Abstract

We present direct laser writing of channels in chalcogenide glass under light filamentation conditions. Because of the intrinsic properties of the filament, the positive refractive index profile of the channels exhibits a cylindrical symmetry of high quality. The role of the repetition rate is also investigated. It is shown that if the time separation between pulses is shorter than the lifetime of the plasma, the free carriers accumulate and induce a larger variation of the refractive index.

© 2011 OSA

1. Introduction

Direct laser writing [1, 2] is actually recognized as a mature technique for the fabrication of integrated photonic devices in dielectric media. One of the major interest in this technique is the localization on the microscale of controlled refractive index modification (Δn), arising from the nonlinear character of the interaction between femtosecond laser pulse and the media. The immediate consequence is the capability of true 3D structure engineering [3]. Single step process, rapid prototyping, short processing time are obviously few other advantages of this technique among others.

Direct femtosecond (fs) laser writing (DFLW) has been demonstrated in a large variety of materials including polymers [4, 5], crystals [6, 7], ceramics [8] and glasses [911]. A particular class of glass is the chalcogenide one (ChG) characterized by large nonlinear optical coefficient [12] and broad transmission window from visible to infrared [13] where they are used for spectroscopic applications [14, 15]. DFLW experiments in ChG have been widely reported for a broad range of parameters including composition, pulse energy and repetition rate, see [1620] to cite a few.

Various studies have been reported on laser repetition rate influence on Δn, all having highlighted the role of heat accumulation at MHz regime [21, 22]. However Δn has been shown to result also from the formation of plasma during laser filamentation [23]. The phenomenon of filamentation results from a dynamical equilibrium between different effects [24, 25]. First, the laser beam self-focuses in the media because of the optical Kerr effect. When the intensity of the beam is high enough, self-focusing will collapse, resulting in a plasma formation. But the generated free carriers induce a negative refractive index variation that will tend to defocuse the beam. So the natural divergence of the beam can be compensated by the combined action of these effects over distances as long as several kilometers in air [26]. In condensed matter like silica, the length of the filament is only of centimeter scale [27] and can induced a refractive index variation, as already mention. In ChG, the filamentation is made easier because of the high nonlinear refractive index and Δn induced by laser filament in ChG has been observed very recently by two groups [28, 29].

In this paper, we present a study of Δn produced by femtosecond laser filament in ChG with various repetition rates and intensities. We demonstrate that the free carrier density can be increased by several orders of magnitude if the time separation between laser pulses is shorter than their lifetime. The consequences on Δn are investigated.

First a measurement of this lifetime is presented and the phenomenon of accumulation of charges when the sample is irradiated by a pulse train is evidenced. As the intensity is increased above the filament formation threshold, a permanent refractive index variation Δn is observed. An excellent cylindrical symmetry of the Δn profile is observed and explained by the intrinsic properties of the filament. The dependence of the diameter and the magnitude of Δn with the femtosecond pulse intensity and the repetition rate are presented. The results are interpreted taking into account the charges accumulation effect.

2. Plasma lifetime measurement

2.1. Experimental setup

The investigated glass composition is 90 [(GeS2)0.8 – (Ga2S3)0.2] – 10 CsCl which shows a large transmission range extending from visible (∼ 500 nm) up to midinfrared (∼ 11.5 μm). All details on the sample preparation and properties can be found in [30].

The experimental setup used for the free carrier lifetime measurement is depicted in figure 1. First a femtosecond (fs) pulse is focused into the sample by a lens of 50 mm focal length. The beam waist is about 6 μm. Its polarization can be managed by used of half and quarter waveplates. The pulse duration and central wavelength are measured to be 280 fs and 800 nm, respectively. All the experiments have been performed at intensities below the threshold of permanent refractive index modification (less than 63 GW/cm2, see figures 6c and 6d).

 

Fig. 1 Experimental setup used for the free carrier lifetime measurement. CH : chopper ; λ/2 and λ/4: half and quarter waveplates, resp ; DM : dichroic mirror ; S : sample ; A : aperture ; PD : photodiode.

Download Full Size | PPT Slide | PDF

 

Fig. 6 Example of the morphology of the Δn channel and dependence of the full width at half maximum and the magnitude with the intensity of the incoming pulse for different repetition rate.

Download Full Size | PPT Slide | PDF

The fs beam is combined on a dichroic mirror with a continuous wave (CW) laser at a wavelength of 1.55 μm. The beams overlap and are focused simultaneously in the sample. Some optics are used (not shown in figure 1) to mode match the CW beam with the fs one. After the sample, the beams are separated once again and the CW one is partially blocked by an aperture before to be focused on an ultrafast photodiode (Femto HSA-200M-IN). The transmission signal is recorded with a data acquisition board connected to a computer.

2.2. Results

The principle of the experiment is the following. As the fs beam is focused in the sample, it induces free carriers that modify locally the refractive index according to [24]:

ΔnP=ρ(t)2ρc
where ρ(t) is the free carrier density and ρc is the critical plasma density above which the plasma becomes opaque. Therefore the fs beam induces a diverging lens that defocuses the CW beam. Consequently the transmitted portion of light through the aperture decreases like in a classical Z-scan experiment. So by recording the transmission of CW light, we obtain a direct information on the charge density ρ(t).

