Abstract

Hemispherical total reflectivity of copper, nickel, and tungsten in ablation by nanosecond Nd:YAG laser pulses in air of atmospheric pressure is experimentally studied as a function of laser fluence in the range of 0.1–100 J/cm2. Our experiment shows that at laser fluences below the plasma formation threshold the reflectivity of mechanically polished metals remains virtually equal to the table room-temperature reflectivity values. The hemispherical total reflectivity of the studied metals begins to drop at a laser fluence of the plasma formation threshold. With increasing laser fluence above the plasma formation threshold the reflectivity sharply decreases to a low value and then remains unchanged with further increasing laser fluence. Computation of the surface temperature at the plasma formation threshold fluence reveals that its value is substantially below the melting point that indicates an important role of the surface nanostructural defects in the plasma formation on a real sample due to their enhanced heating caused by both plasmonic absorption and plasmonic nanofocusing.

© 2011 OSA

1. Introduction

Nanosecond laser ablation of solids is used in numerous applications such as laser processing of materials [1], pulsed-laser film deposition [2,3], manufacturing of nanomaterials [4], surface micro/nanostructuring [414], laser-induced breakdown spectroscopy [15,16], fabrication of diamond-like materials [17,18], biomedicine [19], and others. Although the nanosecond laser ablation was a subject of many studies, the reflection of high-intensity nanosecond laser pulses remains a poorly studied issue. In the past, the reflection of intense laser pulses by metals was first studied by Bonch-Bruevich et al. [20], where a substantial drop of the total reflectivity during submicrosecond spikes in a millisecond Nd-glass laser pulse was experimentally found. For studying reflection, the authors used an integrating sphere technique that allowed measuring the total reflectivity (both specular and diffuse components). Basov et al. [21] studied the total reflection of 15-ns Nd-laser pulses from Cu, Sn, and Al in a laser intensity range of 3 × 107 to 3 × 1010 W/cm2 and reported a sharp decrease of the total reflectivity to ~0.1 for ablation in a vacuum. Ready [22] investigated the time-resolved reflection of metallic surfaces during irradiation by 100-ns-duration pulses from a CO2-TEA laser and showed that the specular reflectivity reduction is mostly due to redistribution into diffuse reflectivity. The behavior of the specular reflection during 60-ns Nd:YAG laser pulses in ablation under vacuum conditions has been reported by Zavecz et al. [23]. However, the interpretation of the experiments on the specular reflection is complicated because surface structures induced during ablation can significantly enhance the diffuse component of the reflected light [22]. Dymshits [24] studied the reflection of a 30-ns Nd-laser pulse from a thin aluminum film ablated in vacuum. The reflected laser light was collected over a solid angle of about 1 sr. Vorob’ev [25] carried out a comparative study on the hemispherical total reflection of 45-ns ruby laser pulses in ablation of Cu in air and vacuum. Both time-resolved and time-integrated experiments showed a substantial decrease of the total reflectivity at the plasma formation threshold. At laser fluence above about 15 J/cm2, the time-integrated reflectivity of copper was measured to be about 0.3 and 0.2 in vacuum and air, respectively. At present, nanosecond Nd:YAG laser is the most widely used laser for ablation of materials as compared with other nanosecond lasers. In many applications, nanosecond laser ablation of materials is carried out in air of atmospheric pressure. However, as seen from previous works [2025], the reflection/absorption of the nanosecond Nd:YAG laser pulses for ablation of the materials in air has not been yet studied despite a crucial role of the reflection/absorption in ablation.

In this work, we investigate the hemispherical total reflection of the nanosecond Nd:YAG laser pulses in ablation of Cu, Ni, and W into air of the atmospheric pressure. The hemispherical total reflection is studied as a function of laser fluence in a range of 0.1–100 J/cm2. In our study, we use the samples with the surfaces that are not ideal and have initial surface defects, impurities, oxides, and adsorbates (as in many practical cases of materials processing). The obtained experimental results show that the reflectivity of metals begins to drop at a laser fluence of the plasma formation threshold. With increasing laser fluence above the plasma formation threshold, the reflectivity of the studied metals drops rapidly to a low value of about 0.10–0.15 that remains unchanged with further increasing laser fluence. The computation of the surface temperature at the plasma formation threshold shows that its value is below the melting point that indicates an important role of the surface imperfections in the plasma formation on the real samples.

