Abstract

We present second-harmonic generation (SHG) measurements and simulations from a silica matrix containing randomly distributed but aligned elongated silver nanoparticles (NPs). The composites were produced by a double ion-implantation process of silver nanoparticles followed by an irradiation with Si ions. It is demonstrated that one can model the experimental results by considering the sub-micrometric composite layer as a nonlinear media containing rod NPs for which the hyperpolarizability tensor is cylindrically symmetric along the NP long axis. The second-order macroscopic susceptibility of the composite originates from the coherent summation of the hyperpolarizabilities associated to each NP. We obtain analytical expressions for the p- and s-polarized effective susceptibility tensor as a function of experimental variables, such as the fundamental beam input polarization and sample orientation, and fitting parameters relating the cylindrically shaped hyperpolarizability. In addition, coherent SHG measurements on spherical nanoparticles resulting from the first ion-implantation process are also presented showing an isotropic polar behavior for the total SHG intensity where the p-polarized SHG intensity resulted to be the main contribution.

© 2011 OSA

1. Introduction

In recent years, nanostructured materials composed of metal nano-particles have attracted much attention due to the possibility of using their nonlinear optical properties for photonic nanodevices [1, 2] and plasmonic circuitry [3, 4]. Their linear and nonlinear optical properties are dominated by collective electron-plasma oscillations, the so-called localized surface plasmon’s (SP’s), and a vast literature can be found elsewhere studying such properties [111]. In particular, we have studied the optical third-order nonlinearity of randomly oriented, but elongated and aligned in a preferential direction, silver nanoparticles (Ag-NPs) embedded in silica [9, 10] and now we extend our study to investigate the optical second-order nonlinearity in the same samples by means of second harmonic generation (SHG) experiments.

Metallic nano-particles such silver and gold are centrosymmetrical materials, their crystalline lattice structures are cubic face-centered and, in principle, no SHG from the bulk NP takes place in the electric dipole approximation. The SHG origin of such materials is attributed then to higher order interactions like electric quadrupole and magnetic dipole responses from the NPs bulk and/or electric dipole responses allowed from the NPs surfaces [5,6,1115], where the inversion symmetry of the bulk material is broken. The latter response dominates in the specific case when the NP size is much smaller than the wavelength of the exciting (fundamental) beam [5] so that field retardation effects (no spatial dependence of the electromagnetic fields) are neglected. Therefore, the problem at the macroscopic level turns to be very similar to that of nonlinear media containing particles of non centrosymmetrical material apart from the interfacial second-order origin of the response. In a sense, the arrangement of the NPs in the array resembles that of the atoms in a crystal cell, where phase-matched SHG signal radiates in specific directions. This principle has been utilized for example on planar structures containing metallic 2D arrays of nanoparticles lacking inversion symmetry, providing coherent addition of the SH field where the efficiency of the process increased rapidly with decreasing nanoparticle size [7, 8].

In this context, in this paper we demonstrate that, similar to the analysis to derive molecular orientation information of smaller noncentrosymmetic units at interfacial monolayer’s or macromolecules systems using SHG/SFG experiments [1622], we can treat the actual sub-micrometric layer containing randomly arranged but highly aligned anisotropically shaped Ag-NPs (elongated or nearly spherical) as a nonlinear media; where the origin of its macromolecular second-order susceptibility, χ(2), is the coherent contribution of the SH signal induced on every single nanoparticle.

2. Theoretical Analysis

In general, the second-order nonlinear polarization, Pi, induced by an incident electric field, E, for the bulk second-order susceptibility, χijk(2), is given by Pi=χijk(2)EjEk. For materials composed of nonlinear optical scatterers much smaller than the wavelength of the fundamental beam, such as in the case of thin films composed of syntectic macromolecules or fibrillar proteins for instance [1820,23], the origins of the bulk second-order susceptibility χijk(2) comes from the coherent summation of the molecular hyperpolarizability βijk of the smaller molecules. In a similar way, due to the fact that the elongated NPs of our samples are at least a hundred times smaller than the wavelength of the fundamental light and in the limit of weak coupling between each nonlinear NP, we can express the macroscopic susceptibility of the thick layer containing NPs as

χijk(2)=NRijk,ijkβijk
where N is the number density of NPs contained within the point spread function of the beam, βijk is the hyperpolarizability tensor for the NPs, and Rijk,ijk are the elements of the Euler rotation matrix that transforms the hyperpolarizability βijk in the NPs coordinate system (i′, j′,k′ = ξ, η, ζ) to the laboratory coordinates (i, j,k = x,y,z). The angular averaging denoted by 〈〉 accounts for the angular distribution of the NPs. Figure 1 shows a schematic representation of the Euler angles, where the z-axis is normal to the sample surface and the ζ-axis is along the NP long axis. Assuming the interface between the glass substrate and the NPs layer to be azimuthally isotropic (invariance under ψ- rotation), i. e. this interface does not contribute to the second harmonic signal, there are only three nonvanishing independent components of χ(2), χxxz = χyyz = χxzx = χyzy, χzxx = χzyy and χzzz.

