Abstract

Measurement of the Henry factor over large optical bandwidth is carried out in a single step without any filtering, using a technique based on the sinusoidal phase modulation method. This fast technique was successfully applied to a directly modulated Fabry Perot laser to obtain simultaneously the linewidth enhancement factor (LEF) of 14 longitudinal modes. It is also well suited for electro-absorption modulators (EAM) for which the α-factor is determined over 15 nm optical bandwidth. A very good agreement is found with the well established fiber transfer function method.

© 2011 OSA

1. Introduction

The phase-amplitude coupling factor or Henry factor [1] is a fundamental parameter that determines many important characteristics of an optical transmitter for fiber optics communication. The existence of the so called Henry factor, or linewidth enhancement factor (LEF), induces a linewidth broadening of longitudinal modes of the transmitter. When the optical intensity of the emitter is modulated, this results in a frequency modulation (so called ‘chirp’) that interacts with the fiber chromatic dispersion and sets an upper limit to the product squared bit rate times propagation length. This parameter also determines the resistance to optical feedback of lasers [2]. Different methods have been devised to measure the α-factor and their use depends on the type of transmitter, consisting either of a directly modulated laser or an external modulator. The Hakki-Paoli method can only be applied to Fabry-Perot (FP) lasers and it gives the LEF only below threshold. Recently a method based on the linewidth power ratio was proposed to determine the LEF of a FP laser above threshold [3], however it does not give the LEF versus injection current and cannot be applied to external modulators. Another technique relies on optical injection locking but does not provide a direct measurement of the LEF [4,5]. Similarly to the linewidth power ratio method, the optical injection locking technique is only applicable to laser but not to external optical modulators. The RF current modulation method enables to determine the LEF but it applies to only one optical carrier at a time [6]. The well established fiber transfer function (FTF) method [7,8] exploits the interaction between the chirp and the fiber chromatic dispersion but it requires to filter out each individual longitudinal mode in the case of multimode Fabry-Perot lasers. It is therefore highly desirable to have a relevant, fast and direct method to simultaneously measure the LEF of multiple longitudinal modes of an optical transmitter.

In this paper, we present a novel technique based on the sinusoidal optical phase modulation method [9] to extract directly, simultaneously and together with a high sensitivity the LEF of each longitudinal mode of FP lasers. A simple expression is derived that yields both the value and the sign of the LEF. Moreover, the extraction is fast because it is a non-iterative method. This technique was successfully applied to a directly modulated FP laser to measure simultaneously the LEF of 14 longitudinal modes covering the FP optical spectrum. We also applied our method to an electro-absorption modulator (EAM) to determine the α-factor over 15 nm optical bandwidth and a very good agreement is found with the FTF method. As shown later, we stress here that this technique is adapted for even larger optical bandwidth.

2. Principle and experimental set-up

In small signal modulation regime, the complex amplitude of the spectral components at the output of the device under test (laser or external modulator), by keeping only the first order components for a mmodulation index, can be written [7]:

{A1=I0m(1+jαH)4A0=I0A+1=I0m(1+jαH)4
where αH is the LEF to be measured and I0 the power of the optical carrier. In the case of a directly modulated laser, the modulation frequency fm must be high enough so as to be able to write [10]:
2βm=αH
where β is the frequency modulation index. Moreover, in the case of a multimode laser, these expressions can be independently written for each mode, and consequently, they can be treated separately in order to extract the value of Henry factor of the corresponding mode. If we are able to measure the complex spectrum corresponding to A1 or A+1, the extraction of the value of αH is straightforward:

αH=Im(A±1)/Re(A±1)

For a decade or so, several methods have been proposed to determine the complete temporal response of short pulses (i.e. both the amplitude and the phase) used in optical telecommunications [9, 1118]. These results are obtained in the temporal domain by fast Fourier transform of the complex spectrum measured with one of these techniques [9, 1118]. Among these methods, we have chosen the one that relies on the sinusoidal modulation of the phase of the signal under test [9] because it offers several advantages: easy implementation, high sensitivity, use of an electrical signal equivalent to that of the modulation of the device under test (DUT), and direct algorithm (i.e. non-iterative method) for obtaining the complex spectrum of the transmitter.