2. Experimental

The experimental configuration is sketched in Fig. 1 . An Nd:YAG laser that produces 1.3 J in a 50-ns FWHM (Full Width at Half-Maximum intensity) pulse is used for ablation of the samples. The main laser beam is focused onto the sample with a lens. Reflected laser light is collected using an ellipsoidal light reflector technique [25, 26]. The sample is positioned in an internal focal point of the light reflector. To reduce laser light backscattering through the entrance hole in the ellipsoidal reflector, the laser beam incident upon the sample is aligned at 19 degrees from the normal to the sample. Energy of the reflected laser pulse, Erefl, is measured by an energy meter located in the external focal point of the reflector. A cutoff filter is placed in front of this energy meter for blocking the plasma radiation. Energy of the laser pulse incident upon the sample, Einc, is measured using an 8%-beamsplittter and energy meter. Using this method, the total reflectivity, R, (a sum of specular and diffuse components of the reflected light) can be found as R = Erefl/Einc. Laser fluences, F, in the range of 0.1–100 J/cm2 are set by both attenuation filters and varying the distance between the focusing lens and sample. All experiments are carried out in air of the atmospheric pressure. After each laser shot the sample was translated in order to expose an undamaged surface area to the next laser shot. Along with the reflection measurements, a surface damage and plasma formation thresholds are also determined. The surface damage threshold is found as the lowest laser fluence resulting in a surface damage that can be discerned under an optical microscope. The plasma formation threshold is determined by detecting the onset of a bright violet flash from the irradiated spot [27] using a photomultiplier (PMT) with a filter that blocks wavelengths longer 0.45 μm. The samples were mechanically polished and then cleaned with a tissue wetted with methanol.

 

Fig. 1 Experimental setup.

Download Full Size | PPT Slide | PDF

3. Results and discussion

The plasma formation thresholds averaged over ten measurements were measured to be 2.05, 0.9, and 0.95 J/cm2 for Cu, Ni, and W, respectively. The values of the damage threshold were found to be only slightly lower than those for the plasma formation threshold. Similar relation between the damage and plasma formation thresholds was previously observed in ablation of Al [27]. The reflectivity as a function of laser fluence in ablation of Cu, Ni, and W in air of the atmospheric pressure is shown in Fig. 2 . It is seen that the reflectivity of the studied metals remains constant at low laser fluences. At these low fluences, the irradiated surface does not undergo any surface damage and the reflectivity values are 0.9, 0.72, and 0.6 for Cu, Ni, and W, respectively. These reflectivity values agree with available table values of the room-temperature reflectivity for mechanically polished surfaces [28,29]. The plots of R(F) in Fig. 2 show that the reflectivity begins to decrease rapidly at a threshold fluence of 2.0, 0.9, and 0.9 for Cu, Ni, and W, respectively. These threshold fluences of a sharp reflectance drop coincide with the measured plasma formation thresholds within the experimental uncertainty. As can be seen in Fig. 2, as the laser fluence increases further, the reflectivity drops (to about 0.19, 0.14, and 0.11 for Cu, Ni, and W, respectively) and then remains unchanged with further increasing fluence.

 

Fig. 2 Hemispherical total reflectivity of Cu, Ni, and W as function of laser fluence for ablation in 1-atm air.

Download Full Size | PPT Slide | PDF

The above observations indicate the correlation between the reflectivity drop and plasma formation. In general, the reflectivity reduction can be caused by Drude’s temperature dependence of the optical constants and absorption of laser light in a laser-induced plasma. In order to ascertain the role of Drude’s temperature dependence of the optical constants on the reflectivity, we computed the surface temperature, Tsurf, of the samples at the plasma formation threshold fluences using the following formula [30]