 

Fig. 1 Euler angles, (ψ, θ, ϕ), relating the laboratory coordinates system, xyz, and the coordinate system, ξηζ, of a single El Ag-NP. ϕ is the isotropic azimuthal angle over the ζ-axis. x1-axis is obtained from the first rotation, ϕ. θ is the pitch angle formed from the z-axis of the laboratory system and the ζ–axis of the NP coordinate system, after the first rotation ϕ. ψ is the azimuthal angle over z-axis

Download Full Size | PPT Slide | PDF

It is common practice to calculate the average orientation of the sub-molecular units that give rise to the macroscopic susceptibility of nonlinear materials using SHG/SFG experiments. In the process, analytical expressions of the independent tensor components are typically written in terms of the pitch angle, θ, defined by the z-axis and the noncentrosymmetric subunit ζ-axis, and the resulting nonzero elements of the microscopic hyperpolarizability, βijk. Such expressions and their derivation are found elsewhere [1619,24], and will not be rewritten here. Instead, for the purpose of this work, we followed the formalism used in Refs. [17, 18, 24] to derive expressions for the effective susceptibility tensor, χeff(2), in terms of the experimental variables α and Φ. With α as the angle of the linearly polarized fundamental beam with respect to the plane of incidence, and, Φ, as the angle made by the projection of the NP long axis, ζ, over the xy plane and the fixed plane of incidence contained in xz. From Fig. 1 we can deduce that Φ =ψ + 90°. The total SH intensity is proportional to the sum of the effective susceptibility p and s as follows

ISH|χeff(2)|2=|χeff,pα(2)|2+|χeff,sα(2)|2,
where the first and second subindexes (from left to right) of χeff in the right-hand side of Eq. 2 denote the output (fixed) and input (variable) polarization directions, respectively, and each component can be computed from
χeff,e^2e^1(2)=[e^2(2ω)L(2ω)]χ(2):[e^1(ω)L(ω)]2.
Here ê1 and ê2 are the unit polarization vectors of the fundamental and SHG beams, respectively. With ê1(or α) =0° (or 180°) for p-polarized light and 90° (or 270°) for s-polarized light, for example. L⃗(Ω) is the Fresnel factor at frequency Ω at the silicon substrate and nonlinear media interface. This parameter is found to be quite sensitive in the determination of molecular orientation since it depends on the index of refraction of the interfaces involved and the cosine of the angle of incidence/reflection of the fundamental/SH beam [17]. However, we already know the orientation angle of the NPs and for simplicity, we will approximate this values to unity.

In the first approximation, we chose to model the elongated NPs as rod particles for which the hyperpolarizability tensor is cylindrically symmetric along ζ (invariance under ϕ-rotation). We also assume that the optical frequencies of the fundamental and SH beams are not in resonance with electronic transitions, so that there are only two nonvanishing independent components (βξξζ = βηηζ, and βζζζ). Under these conditions using Eqs. (1) and (3) we obtain

χeff,pα(2)=14asin2αsinΦ(cosΦ+sin2Φ)r+22acos2αsin2Φ2(rsin2Φ+cos2Φ)24abcosΦsin2Φ(112cos2α)+14asin2αsin2Φsin2Φ2,
for p-SH and
χeff,sα(2)=24asin2αsin3Φ24sinΦ(1+cos2Φ)r24sinΦcos2α(cosΦsin2Φ)r+12asin2α(cos2Φsin2Φ2r+sin2Φcos2Φ2)+22acos2αsinΦcosΦsin2Φ2,
for s-SH, respectively.

In Eqs. (4) and (5) r = βξξζ/βζζζ and a = ζζζ are our fitting parameters, while b = 1 – r. Note that χeff,pα(2)=χeff,sα(2)=0, in the specific case when Φ = 0, this result is expected since under this configuration the input electric field finds isotropically shaped NPs. For all other configurations (Φ = 90, Φ = 180, and Φ = 270) χeff,pα(2)χeff,sα(2)0 and polar traces with different lobes of maximum SH are found for p- and s-SH, respectively, as will be shown in our discussions.

3. Experimental Section

3.1. Sample Preparation

The procedure to prepare samples with metallic nanoparticles is described elsewhere [10, 25] and here we will resume it briefly. Spherical silver nanoparticles (Sp Ag-NPs) were produced by a single ion implantation process using a 3 MV Tandem accelerator (NEC 9SDH-2 Pel-letron). 2 MeV Ag2+ ions were implanted into host matrices consisting of high-purity silica glass plates from NSG ED-C (Nippon silica glass), at room temperature. The samples were thermally annealed afterwards at 600 °C in a 50%N2 + 50% H2 reducing atmosphere. The measured Ag-ion fluence and projected range were 2.4 × 1017 Ag/cm2 and 0.9 μm, respectively. The result of this process was a film containing spherical-like silver nanoparticles, of around 6 nm in diameter. Figure 2 a shows a schematic of the resulting Sp Ag-NPs after the first ion implantation process.

 

Fig. 2 Schematics for absorption experiments on spherical (a) and elongated (b) Ag-NPs. In the figures, xyz is the laboratory coordinate system; p and s are respectively the parallel and perpendicular linear polarization of the incident beam with respect the plane of incidence; θinc is the angle of incidence (positive for counterclockwise direction) made by the propagation direction, k, and the surface normal, . (c) TEM micrograph of the composite film, as published by Rangel-Rojo et. al. [9], showing the elongated Ag-NPs aligned in a preferential direction. White arrows indicate the remaining spherical NPs after the second ion-implantation process. The inset shows the morphology of a single NP. (d) and (e) are the absorption spectra of spherical and elongated Ag-NPs respectively, taken at different input polarization and angle of incidence (as labeled in (d)).

