Y.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

Jorge, F.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Karar, A. S.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

Konczykowska, A.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Koos, C.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Krause, D.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Krause, D. J.

Laperle, C.

Leuthold, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Liao, C.-S.

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[Crossref]

Magarini, M.

Meyer, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Moulu, J.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Nebendahl, B.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Nodjiadjim, V.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Noé, R.

O'Sullivan, M.

Pfau, T.

Plant, D. V.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Riet, M.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

Roberts, K.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[Crossref]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
[Crossref]

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Schmogrow, R.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Sun, H.

Winter, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Winzer, P.

Wu, K.-T.

Xu, X.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Electron. Lett. (1)

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Int. J. Commun. Syst. (1)

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (1)

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[Crossref]

Opt. Fiber Technol. (2)

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[Crossref]

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[Crossref]

Other (10)

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMA5.

H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.

M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper P3.08.

S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11×171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.1.

M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.

Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/s 6b DAC in 65nm CMOS with 256×6b memory,” in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 194–196.

N. Kikuchi and S. Sasaki, “Long-distance standard single-mode fiber transmission of 40-Gbit/s 16QAM signal with optical delay-detection and digital pre-distortion of chromatic dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThE3.

T. Sugihara and T. Kobayashi, T, Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.B.2.

S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80×224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical preamplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.7.

J. C. Cartledge, J. D. Downie, J. Hurley, A. S. Karar, Y. Jiang, and K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 2 samples per symbol with quantization.

Fig. 2
Fig. 2

In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 1.5 samples per symbol with quantization.

Fig. 3
Fig. 3

In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 1.5 samples per symbol with quantization and offset sampling.

Fig. 4
Fig. 4

In-phase eye diagram for a Gaussian filtered rectangular pulse using 2 samples per symbol with quantization.

Fig. 5
Fig. 5

In-phase eye diagram for a Gaussian filtered rectangular pulse using 1.5 samples per symbol with quantization and offset sampling.

Fig. 6
Fig. 6

Experimental setup. IQM: IQ modulator. EDFA: erbium doped fiber amplifier. VOA: variable optical attenuator. BBS: broadband source. OBPF: optical bandpass filter. OSA: optical spectrum analyzer.

Fig. 7
Fig. 7

Constellation diagram for the X-polarization of the 85.672 Gbit/s PM 16-QAM signal.

Fig. 8
Fig. 8

Constellation diagram for the X-polarization of the 112 Gbit/s PM 16-QAM signal.

Fig. 9
Fig. 9

Dependence of the bit error ratio on the optical signal-to-noise ratio (noise bandwidth of 0.1 nm) for 85.672 Gbit/s PM 16-QAM (raised-cosine pulse with r = 1).

Fig. 10
Fig. 10

Optical spectra for 112 Gbit/s PM 16-QAM (Gaussian filtered rectangular pulse and raised-cosine pulse with r = 0.5). The resolution bandwidth is 0.01 nm.

Fig. 11
Fig. 11

Dependence of the bit error ratio on the optical signal-to-noise ratio (noise bandwidth of 0.1 nm) for 112 Gbit/s PM 16-QAM (Gaussian filtered rectangular pulse and raised-cosine pulse with r = 0.5).

Fig. 12
Fig. 12

Constellation diagram for the X-polarization of the 112 Gbit/s PM 16-QAM signal. The red open constellation points indicate the symbol errors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S R max = 2B 1+r
d(t)=2 f 0 [ sin(2π f 0 t) 2π f 0 t ][ cos(2πr f 0 t) 1 (4r f 0 t) 2 ]

Metrics