Tsurf(t)=(1R)akπ0tI(tτ)τdτ+T0
where a is the thermal diffusivity, k is the thermal conductivity, I is the intensity of the incident laser light, t is the time, T0 is the initial temperature, and τ is the integration variable. The computed dependencies Tsurf(t) are shown in Fig. 3 , where it is seen that the maximum surface temperature is about 210, 500, and 700 °C for Cu, Ni, and W, respectively. These surface temperature values are significantly smaller than the melting points of studied metals (1083, 1453, and 3410 °C for Cu, Ni, and W, respectively). An experimental study [31] showsthat the reflectivity of a polished Cu sample smoothly decreases by about 2% in a temperature range of 20–400 °C. Experimental data on the absorptivity of tungsten [29] show an increase of the absorptivity from 0.38 to 042 in the temperature range between 20 and 2100 °C; and this absorptivity increase is smooth (without any significant change at the temperature of about 700 °C). The reflectivity of liquid nickel is 0.68 [32] that is slightly smaller the table value of the room-temperature reflectivity (0.72) [28]. Hence, the reflectivity drop occurring in our experiment at 210, 500, and 700°C on Cu, Ni, and W surfaces cannot be explained by Drude’s temperature dependence and is indeed caused by the plasma effect. The plasma formation observed in our experiment at low surface temperature indicates that the imperfections on the sample surface play an important role in inducing an optical breakdown. For example, such surface structural defects as nanoscratches, nanoprotrusions, and nanopits commonly present on the mechanically polished surfaces can be locally heated to a high temperature due to plasmonic absorption [3335] and plasmonic nanofocusing [36]. These “hot nanospots” on cold (on average) surface can be sources of both thermally ionized species and thermionically emitted electrons, which due acceleration through inverse-bremsstrahlung mechanism can trigger an avalanche air optical breakdown. When the plasma forms in front of the irradiated sample, the reflection and absorption of laser light by the sample dramatically changes due to absorption of the laser light in the plasma. For ablation into the background gas, the reflection/absorption of laser energy by the sample is more complicated than in the vacuum due to generation of laser-supported absorption waves (laser-supported combustion wave and laser-supported detonation wave) [37,38]. Under these conditions, the reflection of the laser beam occurs from a sample-plasma system [25]. Assuming negligible laser light scattering from particulates ejected from the sample and negligible reflections at both air/air-plasma and air-plasma/vapor-plasma boundaries, the laser beam reflection will occur as schematically shown in Fig. 4 . Although the plasma reduces the laser energy that arrives at the sample surface, it can contribute to energy deposition into the sample through the transfer of a fraction of its stored thermal energy to the sample [25,27,39].

 

Fig. 3 Surface temperature of Cu, Ni, and W as function of time at the plasma formation threshold laser fluence.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Reflection of the laser pulse from the sample-plasma system: I(t) is the incident laser pulse intensity; I(t)exp[(t)] is the laser pulse intensity that arrives at the sample surface, here θ(t) is the total optical thickness of the plasma; I(t)R(t))exp[(t)] is the laser pulse intensity reflected from the sample surface; I(t)R(t))exp[-2θ(t)] is the laser pulse intensity that comes out from the sample-plasma system.

Download Full Size | PPT Slide | PDF

Previously, a number of theoretical models that include the absorption of laser radiation in the plasma produced by ablation into vacuum and background gas [4050] have been developed. However, satisfactory understanding of reflection/absorption of the laser energy is still lacking and the value of the laser energy absorbed by the sample actually remains a parameter of intuitive choice. We believe that our experimental data can be useful for further advancing theoretical models of the nanosecond laser ablation.

4. Conclusions

In this work, the total reflectivity of the mechanically polished Cu, Ni, and W samples in ablation by nanosecond Nd:YAG laser pulses in air of the atmospheric pressure is experimentally studied as a function of laser fluence in the range of 0.1–100 J/cm2. Our experiment shows that at laser fluences below the plasma formation thresholds the reflectivity of the studied metals remains virtually equal to the table room-temperature reflectivity values for mechanically polished surfaces. The total reflectivity of the studied metals begins to drop at the laser fluence of the plasma formation threshold. With increasing laser fluence above the plasma formation threshold, the reflectivity drops sharply to a low value (to about 0.19, 0.14, and 0.11 for Cu, Ni, and W, respectively) and then remains unchanged with further increasing laser fluence. The computation of temperature of the irradiated surface at the plasma formation threshold fluence shows that the surface temperature is substantially below the melting point that indicates an important role of the surface nanostructural defects in the plasma formation on the real sample due to their enhanced heating caused by both plasmonic absorption and plasmonic nanofocusing.

References and links

1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

2. D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).

3. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011). [CrossRef]  

4. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

5. R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985). [CrossRef]  

6. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004). [CrossRef]  

7. V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006). [CrossRef]  

8. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008). [CrossRef]   [PubMed]  

9. S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008). [CrossRef]  

10. S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006). [CrossRef]  

11. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010). [CrossRef]   [PubMed]  

12. A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009). [CrossRef]  

13. N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010). [CrossRef]  

14. A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

15. D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009). [CrossRef]  

16. J. L. Gottfried, F. C. De Lucia Jr, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009). [CrossRef]   [PubMed]  

17. A. A. Puretzky, D. B. Geohegan, G. E. Jellison Jr, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996). [CrossRef]  

18. J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003). [CrossRef]  

19. A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005). [CrossRef]   [PubMed]  

20. A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

21. N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

22. J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976). [CrossRef]  

23. T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975). [CrossRef]  

24. Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

25. A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985). [CrossRef]  

26. A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011). [CrossRef]  

27. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006). [CrossRef]  

28. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants 11th ed. (Longmans, 1956).