Download Full Size | PPT Slide | PDF

In order to produce elongated and tilted silver nanopaticles (El Ag-NPs) some of the Sp Ag-NPs samples were subjected to a second ion implantation process. The samples were irradiated, at room temperature, at an angle of 45 ° with respect to the sample surface with 8 MeV Si ions of around 1 × 1016 Si/cm2 of fluence. With this energy the electronic stopping power for Sp Ag-NPs SiO2 is 200 times larger than the nuclear [29] and the ion projected range is 4.3 μm in SiO2, i.e. far beyond the location of the Ag-NPs. The resulting samples had a 0.5 μm thick layer containing randomly placed elongated nanoparticles, at a 1 μm depth inside the silica matrix, aligned in the direction of the second ion implantation [25]. In other words, the particles long axes are tilted 45 ° with respect to the substrate normal and lay on the xz planes of the laboratory xyz shown in Fig. 2 b. When viewed from the front, the projection the El Ag-NPs long axes point in the direction we label as x. The El Ag-NPs were actually shaped as prolate spheroids, with an average minor axis diameter of 5 nm, and an aspect ratio of 1.7. The size distribution obtained from the statistics over 290 measurements shows a diameter distribution centered at 5.9 nm with a standard deviation of 1.1 nm. The TEM photograph shown in Fig. 2 c demonstrates both the different sizes of the NPs and their random distribution (but aligned in a preferred direction) obtained during the second ion implantation process. The inset shows the morphology of a single El Ag-NP. The average distance between the elongated NPs are estimated to be of around 25 nm and around 13 nm in the remaining spherical NPs, that is, one order of magnitude larger than the particles sizes, so no inter-particle coupling effects are expected in our experiments.

3.2. Sample Characterization

In order to characterize the NPs orientation in our samples, prior to our SHG experiments, we collected optical absorption spectra using linearly polarized light at two mutually orthogonal polarizations, one parallel (labeled as p) and the other perpendicular (labeled as s) to the plane of incidence. This experiment was performed at three different angles of incidence (0 ° and ± 45 °) and an UV-visible spectrophotometer was used to perform the measurements. Figure 2 shows the schematic of these experiments (a and b) and the respective absorption spectra (d and e).

The absorption spectra taken under different angle of incidence have no significant changes for the case of Sp Ag-NPs samples. This is shown in Fig. 2d, where a single SP resonance is found at approximately 400 nm. In contrast, from Fig. 2e we can see that for El Ag-NPs the absorption spectra depends on both the light polarization and the angle of incidence. At normal incidence the SP resonance of the particles is shifted to lower wavelengths for s-polarization (red line), while the absorption spectra splits into two spectrally separated SP resonances for p-polarization (black line). The shifted resonance at 365 nm obtained with s-polarized light is associated with the short-axis SP and can be explained by the decrease of the NPs size [8] during the second ion implantation process. The resonance at 570 nm obtained with p-polarized light is associated with the long-axis SP and its broadness can be explained by the different NPs sizes formed in the matrix, as can be seen in Fig. 2c. Note that the 365 nm resonance is also present and presumably invariant in the spectra taken at the three angles of incidence with p-polarized beams, i. e. at −45 ° (blue line), 0 ° (black line) and 45 ° (green line). While in the case of p-polarized light at 45 ° this result is obvious, since it resemble the case of s-polarized light at 0 °, the presence of this band in the other two cases, 0 ° and −45 °, can be attributed to a residual misalignment with respect to the direction of elongation of the particles or to an actual fraction of smaller spherical NPs remaining in the matrix after the second ion-implantation process (indicated by white arrows in Fig. 2c). Finally, a strong dependence of the 570 nm SP is obtained with p-polarized light for different angles of incidence being higher when the light propagation is orthogonal to the NPs axes (blue curve). This last result was the criteria used to characterize the NPs orientation used in the SHG experiments.

3.3. SHG experiments

SHG experiments in the reflection mode with a fixed angle of incidence were conducted using a Ti:Sapphire oscillator as the fundamental beam. The schematic representation of these experiments is shown in Fig. 3a. The laser delivered linearly polarized femto-second pulses with a wavelength centered at 825 nm (pulse width, 88 fs; repetition rate, 94 MHz). The angle of polarization, α, of the fundamental beam was rotated using a λ/2 wave-plate in order to trace the polar SH dependence of our samples. Using a 50 mm focal length lens, the beam was focused onto the Ag-NP sample at an angle of incidence θinc = 45 ° with respect the sample surface normal. The reflected SH signal was collected at 90 ° with respect to the incoming light using a second lens of 30 mm focal length. A color filter and a grating monochromator (not shown) were used to spectrally separate the SH signal from the fundamental light. Finally, the signal was detected via a photomultiplier tube connected to a current/voltage pre-amplifier circuit and a digital oscilloscope. The p-polarized SH (p-SH) and s-polarized SH (s-SH) intensities were also measured using a polarizer cube before signal collection. The sample was mounted on a rotation stage in order to vary the NPs long axis orientation by rotating the angle Φ. The four different angles used in our experiments are represented in Fig. 3b.

 

Fig. 3 (a) SHG experiment in the reflection mode. In the figure, ω,2ω: fundamental and the second harmonic frequencies; p/s:parallel/perpendicular linear polarization of the incident beam with respect the plane of incidence; θinc: angle of incidence made by the propagation direction, kω, and the surface normal, ; α: angle of polarization of the fundamental beam; Φ: sample rotation angle made by the projection of the NP long axis, ζ, over the xy plane and the fixed plane of incidence contained in xz. (b) Different sample orientations, i. e., elongated Ag-NPs orientations with respect the laboratory system, used on SHG experiments.