Figure 1 represents a schematics of the experimental set-up of this technique. The DUT is modulated by a sine wave supplied by a RF generator at a modulation frequency fm . An RF variable attenuator allows the control of the modulation index m so as to keep it within the small signal modulation regime. The optical signal to analyze is sent to a fiber coupled LiNbO3 phase modulator that is also modulated at fm by the same oscillator. The inherent large optical bandwidth of LiNbO3 phase modulator is well suited to measure the Henry factor of devices exhibiting smaller optical bandwidth, e.g. electroabsorption modulator. An optical delay line is placed between the DUT and the phase modulator in order to control the delay between the optical and electrical signals at the input of the phase modulator. Instead of making use of a delay line in the optical domain, a RF phase shifter could be used on one of the electrical paths as in reference [9]. The signal at the output of the modulator is sent to an optical spectrum analyzer (OSA) whose resolution and dynamic range are suitable to resolve the optical carrier and the modulation sidebands. As indicated in [9], the method relies on the measurement of 4 optical spectra corresponding to 4 different delays equally spaced by 1/(4fm).

 

Fig. 1 Schematics of the experimental set-up based on sinusoidal optical phase modulation technique to measure the phase-amplitude coupling factor. EOS: External Optical Source, DUT: Device Under Test, ODL: Optical Delay Line, PM: Phase Modulator, OSA Optical Spectrum Analyzer, BT: Bias Tee, RFPS: RF Power Splitter

Download Full Size | PPT Slide | PDF

Instead of using the general formalism developed in [9] we modified it to the specific case of our signals given by (1). The optical signal at the output of the component can be written as:

E(t)=A1expj{Ωtωmt}+A0expj{Ωt}+A+1expj{Ωt+ωmt}
where Ω/2π is the frequency of the optical carrier and ωm=2πfm . At the output of the phase modulator, we have:
S(t)=E(tk4fm)exp(jφ(t))whereφ(t)=ψcos(ωmt+ϕ0)
with: ψ is the amplitude of the phase modulation, k(=0,1,2or3) is an integer depending on the optical delay, corresponding to 4 different optical delays and ϕ0 is the phase at the origin (for k = 0) between the modulation of the optical signal and the RF signal at the input of the phase modulator.

In the spectral domain, at the optical frequency (Ωωm)/2π, by assuming a low phase modulation amplitude ψ (typically few tenth of radians) and keeping the only three first terms of the Fourier series development of exp(jφ(t)) (i.e. the DC, +ωm and ωm terms), the electric field has the following expression:

S˜k(Ωωm)=[A1J0(ψ)exp(jkπ2)+jA0J1(ψ)exp(jϕ0)]exp(jΩωmkπ2)
where J0 and J1are Bessel functions of the first kind.

The spectral intensity measured by the OSA will be:

I1k=|A1|2J0(ψ)2+A02J1(ψ)2+2A0J0(ψ)J1(ψ)Im[A1expj(kπ2+ϕ0)]

A similar calculation done for (Ω+ωm)/2π shows that:

I+1k=|A+1|2J0(ψ)2+A02J1(ψ)2+2A0J0(ψ)J1(ψ)Im[A+1expj(kπ2+ϕ0)]

Then, we define two quantities:

Q1=(I11I13)+j(I10I12)Q+1=(I+11+I+13)+j(I+10I+12)
And we obtain:

A1expjϕ0=Q14A0J0(ψ)J1(ψ)A+1expjϕ0=Q+14A0J0(ψ)J1(ψ)

Finally, in our case, according to (1), as A1=A+1, from (3), we can deduce:

αH=Im(Q1Q+1)Re(Q1Q+1)

Hence, from the simple measurement of the 4 spectral intensities I±1k corresponding to the 4 different optical spectra related to 4 different optical delays and using Eqs. (9) and (11), we can directly and simultaneously extract the Henry factor of all longitudinal modes.