29. B. T. Barnes, “Optical constants of incandescent refractory metals,” J. Opt. Soc. Am. 56(11), 1546–1550 (1966). [CrossRef]  

30. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).

31. S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

32. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997). [CrossRef]  

33. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005). [CrossRef]  

34. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008). [CrossRef]  

35. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007). [CrossRef]  

36. S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011). [CrossRef]  

37. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).

38. S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007). [CrossRef]  

39. N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008). [CrossRef]  

40. R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990). [CrossRef]   [PubMed]  

41. A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994). [CrossRef]   [PubMed]  

42. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995). [CrossRef]  

43. S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999). [CrossRef]  

44. A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999). [CrossRef]  

45. N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001). [CrossRef]  

46. N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

47. Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005). [CrossRef]  

48. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011). [CrossRef]  

49. T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002). [CrossRef]   [PubMed]  

50. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).
  2. D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  3. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
    [Crossref]
  4. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).
  5. R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
    [Crossref]
  6. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
    [Crossref]
  7. V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
    [Crossref]
  8. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).
    [Crossref] [PubMed]
  9. S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
    [Crossref]
  10. S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
    [Crossref]
  11. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
    [Crossref] [PubMed]
  12. A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
    [Crossref]
  13. N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
    [Crossref]
  14. A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).
  15. D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
    [Crossref]
  16. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
    [Crossref] [PubMed]
  17. A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
    [Crossref]
  18. J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
    [Crossref]
  19. A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
    [Crossref] [PubMed]
  20. A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).
  21. N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).
  22. J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
    [Crossref]
  23. T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
    [Crossref]
  24. Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).
  25. A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
    [Crossref]
  26. A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
    [Crossref]
  27. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
    [Crossref]
  28. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants 11th ed. (Longmans, 1956).
  29. B. T. Barnes, “Optical constants of incandescent refractory metals,” J. Opt. Soc. Am. 56(11), 1546–1550 (1966).
    [Crossref]
  30. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).
  31. S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).
  32. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
    [Crossref]
  33. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
    [Crossref]
  34. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
    [Crossref]
  35. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
    [Crossref]
  36. S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
    [Crossref]
  37. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).
  38. S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
    [Crossref]
  39. N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
    [Crossref]
  40. R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
    [Crossref] [PubMed]
  41. A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
    [Crossref] [PubMed]
  42. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
    [Crossref]
  43. S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
    [Crossref]
  44. A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
    [Crossref]
  45. N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
    [Crossref]
  46. N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).
  47. Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
    [Crossref]
  48. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
    [Crossref]
  49. T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
    [Crossref] [PubMed]
  50. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
    [Crossref]

2011 (5)

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

2010 (2)

S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
[Crossref] [PubMed]

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[Crossref]

2009 (3)

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

2008 (5)

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).
[Crossref] [PubMed]

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[Crossref]

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

2007 (2)

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

2006 (3)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
[Crossref]

2005 (3)

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[Crossref]

2004 (2)

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

2003 (2)

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

2002 (1)

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[Crossref] [PubMed]

2001 (1)

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

1999 (2)

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
[Crossref]

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[Crossref]

1997 (1)

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[Crossref]

1996 (1)

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[Crossref]

1995 (1)

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[Crossref]

1994 (1)

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[Crossref] [PubMed]

1990 (1)

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[Crossref] [PubMed]

1985 (2)

A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
[Crossref]

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[Crossref]

1977 (2)

Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

1976 (1)

J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
[Crossref]

1975 (1)

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[Crossref]

1969 (1)

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

1968 (1)

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

1966 (1)

Abdolvand, A.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

Aghaei, M.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Amoruso, S.

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
[Crossref]

Babich, L. P.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

Barnes, B. T.

Basov, N. G.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Ben-Yakar, A.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[Crossref]

Bhandarkar, U. V.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

Bogaerts, A.

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[Crossref]

Boiko, V. A.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Bonch-Bruevich, A. M.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Boukos, N.

Bourham, M. A.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

Bulgakov, A. V.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[Crossref]

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[Crossref]

Camacho-Lopez, M. A.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Camacho-Lopez, S.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Chen, Z.

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[Crossref]

Chinni, R. C.

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[Crossref]

Chong, T. C.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Cremers, D. A.

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[Crossref]

Dahotre, N. B.

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[Crossref] [PubMed]

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

Delaporte, P.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[Crossref] [PubMed]

Dolgaev, S. I.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

Duscher, G.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

Dymshits, Yu. I.

Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

Escobar-Alarcon, L.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Evans, R.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Eversole, D.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[Crossref]

Fernandez-Pradas, J. M.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

Fotakis, C.

Fowlkes, J. D.

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

Geohegan, D. B.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[Crossref]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

Gramotnev, D. K.

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[Crossref]

Greif, R.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Grigoropoulos, C. P.

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[Crossref]

Guan, Y.-F.

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

Guo, C.

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Haverkamp, J.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

Hendow, S. T.

Hermann, J.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[Crossref] [PubMed]

Ho, J. R.

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[Crossref]

Hong, M.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Hong, M. H.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Huang, S. M.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Humphrey, J. A. C.

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[Crossref]

Imas, Y. A.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

In’tveld, B. H.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Itina, T. E.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[Crossref] [PubMed]

Jellison, G. E.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[Crossref]

Jin, C.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

Joshi, S. S.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

Kelly, R.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[Crossref] [PubMed]

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[Crossref]

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Kovalenko, V.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Krishnan, S.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[Crossref]

Krokhin, O. N.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Kurella, A.

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[Crossref] [PubMed]

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Li, L.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

Libenson, M. N.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Liu, Z.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

Lloyd, R. W.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

Luk’yanchuk, B.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[Crossref]

Luk’yanchuk, B. S.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Mal’tsev, L. N.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Malshe, A.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Mao, X.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Marla, D.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

Mayo, R. M.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

McGibbon, M. M.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[Crossref]

Mehrabian, S.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Miotello, A.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[Crossref] [PubMed]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

Morenza, J. L.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

Narayan, J.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[Crossref] [PubMed]

Nordine, P. C.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[Crossref]

Notis, M.

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[Crossref]

Panchenko, A. N.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[Crossref]

Pedraza, A. J.

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

Peterlongo, A.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[Crossref] [PubMed]

Pudkov, S. D.

S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

Puretzky, A. A.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[Crossref]

Ready, J. F.

J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
[Crossref]

Romanov, G. S.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Rothenberg, J. E.

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[Crossref]

Russo, R. E.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Saifi, M. A.

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[Crossref]

Schmidt, M.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Schmidt, M. J. J.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

Semenov, O. G.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Sentis, M.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[Crossref] [PubMed]

Serra, P.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

Shafeev, G. A.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

Shakir, S. A.

Shi, L. P.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Shulepov, M. A.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[Crossref]

Singh, R. K.

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[Crossref] [PubMed]

Sklizkov, G. V.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Tan, S. J.

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[Crossref]

Tavassoli, S. H.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Tel’minov, A. E.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[Crossref]

Tokarev, V. N.

V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
[Crossref]

Vorob’ev, A. Ya.

A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Wang, Q. F.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Wang, Z. B.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

Wen, S.-B.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Whitehead, D. J.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

Yugawa, K. J.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[Crossref]

Zavecz, T. E.

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[Crossref]

Zergioti, I.

Zhong, M.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[Crossref]

Zorba, V.

Anal. Bioanal. Chem. (1)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (11)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[Crossref]

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[Crossref]

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[Crossref]

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[Crossref]

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[Crossref]

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[Crossref]

Appl. Spectrosc. Rev. (1)

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[Crossref]

Appl. Surf. Sci. (2)

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[Crossref]

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
[Crossref]

J. Appl. Phys. (10)

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[Crossref]

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[Crossref]

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[Crossref]

J. Biomater. Appl. (1)

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Laser Phys. (1)

V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[Crossref] [PubMed]

Quantum Electron. (1)

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[Crossref]

Sov. J. Quantum Electron. (1)

A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
[Crossref]

Sov. Phys. Tech. Phys. (4)

Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Technology (1)

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Other (5)

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants 11th ed. (Longmans, 1956).

J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).

D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).

L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Hemispherical total reflectivity of Cu, Ni, and W as function of laser fluence for ablation in 1-atm air.

Fig. 3
Fig. 3

Surface temperature of Cu, Ni, and W as function of time at the plasma formation threshold laser fluence.

Fig. 4
Fig. 4

Reflection of the laser pulse from the sample-plasma system: I(t) is the incident laser pulse intensity; I(t)exp[(t)] is the laser pulse intensity that arrives at the sample surface, here θ(t) is the total optical thickness of the plasma; I(t)R(t))exp[(t)] is the laser pulse intensity reflected from the sample surface; I(t)R(t))exp[-2θ(t)] is the laser pulse intensity that comes out from the sample-plasma system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T surf (t)= (1R) a k π 0 t I(tτ) τ dτ+ T 0

Metrics