Download Full Size | PPT Slide | PDF

4. Results and Discussion

Figure 4 shows both the measured and simulated polar dependence of the total (black), p-polarized (red) and s-polarized (blue), SHG intensities obtained for the different 90°-shifted Φ configurations described in Sec. 3.1. Note that in the experiment, the four configurations produced detectable p- and/or s-SHG signal. We stress out that, in principle, even when the centrosymmetry of the ellipsoidal and spherical NPs is locally disrupted by its surface, the homogeneous polarizing field induces SHG of mutually canceling polarizations at opposite sides of the circular surface, neglecting then an overall dipolar SHG contribution [14, 15]. However, we have to bear in mind that no perfect ellipsoids (or spheres) are present in our samples and that the NP size is almost two orders of magnitude smaller that the excitation beam to consider the SH signal as a quadripolar contribution from the NPs bulk. In addition, according to rigorous calculations made by Valencia et. al. [30, 31], SHG radiation from centrosymmetric infinite cylinders is not symmetric in the back and front surfaces. They find a multi-lobe SHG pattern originated at the cylinder surface, where the angle made from the first SHG scattered lobes in the first surface is more pronounced as the cylinder width is decreased. Seemingly, Bachelier et. al. [32] modeled both the near-field of the harmonic amplitude and the far-field SH intensity distribution in spherical gold NPs, the two cases show anisotropic radiation patterns arising from the NP surface. Therefore, we attribute this signal to a nonlinear dipolar contribution arising from the NPs surface.

 

Fig. 4 Experimental and simulated SHG polar dependence of elongated Ag-NPs, for the four different sample orientations (see Fig. 3) Φ = 0° (a), Φ = 90° (b), Φ = 180° (c) and Φ = 270°(d), respectively. In all plots the experimental total, p-polarized and s-polarized, SH are denoted by black squares, red circles and blue triangles, respectively. While the simulated SHG intensities are denoted using the same color convention in solid lines.

Download Full Size | PPT Slide | PDF

Figure 4a shows, for example, the case when the incident beam is polarized perpendicular to the NP long axis (see Fig. 3 a; Φ=0°). Here the cross section of the El Ag-NPs could be considered circularly shaped (from the incident fundamental beam point of view) and therefore no SHG signal is expected according to Eqs. 45. In this case, in addition to our argument that no perfect circularly shaped NPs cross section are present in the sample, we attribute this signal to a systematic misalignment in the experiment while rotating the samples as will be shown latter. In contrast, lobes of maximum SH intensity are found at α-angles near the NPs long axes. This is seen in Figs. 4, b and d (Φ=90° and Φ=270°), respectively, where the s-SH intensity is the main contribution of the total SH signal. Seemingly, the main contribution in Fig. 4c (Φ=180°) is the p-SH, instead. Note that Figs. 4 b and d are basically mirror images of each other(with y,or α =90°, as the symmetry axis) with total SHG maxima at ∼ 115° and ∼ 290°, for b, and ∼ 65° and ∼ 255° for d, respectively; the counterpart p-SH intensity has practically no contribution. Otherwise, from Fig. 4 c we can see that both the p- and s-SH intensities contribute to the total SH when the fundamental beam is perpendicular to the NPs long axes (Fig. 3 b; Φ =180°). The simulated polar traces are in a good agreement with the experimental results, this can be seen also in Fig.4. Table 1 shows specific values of the parameters r and a, used in Eqs. 45, that best fitted with the experimental data, where, Φsim, stands for the simulated value of Φ. The simulated data revealed two extra peaks in between the s-SH maxima (∼ 25 times lower), in Figs. 4 b and d, respectively, and their values are found also in Tab. 1. Seemingly, two extra peaks are also found in Fig. 4 c, but at much smaller values (∼ 300 times less). Note also that the values of r were fitted in the range of 1.4 < 1/r < 3.5 for cases 2 – 4 (see table), confirming that there is a stronger hyperpolarizability response for fields oscillating along the NPs long axis (i.e. βζζζ > βξξζ). These values are very similar to the values obtained in synthetic films consisting of helical (PBLG) macromolecules [18] and native fibrillar collagen [27], their hyperpolarizability are reported to be within an order of magnitude of that of crystalline quartz [26].

Tables Icon

Table 1. Values of parameters r and a, and resulting SH maxima positions, to simulate the SHG experiments on El Ag-NPs.

Note that simulating the different cases shown in Figs. 4b–c with the same parameters (a and r) would result in obtaining higher SHG maxima in Fig. 4c than in Figs. 4b and d. However, in the experiment we obtained less SHG signal in Fig. 4d and we attribute this result to the presence of less NPs within the point spread function of the fundamental beam and/or a minor hyperpolarizability value. The inhomogeneous NPs distribution in the composite film makes extremely challenging maintaining the same irradiated area in the experiment while rotating the sample. As a consequence, the value of the parameters a and r used to fit the experimental data were different. As can be seen from Tab. 1, in this experiment the parameters used in Fig. 4c resulted to be smaller than the respective parameter values used to fit the experimental data of Figs. 4b and d. Otherwise, it is interesting to note that the experimental case at Φ = 0° (Fig. 4a) is reproduced for angles Φsim close to 180° and r = 1.41, this simply indicates that we can simulate this result by assuming stronger hyperpoplarizability responses for fields oscillating perpendicular to the NPs long axis (i.e. βξξζ > βζζζ). The asymmetric polar dependence was obtained using Φsim confirming that our experimental results are most probable due to misalignment. Note also that both the p- and s-SHG intensities are comparable in magnitude, while for the case shown in Fig. 4 c the p-SH intensity is ∼ 5 times larger than s-SH.