3. Results for Fabry Perot lasers

Figure 2 shows the results of the measurements of αH as a function of different longitudinal modes of the device under test for two different bias currents. The active region of this laser consists of 9 layers of InAs QDashes embedded in 40 nm thick InGaAsP (Q1.17) barriers [19]. The modulation frequency is 12 GHz and the applied RF power yields a modulation index m of about 2.5%. The inset shows the emission spectrum in a linear scale.

 

Fig. 2 Measurement of the αH of each longitudinal modes of a FP laser. The inset shows the emission spectrum in a linear scale.

Download Full Size | PPT Slide | PDF

All the measurements of αH in Fig. 2 are obtained from only 4 spectra, by applying simultaneously formulas (9) and (11) to each of the 12 and 14 longitudinal modes at 30 mA and 40 mA respectively. An example of measurements of these 4 spectra around one of the longitudinal mode is depicted in Fig. 3 , where the vertical scale is expanded so as to highlight the amplitude variations of the 2 sidebands as a function of the optical delay. The LEF amounts to ~3.3 at 1543 nm and increases with wavelength up to ~3.7 at 1553 nm for 40 mA, which is attributed to the variation of the differential gain with wavelength as already observed in bulk and QW based lasers [20]. These values are consistent with a previous work where the LEF was measured to be ~4 in a similar laser structure based on InAs/InP QDashes [21].

 

Fig. 3 Example of the measured optical spectra, i.e. one longitudinal mode and the modulation sidebands, obtained for 4 different optical delays. The spectra were normalized to the main lobes.

Download Full Size | PPT Slide | PDF

Compared to methods based on RF current modulation [6] or the fiber transfer function (FTF) [7], our proposed technique is fast because it does not require filtering out each individual mode. Besides, for lower power modes, the FTF technique requires to perform high number of averages [3] which implies time consuming. Moreover, our method allows to characterize the Henry factor of FP lasers against current, unlike the linewidth power ratio technique which yields an average value over the current [3].

4. Results for electroabsorption modulators

Our method is also suitable to determine the chirp of external modulators. This is especially important if one aims at implementing an integrated laser with an electro-absorption modulator (EAM) that enables transmission beyond the chromatic dispersion limit for example. Usually the chirping behaviour of the EAM is predicted by measuring the absorption spectrum versus bias values and using Kramers-Krönig integrals: the best operating point is deduced from the Henry factor versus wavelength detunings from the excitonic peak [22]. The sinusoidal phase modulation method is very attractive because it allows a simple and direct measurement of the chirp of an EAM versus wavelength.

Therefore, we now applied our method to an optical transmitter that consists of an electroabsorption modulator with an external laser. We generally make use of a tunable laser diode at the input of the EAM in order to make this type of measurements. Here, we prefer to take advantage of the wide optical spectrum of the previously tested FP laser (~15 nm) so as to use it as a simple continuous source. The objective is to exploit all the different longitudinal modes independently in order to get a measurement of αH as a function of the wavelength by making only 4 spectral measurements. The EAM we test here consists of a AlGaInAs/GaInAs structure with 10 QW [23].

Figure 4 depicts the measurement of αH for two bias voltages (−1.0 and −1.6 V). The RF signal is at 10 GHz and its incident power on the DUT equals – 15 dBm only, which illustrates the sensitivity of the method. For - 1.6V, we notice that αH becomes negative for wavelength smaller than 1562 nm.

 

Fig. 4 Simultaneous measurement of the αH of an EAM over 15 nm optical bandwidth for two different voltages.

Download Full Size | PPT Slide | PDF

We finally applied our method to determine the αH of the transmitter as a function of voltage for a given wavelength and compare the results with the FTF method (Fig. 5 .). A very good agreement between these two curves over a large span of αH [ + 8 to −10] permits to validate this new technique.

 

Fig. 5 Comparison of the fiber transfer function method and our proposed technique for the measurement of αH of an EAM.

Download Full Size | PPT Slide | PDF

For all results presented in this paper, the incident RF power on the phase modulator is + 4 dBm which leads to a value ψ of 0.30 rad. For RF powers leading to ψ0.6 rad, we observed differences that are no more negligible (more than 5% deviation between the FTF method and our method). This is attributed to the approximation by the only three first terms of the Fourier series development of exp(jφ(t)) done in part 2 which is no more valid under higher amplitude phase modulation.