In order to be sure that the results correlate indeed with the known (simulated) structure of the El Ag-NPs, SHG experiments were also made in Sp Ag-NPs. Figure 5 shows SH signal from samples with embedded Sp Ag-NPs. The total SHG (black) presents nearly isotropic polar trace where p-SH (red) is the maximum signal contribution. The s-SH intensity (blue) also contributes but the signal is ∼ 10 times lower than the p-SH counterpart. It presents a characteristic shape with maxima at 45°, 135°, 225° and 315°. We found the same dependence for different Φ values 0° and 90° (Fig. 5 a and b), respectively, indicating that the obtained polar traces are a characteristic of the Sp-Ag NPs. The fundamental and SH beams spectra for elongated (black) and spherical (red) NPs, with the respective absorption spectra (dotted curves) are also shown in Fig. 6a. The absorption traces indicate that for El Ag-NPs the SHG may be enhanced since the fundamental is close to resonance with the SP broad band (black dotted line) at 570 nm (see also blue curve on Fig. 2 e). Note, however, that the SHG suffers also absorption of about the same optical density reducing the signal. In contrast, the SP resonance of Sp Ag-NPs (red dotted line in Fig. 6 a; which is the red solid line in Fig. 2 d) is far away of the fundamental wavelength and therefore no enhancement effect is expected. In addition since the NPs sizes are small compared to the fundamental wavelength, this suggest that the SHG in Sp Ag-NPs samples arises mainly from the electric dipole surface contribution, owing to the actual non perfect spherical shape of the particles [28], and must be large enough to be detectable even after being absorbed with an optical density of ∼ 3. Otherwise, the quadratic dependence with respect to the input power obtained in both types of samples, Fig. 6 b (for El Ag-NPs) and c (for Sp Ag-NPs), indicates the typical coherent nature of nonlinear scatterers. In particular, the result obtained in Sp NPs indicates that the SH observed is not due to grating effects such the hyper Rayleigh scattering (HRS), where incoherent SHG is produced for which a typical linear dependence with respect to the input power is observed.

 

Fig. 5 SHG signal of spherical Ag-NPs as a function of the polarization angle, α, obtained for two different sample orientations (see Figure 2): Φ = 0°(a) and Φ = 90° (b). In the plots, the total (opened squares, black), p-polarized (opened circles, red) and s-polarized (opened triangles, blue) SHG intensities are shown.

Download Full Size | PPT Slide | PDF

 

Fig. 6 (a) Fundamental laser spectra used in the SHG experiments and SHG spectra obtained for spherical and elongated NPs. In all plots, curves in black stands for elongated NPs while curves in red for spherical NPs. SHG signal as a function of the fundamental input power for elongated (b) and spherical (c) Ag-NPs, respectively. Here, solid squares denote the experimental data while continuous lines indicate the fitted curves. m: is the slope obtained from the linear fitting.

Download Full Size | PPT Slide | PDF

Our results are in accordance with earlier SHG experiments performed by Podlipensky et. al. [23] on elongated Ag-NPs. The main differences with respect to our experiments are that this group obtained equivalent intensities for both p- and s-SH signal and no measurable signal for spherical NPs was detected. Their SH experiments were performed with the fundamental beam at an angle of incidence close to the surface normal, 15° (SH collected in transmission), and the NPs long axes aligned along the surface normal. We consider that such experimental arrangement is close to the case shown in Fig. 4a, since the direction of the fundamental beam is also close to the direction of the NPs long axis and comparable intensities are obtained for p-and s-SH. As discussed above we believe that we are able to detect SH from Sp Ag-NPs due to the fact that we have smaller NPs sizes (at least 10 times smaller) with respect to Podlipensky samples. Note that Eqs. (45) do not explain this dependence, since they were obtained considering a hyperpolarizability tensor with cylindrical symmetry, however, it is interesting to note that our experimental results can be explained using analytical expressions obtained by Dadap et. al. [6] to describe SH Rayleigh Scattering from spheres of centrosymmetric material, where the intensities for vertical and horizontal SH are given by Ipα ∝ |a1|2 and Isα ∝ |a2|2 sin2α, respectively. In these expressions, p and s, stands for the horizontal and vertical polarization of the harmonic generated signals, respectively, α, is the fundamental input polarization, and, a1 and a2, are complex numbers related to the pure effective dipole contribution and quadruple contribution, respectively. For p-SHG the intensity is constant, independent of the input polarization angle α, while for s-SHG intensity the signal is maximum at α = (2n – 1)45° and vanishes at α = (n – 1)90°, with n = integer. Fig. 5 b has been intentionally altered in order to see such s-SHG polar behavior. In addition, being the p-SH intensity higher with respect to the s-SH counterpart in our experiments (then a1 >> a2), strongly supports our assumption that the SHG is dominated by dipolar contributions arising from the surface of each non-perfectly spherical Ag-NP and having a quadratic response with respect to the input power (observed in Fig. 6c) confirms their coherent summation.

5. Conclusion

Second-harmonic generation from composites containing randomly distributed but aligned elongated silver nanoparticles has been presented and modeled as a coherent summation of the microscopcic hyperpolarizability associated to each NP. Our experimental data suggest that the origin of the hyperpolarizability, in both elongated and spherical NPs, can be attributed mainly to a surface nonlinear contribution of each non-perfect ellipsoidal or spherical Ag-NP.

Acknowledgments

The authors wish to acknowledge the technical assistance of K. López, F. J. Jaimes, J. G. Morales and E. J. Robles-Raygoza. We would like to thank Dr. Eugenio Méndez for useful discussions. Finally, we also acknowledge the financial support from PAPIIT-UNAM IN103609; from CONACyT through grant 102937, from ICyT-DF through grant PICCT08-80, and (I. Rocha-Mendoza) from UC-MEXUS/CONACyT under collaborative research programs.

References and links

1. I. Matsui, “Nanoparticles for Electronic Device Applications: A Brief Review,” JCEJ 38(8), 535–546 (2005). [CrossRef]  

2. H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

3. J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001). [CrossRef]  

4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003). [CrossRef]  

5. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995). [CrossRef]  

6. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999). [CrossRef]  

7. N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt. 6(1), 26–28 (2004).

8. M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund Jr., “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007). [CrossRef]  

9. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009). [CrossRef]  

10. R. Rangel-Rojo, J. A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J. C. Cheang-Wong, J. McCarthy, H. T. Bookey, and A. K. Kar, “Linear and nonlinear optical properties of aligned elongated silver nanoparticles embedded in silica,” in Silver Nanoparticles, David Pozo Perez eds. (In-Tech, 2010), pp. 35–62, http://www.intechopen.com/articles/show/title/linear-and-nonlinear-optical-properties-of-aligned-elongated-silver-nanoparticles-embedded-in-silica.

11. P-F. Brevet, “Second Harmonic Generation in Nanostructures,” in Comprehensive Nanoscience and Technology, G. A. Wurtz, R.J. Pollard, and A.V. Zayats, eds. (Elsevier, 2011), pp. 351–381 [CrossRef]  

12. S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003) [CrossRef]  

13. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B , 21 (7, 1328–1347 (2004). [CrossRef]  

14. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005). [CrossRef]   [PubMed]  

15. B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat. 29(1), 1–5 (2006). [CrossRef]  

16. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London) 337, 519–525 (1989). [CrossRef]  

17. X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999). [CrossRef]  

18. A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004). [CrossRef]  

19. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004). [CrossRef]   [PubMed]  

20. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007). [CrossRef]   [PubMed]  

21. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009). [CrossRef]   [PubMed]  

22. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech. 21(11), 1356–1360 (2003). [CrossRef]  

23. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass, ” Opt. Lett. 28(9), 716–718(2003). [CrossRef]   [PubMed]  

24. C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the Analysis of the Surface SFG Spectrum and Transformation Coefficients of Cartesian SFG Tensor Components,” Appl. Spectrosc. 46(6), 1051–1072 (1992). [CrossRef]  

25. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006). [CrossRef]  

26. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986). [CrossRef]   [PubMed]  

27. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative Second-Harmonic Generation Microscopy in Collagen,” Appl. Opt. 42(25), 5209–5219 (2003). [CrossRef]   [PubMed]  

28. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005). [CrossRef]  

29. J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006). [CrossRef]  

30. C.I. Valencia, E.R. Méndez, and B.S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21 (1) 36–44 (2004). [CrossRef]  

31. C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009). [CrossRef]  

32. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. I. Matsui, “Nanoparticles for Electronic Device Applications: A Brief Review,” JCEJ 38(8), 535–546 (2005).
    [CrossRef]
  2. H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).
  3. J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef]
  5. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
    [CrossRef]
  6. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
    [CrossRef]
  7. N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt. 6(1), 26–28 (2004).
  8. M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
    [CrossRef]
  9. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
    [CrossRef]
  10. R. Rangel-Rojo, J. A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J. C. Cheang-Wong, J. McCarthy, H. T. Bookey, and A. K. Kar, “Linear and nonlinear optical properties of aligned elongated silver nanoparticles embedded in silica,” in Silver Nanoparticles, David Pozo Perez eds. (In-Tech, 2010), pp. 35–62, http://www.intechopen.com/articles/show/title/linear-and-nonlinear-optical-properties-of-aligned-elongated-silver-nanoparticles-embedded-in-silica .
  11. P-F. Brevet, “Second Harmonic Generation in Nanostructures,” in Comprehensive Nanoscience and Technology, G. A. Wurtz, R.J. Pollard, and A.V. Zayats, eds. (Elsevier, 2011), pp. 351–381
    [CrossRef]
  12. S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003)
    [CrossRef]
  13. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B,  21 (7, 1328–1347 (2004).
    [CrossRef]
  14. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
    [CrossRef] [PubMed]
  15. B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat. 29(1), 1–5 (2006).
    [CrossRef]
  16. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London) 337, 519–525 (1989).
    [CrossRef]
  17. X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
    [CrossRef]
  18. A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
    [CrossRef]
  19. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
    [CrossRef] [PubMed]
  20. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
    [CrossRef] [PubMed]
  21. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
    [CrossRef] [PubMed]
  22. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech. 21(11), 1356–1360 (2003).
    [CrossRef]
  23. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass, ” Opt. Lett. 28(9), 716–718(2003).
    [CrossRef] [PubMed]
  24. C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the Analysis of the Surface SFG Spectrum and Transformation Coefficients of Cartesian SFG Tensor Components,” Appl. Spectrosc. 46(6), 1051–1072 (1992).
    [CrossRef]
  25. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
    [CrossRef]
  26. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
    [CrossRef] [PubMed]
  27. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative Second-Harmonic Generation Microscopy in Collagen,” Appl. Opt. 42(25), 5209–5219 (2003).
    [CrossRef] [PubMed]
  28. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
    [CrossRef]
  29. J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
    [CrossRef]
  30. C.I. Valencia, E.R. Méndez, and B.S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21 (1) 36–44 (2004).
    [CrossRef]
  31. C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009).
    [CrossRef]
  32. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
    [CrossRef]

2015 (1)

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

2009 (3)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009).
[CrossRef]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

2007 (2)

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

2006 (3)

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat. 29(1), 1–5 (2006).
[CrossRef]

2005 (3)

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

I. Matsui, “Nanoparticles for Electronic Device Applications: A Brief Review,” JCEJ 38(8), 535–546 (2005).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

2004 (5)

C.I. Valencia, E.R. Méndez, and B.S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21 (1) 36–44 (2004).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B,  21 (7, 1328–1347 (2004).
[CrossRef]

N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt. 6(1), 26–28 (2004).

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

2003 (5)

S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003)
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass, ” Opt. Lett. 28(9), 716–718(2003).
[CrossRef] [PubMed]

P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative Second-Harmonic Generation Microscopy in Collagen,” Appl. Opt. 42(25), 5209–5219 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech. 21(11), 1356–1360 (2003).
[CrossRef]

2001 (1)

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

2000 (1)

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

1999 (2)

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
[CrossRef]

1995 (1)

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

1992 (1)

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London) 337, 519–525 (1989).
[CrossRef]

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Akamatsu, N.