This is further illustrated in Fig. 6 which shows the accuracy of the method for amplitude phase modulation ψ as low as 0.06 rad at a fixed bias voltage. Variation of the measured Henry factor for ψ in the range of 0.06-0.4 is less than ± 2%. A typical value of 0.30 rad for ψis consequently a good trade-off between accuracy and sensitivity for this method.

 

Fig. 6 Determination of the EAM Henry factor versus the amplitude of the phase modulation ψ (bias voltage −2.2 V).

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, we present a novel method based on sinusoidal phase modulation to determine the Henry factor of FP lasers without extracting each individual mode using a band pass filter. We also applied our method to determine the chirp of an EAM versus the wavelength over more than 15 nm optical bandwidth. This method yields very good agreement with the well-established fiber transfer function technique. It is furthermore capable of analyzing very wide optical bandwidth devices as it is only limited by the phase modulator optical response (typically few tens of nm). This technique will be of great interest for e.g. the characterizations of WDM systems such as optical frequency combs where each channel is independently modulated.

Acknowledgements

The authors would like to thank C. Kazmierski and F. Lelarge for providing the EAM and QDash laser respectively.

References and links

1. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). [CrossRef]  

2. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988). [CrossRef]  

3. A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009). [CrossRef]  

4. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001). [CrossRef]  

5. Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004). [CrossRef]  

6. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983). [CrossRef]  

7. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993). [CrossRef]  

8. R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995). [CrossRef]  

9. I. Kang and C. Dorrer, “Method of optical pulse characterization using sinusoidal optical phase modulations,” Opt. Lett. 32(17), 2538–2540 (2007). [CrossRef]   [PubMed]  

10. R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986). [CrossRef]  

11. J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998). [CrossRef]   [PubMed]  

12. M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000). [CrossRef]  

13. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27(15), 1315–1317 (2002). [CrossRef]   [PubMed]  

14. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004). [CrossRef]  

15. C. Gosset, J. Renaudier, G.-H. Duan, G. Aubin, and J.-L. Oudar, “Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis,” J. Lightwave Technol. 24(2), 970–975 (2006). [CrossRef]  

16. Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006). [CrossRef]  

17. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006). [CrossRef]   [PubMed]  

18. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010). [CrossRef]   [PubMed]  

19. G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009). [CrossRef]  

20. B. Riou, N. Trenado, F. Grillot, F. Mallecot, V. Colson, M. F. Martineau, B. Thédrez, L. Silvestre, D. Meichenin, K. Merghem, and A. Ramdane, “High Performance Strained-Layer InGaAsP/InP Laser With Low Linewidth Enhancement Factor Over 30 nm,” Proceedings of European Conference on Optical Communication (ECOC) 2003, paper We4.P.85, Rimini, Italy, (2003).

21. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]  

22. D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997). [CrossRef]  

23. J.-G. Provost, C. Kazmierski, F. Blache, and J. Decobert, “High Extinction Ratio Picosecond Pulses at 40 GHz Rate over 40 nm with an AlGaInAs EAM Characterises by a Spectrogram Acquisition Method,” Proceedings of European Conference on Optical Communication (ECOC) 2005, paper Tu1.5.5 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [CrossRef]
  2. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
    [CrossRef]
  3. A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
    [CrossRef]
  4. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
    [CrossRef]
  5. Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
    [CrossRef]
  6. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor ? of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
    [CrossRef]
  7. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
    [CrossRef]
  8. R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995).
    [CrossRef]
  9. I. Kang and C. Dorrer, “Method of optical pulse characterization using sinusoidal optical phase modulations,” Opt. Lett. 32(17), 2538–2540 (2007).
    [CrossRef] [PubMed]
  10. R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986).
    [CrossRef]
  11. J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998).
    [CrossRef] [PubMed]
  12. M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
    [CrossRef]
  13. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27(15), 1315–1317 (2002).
    [CrossRef] [PubMed]
  14. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
    [CrossRef]
  15. C. Gosset, J. Renaudier, G.-H. Duan, G. Aubin, and J.-L. Oudar, “Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis,” J. Lightwave Technol. 24(2), 970–975 (2006).
    [CrossRef]
  16. Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006).
    [CrossRef]
  17. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
    [CrossRef] [PubMed]
  18. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010).
    [CrossRef] [PubMed]
  19. G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
    [CrossRef]
  20. B. Riou, N. Trenado, F. Grillot, F. Mallecot, V. Colson, M. F. Martineau, B. Thédrez, L. Silvestre, D. Meichenin, K. Merghem, and A. Ramdane, “High Performance Strained-Layer InGaAsP/InP Laser With Low Linewidth Enhancement Factor Over 30 nm,” Proceedings of European Conference on Optical Communication (ECOC) 2003, paper We4.P.85, Rimini, Italy, (2003).
  21. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [CrossRef]
  22. D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
    [CrossRef]
  23. J.-G. Provost, C. Kazmierski, F. Blache, and J. Decobert, “High Extinction Ratio Picosecond Pulses at 40 GHz Rate over 40 nm with an AlGaInAs EAM Characterises by a Spectrogram Acquisition Method,” Proceedings of European Conference on Optical Communication (ECOC) 2005, paper Tu1.5.5 (2005)