Aktsipetrov, O. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

Artigas, D.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

Atoda, N.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Bachelier, G.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Benichou, E.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

Blanchard-Desce, M.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Bookey, H. T.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Bowie, C. T.

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

Brevet, P.-F.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

Brevet, P-F.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

P-F. Brevet, “Second Harmonic Generation in Nanostructures,” in Comprehensive Nanoscience and Technology, G. A. Wurtz, R.J. Pollard, and A.V. Zayats, eds. (Elsevier, 2011), pp. 351–381
[CrossRef]

Buchel, D.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Butet, J.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech. 21(11), 1356–1360 (2003).
[CrossRef]

Celliers, P. M.

Cheang-Wong, J. C.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Cravetchi, I.

Crespo-Sosa, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Dadap, J. I.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B,  21 (7, 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Domen, K.

Downer, M. C.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Eisenthal, K. B.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Elyutin, P. V.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Emelyanov, V. I.

N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt. 6(1), 26–28 (2004).

Ferrara, D.

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

Figliozzi, P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Frank, C. W.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Fuji, H.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Fukuda, H.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Gallet, S.

S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003)
[CrossRef]

Graener, H.

Haglund, R. F.

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

Hattori, T.

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

Heinz, T. F.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B,  21 (7, 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Hirose, C.

Inouye, H.

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

Jiang, Y.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Jonin, C.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

Kar, A. K.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Kikukawa, T.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Kim, D.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
[CrossRef]

Knoesen, A.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

Lange, J.

Le Grand, Y.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Lee, N.

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

Leray, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Leroy, L.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech. 21(11), 1356–1360 (2003).
[CrossRef]

Lopez, R.

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

Lopez-Suarez, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

Mallegol, T.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Matlis, N.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Matsui, I.

I. Matsui, “Nanoparticles for Electronic Device Applications: A Brief Review,” JCEJ 38(8), 535–546 (2005).
[CrossRef]

Mattern, B.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

McCarthy, J.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

McMahon, M. D.

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

Méndez, E.R.

C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009).
[CrossRef]

C.I. Valencia, E.R. Méndez, and B.S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21 (1) 36–44 (2004).
[CrossRef]

Mendoza, B. S.

B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat. 29(1), 1–5 (2006).
[CrossRef]

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Mendoza, B.S.

Mihalcea, C.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Miranda, P. B.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
[CrossRef]

Mochán, W. L.

B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat. 29(1), 1–5 (2006).
[CrossRef]

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Mongin, O.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Morales, U.

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

Nakano, T.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Nakatsuka, H.

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

Nappa, J.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

Nikulin, A. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Noguez, C.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Odin, C.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Oliver, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

Ostrovskaya, E. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Pakalnis, S.

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

Persoons, A.

S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003)
[CrossRef]

Podlipensky, A.

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

Rangel-Rojo, R.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Reiser, K. M.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative Second-Harmonic Generation Microscopy in Collagen,” Appl. Opt. 42(25), 5209–5219 (2003).
[CrossRef] [PubMed]

Renault, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Revillod, G.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

Reyes-Esqueda, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Rickards, J.

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

Rocha-Mendoza, I.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

Rodrguez-Fernndez, L.

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

Rodriguez-Fernandez, L.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Rodríguez-Fernández, L.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Rodriguez-Iglesias, V.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Román-Velázquez, C. E.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Roude, D.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Rubenchik, A. M.

Russier-Antoine, I.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

Seifert, G.

Seman, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

Shan, J.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B,  21 (7, 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Shen, Y. R.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
[CrossRef]

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London) 337, 519–525 (1989).
[CrossRef]

Silva-Pereyra, H. G.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Stoller, P.

Sun, L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Tanahashi, I.

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

Tanaka, K.

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

Tominaga, J.

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Valencia, C.I.

C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009).
[CrossRef]

C.I. Valencia, E.R. Méndez, and B.S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21 (1) 36–44 (2004).
[CrossRef]

Verbiest, T.

S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003)
[CrossRef]

Vi, V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Wang, M.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

Werts, M. H. V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

White, C. W.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Wise, W. D.

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

Withrow, S. P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Yankelevich, D. R.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

Zheludev, N. I.

N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt. 6(1), 26–28 (2004).

Zhuang, X.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B 87(2), 259–265 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78(17), 2417–2419 (2001).
[CrossRef]

Appl. Spectrosc. (1)

Biophys. J. (2)

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J. 93(12),4433–4444 (2007).
[CrossRef] [PubMed]

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett. 378 (1–2), 101–104 (2003)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron. 10(5), 1154–1163 (2004).
[CrossRef]

J. Biomed. Opt. (1)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1)(2009).
[CrossRef] [PubMed]

J. Opt. A: Pure App. Opt. (1)

N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt. 6(1), 26–28 (2004).

J. Opt. Soc. Am. B (2)

JCEJ (1)

I. Matsui, “Nanoparticles for Electronic Device Applications: A Brief Review,” JCEJ 38(8), 535–546 (2005).
[CrossRef]

JJAP (1)

H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP 39 (1-9A), 5132–5133 (2000).