2010 (1)

2009 (2)

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
[CrossRef]

2007 (2)

I. Kang and C. Dorrer, “Method of optical pulse characterization using sinusoidal optical phase modulations,” Opt. Lett. 32(17), 2538–2540 (2007).
[CrossRef] [PubMed]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

2006 (3)

2004 (2)

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

2002 (1)

2001 (1)

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

2000 (1)

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

1998 (1)

1997 (1)

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

1995 (1)

R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995).
[CrossRef]

1993 (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

1988 (1)

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

1986 (1)

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986).
[CrossRef]

1983 (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor ? of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[CrossRef]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Akrout, A.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Aubin, G.

Barry, L. P.

Begishev, I. A.

Blache, F.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Boittin, R.

Bowers, J. E.

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Bromage, J.

Carré, M.

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

Cartledge, J. C.

R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995).
[CrossRef]

Chuang, S. L.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Debeau, J.

Delprat, D.

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

Donati, S.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

Dorrer, C.

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Duan, G.-H.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

C. Gosset, J. Renaudier, G.-H. Duan, G. Aubin, and J.-L. Oudar, “Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis,” J. Lightwave Technol. 24(2), 970–975 (2006).
[CrossRef]

Emplit, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
[CrossRef]

Froehly, C.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
[CrossRef]

Garces, I.

A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
[CrossRef]

Gariah, H.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Gini, E.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Giuliani, G.

A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

Gosset, C.

Haelterman, M.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
[CrossRef]

Harder, C.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor ? of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[CrossRef]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

Jäckel, H.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Jin, X.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Kang, I.

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

Koch, T. L.

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986).
[CrossRef]

Kockaert, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
[CrossRef]

Kowalski, B.

Kwakernaak, M.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Le Gouezigou, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

LeGouezigou, O.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Lelarge, F.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Liu, G.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Mallecot, F.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Martinez, A.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Merghem, K.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Murdoch, S. G.

Nakajima, H.

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

Neiger, A.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Oudar, J.-L.

Ougazzaden, A.

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

Ozeki, Y.

Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006).
[CrossRef]

Petermann, K.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Pommereau, F.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Provost, J.-G.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Ramdane, A.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

Reid, D. A.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

C. Gosset, J. Renaudier, G.-H. Duan, G. Aubin, and J.-L. Oudar, “Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis,” J. Lightwave Technol. 24(2), 970–975 (2006).
[CrossRef]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Sakano, M.

Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006).
[CrossRef]

Schimpe, R.

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986).
[CrossRef]

Schreieck, R.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Schunk, N.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Shen, A.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

Srinivasan, R. C.

R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995).
[CrossRef]

Takasaka, S.

Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006).
[CrossRef]

Usechak, N. G.

Vahala, K.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor ? of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[CrossRef]

Van Dijk, F.

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Villafranca, A.

A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
[CrossRef]

A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
[CrossRef]

Vogt, W.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Yariv, A.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor ? of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[CrossRef]

Yu, Y.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

Zuegel, J. D.