Langmuir (1)

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Nature (London) (2)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London) 337, 519–525 (1989).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Nature Biotech. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech. 21(11), 1356–1360 (2003).
[CrossRef]

Nuc. Instrum. Meth. B (1)

J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B 242 (1–2), 452–454 (2006).
[CrossRef]

Opt. Commun. (2)

C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009).
[CrossRef]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[CrossRef]

Opt. Lett. (1)

Opt. Mat. (1)

B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat. 29(1), 1–5 (2006).
[CrossRef]

Phys. Rev. B (5)

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 12632–12640 (1999).
[CrossRef]

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82 (23), 235403 (2015).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24),245425 (2006).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71 (1), 165407 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94(4), 047401 (2005).
[CrossRef] [PubMed]

Other (2)

R. Rangel-Rojo, J. A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J. C. Cheang-Wong, J. McCarthy, H. T. Bookey, and A. K. Kar, “Linear and nonlinear optical properties of aligned elongated silver nanoparticles embedded in silica,” in Silver Nanoparticles, David Pozo Perez eds. (In-Tech, 2010), pp. 35–62, http://www.intechopen.com/articles/show/title/linear-and-nonlinear-optical-properties-of-aligned-elongated-silver-nanoparticles-embedded-in-silica .

P-F. Brevet, “Second Harmonic Generation in Nanostructures,” in Comprehensive Nanoscience and Technology, G. A. Wurtz, R.J. Pollard, and A.V. Zayats, eds. (Elsevier, 2011), pp. 351–381
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Euler angles, (ψ, θ, ϕ), relating the laboratory coordinates system, xyz, and the coordinate system, ξηζ, of a single El Ag-NP. ϕ is the isotropic azimuthal angle over the ζ-axis. x1-axis is obtained from the first rotation, ϕ. θ is the pitch angle formed from the z-axis of the laboratory system and the ζ–axis of the NP coordinate system, after the first rotation ϕ. ψ is the azimuthal angle over z-axis

Fig. 2
Fig. 2

Schematics for absorption experiments on spherical (a) and elongated (b) Ag-NPs. In the figures, xyz is the laboratory coordinate system; p and s are respectively the parallel and perpendicular linear polarization of the incident beam with respect the plane of incidence; θinc is the angle of incidence (positive for counterclockwise direction) made by the propagation direction, k, and the surface normal, . (c) TEM micrograph of the composite film, as published by Rangel-Rojo et. al. [9], showing the elongated Ag-NPs aligned in a preferential direction. White arrows indicate the remaining spherical NPs after the second ion-implantation process. The inset shows the morphology of a single NP. (d) and (e) are the absorption spectra of spherical and elongated Ag-NPs respectively, taken at different input polarization and angle of incidence (as labeled in (d)).

Fig. 3
Fig. 3

(a) SHG experiment in the reflection mode. In the figure, ω,2ω: fundamental and the second harmonic frequencies; p/s:parallel/perpendicular linear polarization of the incident beam with respect the plane of incidence; θinc: angle of incidence made by the propagation direction, kω, and the surface normal, ; α: angle of polarization of the fundamental beam; Φ: sample rotation angle made by the projection of the NP long axis, ζ, over the xy plane and the fixed plane of incidence contained in xz. (b) Different sample orientations, i. e., elongated Ag-NPs orientations with respect the laboratory system, used on SHG experiments.

Fig. 4
Fig. 4

Experimental and simulated SHG polar dependence of elongated Ag-NPs, for the four different sample orientations (see Fig. 3) Φ = 0° (a), Φ = 90° (b), Φ = 180° (c) and Φ = 270°(d), respectively. In all plots the experimental total, p-polarized and s-polarized, SH are denoted by black squares, red circles and blue triangles, respectively. While the simulated SHG intensities are denoted using the same color convention in solid lines.

Fig. 5
Fig. 5

SHG signal of spherical Ag-NPs as a function of the polarization angle, α, obtained for two different sample orientations (see Figure 2): Φ = 0°(a) and Φ = 90° (b). In the plots, the total (opened squares, black), p-polarized (opened circles, red) and s-polarized (opened triangles, blue) SHG intensities are shown.

Fig. 6
Fig. 6

(a) Fundamental laser spectra used in the SHG experiments and SHG spectra obtained for spherical and elongated NPs. In all plots, curves in black stands for elongated NPs while curves in red for spherical NPs. SHG signal as a function of the fundamental input power for elongated (b) and spherical (c) Ag-NPs, respectively. Here, solid squares denote the experimental data while continuous lines indicate the fitted curves. m: is the slope obtained from the linear fitting.

Tables (1)

Tables Icon

Table 1 Values of parameters r and a, and resulting SH maxima positions, to simulate the SHG experiments on El Ag-NPs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ ijk ( 2 ) = N R ijk , i j k β i j k
I SH | χ eff ( 2 ) | 2 = | χ eff , p α ( 2 ) | 2 + | χ eff , s α ( 2 ) | 2 ,
χ eff , e ^ 2 e ^ 1 ( 2 ) = [ e ^ 2 ( 2 ω ) L ( 2 ω ) ] χ ( 2 ) : [ e ^ 1 ( ω ) L ( ω ) ] 2 .
χ eff , p α ( 2 ) = 1 4 a sin 2 α sin Φ ( cos Φ + sin 2 Φ ) r + 2 2 a cos 2 α sin 2 Φ 2 ( r sin 2 Φ + cos 2 Φ ) 2 4 a b cos Φ sin 2 Φ ( 1 1 2 cos 2 α ) + 1 4 a sin 2 α sin 2 Φ sin 2 Φ 2 ,
χ eff , s α ( 2 ) = 2 4 a sin 2 α sin 3 Φ 2 4 sin Φ ( 1 + cos 2 Φ ) r 2 4 sin Φ cos 2 α ( cos Φ sin 2 Φ ) r + 1 2 a sin 2 α ( cos 2 Φ sin 2 Φ 2 r + sin 2 Φ cos 2 Φ 2 ) + 2 2 a cos 2 α sin Φ cos Φ sin 2 Φ 2,

Metrics