Appl. Phys. Lett. (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor ? of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[CrossRef]

Bell Labs Tech. J. (1)

G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[CrossRef]

Electron. Lett. (2)

D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997).
[CrossRef]

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006).
[CrossRef]

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009).
[CrossRef]

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995).
[CrossRef]

J. Lightwave Technol. (2)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

C. Gosset, J. Renaudier, G.-H. Duan, G. Aubin, and J.-L. Oudar, “Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis,” J. Lightwave Technol. 24(2), 970–975 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (2)

B. Riou, N. Trenado, F. Grillot, F. Mallecot, V. Colson, M. F. Martineau, B. Thédrez, L. Silvestre, D. Meichenin, K. Merghem, and A. Ramdane, “High Performance Strained-Layer InGaAsP/InP Laser With Low Linewidth Enhancement Factor Over 30 nm,” Proceedings of European Conference on Optical Communication (ECOC) 2003, paper We4.P.85, Rimini, Italy, (2003).

J.-G. Provost, C. Kazmierski, F. Blache, and J. Decobert, “High Extinction Ratio Picosecond Pulses at 40 GHz Rate over 40 nm with an AlGaInAs EAM Characterises by a Spectrogram Acquisition Method,” Proceedings of European Conference on Optical Communication (ECOC) 2005, paper Tu1.5.5 (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the experimental set-up based on sinusoidal optical phase modulation technique to measure the phase-amplitude coupling factor. EOS: External Optical Source, DUT: Device Under Test, ODL: Optical Delay Line, PM: Phase Modulator, OSA Optical Spectrum Analyzer, BT: Bias Tee, RFPS: RF Power Splitter

Fig. 2
Fig. 2

Measurement of the αH of each longitudinal modes of a FP laser. The inset shows the emission spectrum in a linear scale.

Fig. 3
Fig. 3

Example of the measured optical spectra, i.e. one longitudinal mode and the modulation sidebands, obtained for 4 different optical delays. The spectra were normalized to the main lobes.

Fig. 4
Fig. 4

Simultaneous measurement of the αH of an EAM over 15 nm optical bandwidth for two different voltages.

Fig. 5
Fig. 5

Comparison of the fiber transfer function method and our proposed technique for the measurement of α H of an EAM.

Fig. 6
Fig. 6

Determination of the EAM Henry factor versus the amplitude of the phase modulation ψ (bias voltage −2.2 V).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

{ A 1 = I 0 m ( 1+j α H ) 4 A 0 = I 0 A +1 = I 0 m ( 1+j α H ) 4
2β m = α H
α H = Im( A ±1 ) / Re ( A ±1 )
E(t)= A 1 expj{ Ωt ω m t }+ A 0 expj{ Ωt }+ A +1 expj{ Ωt+ ω m t }
S(t)=E( t k 4 f m )exp( jφ(t) ) where φ(t)=ψcos( ω m t+ ϕ 0 )
S ˜ k ( Ω ω m )=[ A 1 J 0 (ψ)exp(jk π 2 )+j A 0 J 1 (ψ)exp( j ϕ 0 ) ]exp( j Ω ω m kπ 2 )
I 1 k = | A 1 | 2 J 0 ( ψ ) 2 + A 0 2 J 1 ( ψ ) 2 +2 A 0 J 0 ( ψ ) J 1 ( ψ )Im[ A 1 expj( kπ 2 + ϕ 0 ) ]
I +1 k = | A +1 | 2 J 0 ( ψ ) 2 + A 0 2 J 1 ( ψ ) 2 +2 A 0 J 0 ( ψ ) J 1 ( ψ )Im[ A +1 expj( kπ 2 + ϕ 0 ) ]
Q 1 =( I 1 1 I 1 3 )+j( I 1 0 I 1 2 ) Q +1 =( I +1 1 + I +1 3 )+j( I +1 0 I +1 2 )
A 1 expj ϕ 0 = Q 1 4 A 0 J 0 ( ψ ) J 1 ( ψ ) A +1 expj ϕ 0 = Q +1 4 A 0 J 0 ( ψ ) J 1 ( ψ )
α H = Im( Q 1 Q +1 ) Re( Q 1 Q +1 )

Metrics