The black line of the figure 2 represents an example of this transmission signal after a single pulse excitation. It consists in a fast decrease before the transmission exponentially returns to the initial level. We point out that the maximum temporal resolution of our experiment is 0.8 μs and so, faster component of the phenomena could not be observed.

 

Fig. 2 Transmission of CW beam through the aperture after femtosecond excitation. The black curve represents the signal resulting from a single pulse excitation and the red one from a pulse train separated by 1.5 ms.

Download Full Size | PPT Slide | PDF

The red curve on the figure 2 is obtained when the sample is illuminated by a pulse train having a time separation between pulses shorter than the free carrier lifetime. In these conditions, charges are excited before the previously excited ones relax. Therefore the charges accumulate and the density saturates at a level much higher than the contribution of a single pulse.

This effect is more significant at higher repetition rate. The figure 3a shows the results obtained at 20, 50 and 200 kHz. From these results, charge density dependence on the repetition rate is strongly evident.

 

Fig. 3 Effect of repetition rate on charge accumulation and free carriers lifetime measurement.

Download Full Size | PPT Slide | PDF

When the pulse train stops, the charges relax and the density exponentially decays as shown on figure 3b. This decay is fitted to obtain the lifetime of the free carriers. Knowing this lifetime, the response of a single pulse excitation can be calculated. The contributions of N pulses delayed by the appropriated time, are then summed to determine the enhancement factor due to the repetition rate and relative to a single pulse. We find a lifetime of 3.35 ± 0.05 ms (independently of the repetition rate) and an enhancement up to more than 500 at 200 kHz repetition rate.

This lifetime is fairly long relative to other material. As an example, it has been shown recently that permanent Δn due to plasma in silica glass has a dynamics of the 10 μs scale and subsequent cooling within 100 μs [31]. Nevertheless, the lifetime of photo-excited charge carriers (electrons and holes) deduced from drift mobility and photoconductivity experiments in chalcogenide systems was found to vary significantly, e.g. from 100 ns (As2Te3) to 1–10 ms (As2Se3 or sulfur) [3234]. Millisecond dynamics was also reported for the decay of luminescence excited by photons having the band-gap energy [32]. Also, the atomic displacements in chalcogenide glasses have similar time scale. Phase-change optical memories based on Ge-Sb-Te or Ga-La-S thin films exhibit the astonishingly rapid nanosecond crystallization of nanosized amorphous ’marks’ in a polycrystalline layer [3537]. The underlying mechanism of the observed plasma lifetime needs therefore further investigation.

2.3. Role of the temperature and polarization

If the temperature increase is high and ∂n/∂T is significant, thermal lensing and heat accumulation [21] have to be taken into account. In this case, a signal similar to what is reported here would be observed. Therefore we have to pay attention if thermal effect influences or not our observation. Several arguments indicate that it does not.

First if the influence of the temperature is high, it should result in Δn having spatial extension larger than the focal volume (especially in the transverse direction) and also in a dependence of its diameter with the intensity what is not observed here (see figure 6c and related discussion). [20, 22, 38]. Moreover the sample has been heated at the glass transition temperature Tg for 5 hours and we do not observed any modification in the written structure. This indicates that the permanent Δn is not resulting from a stress but rather structural modification [39].

Finally it has been shown that ionization mechanism is polarization sensitive [40]. Therefore we have recorded the magnitude of the signal as a function of the polarization state of the fs beam at a repetition rate of 200 kHz. As it can be seen from the figure 4, the observed signal is larger for linear polarization than for circular one. The dependence is relatively small compared with silica glass because the order N of the nonlinear absorption of our glass (N = 2) is much smaller (N = 6 in silica) [40]. Nevertheless such a dependence can not be explained in terms of thermal effect.

 

Fig. 4 Polarization dependence of the observed signal. This dependence is obtained by rotating the half wave plate in the femtosecond beam path.

Download Full Size | PPT Slide | PDF

Therefore we can conclude that the temperature increase does not affect significantly our observations.

3. Refractive index contrast measurement

Because of the high nonlinear refraction index of the glass [30], the filamentation of the fs beam is possible even at a moderate intensity. As the plasma density becomes very large in the filament, a permanent refractive index is resulting. The figure 5a shows the image of Δn obtained by static exposure of the sample to 200 000 pulses at a repetition rate of 50 kHz and focused with a lens of 25 mm focal length. The reconstruction of Δn is done by Quantitative Phase Imaging technique followed by an Abel inversion [41]. It can be seen from this figure that the length of Δn is much longer than the Rayleigh length (zR = 35 μm) and that its diameter is nearly constant along the refractive index modification, then confirming the presence of the filament.

 

Fig. 5 Δn examples obtained in static exposure and by translation of the sample through the focal point.

Download Full Size | PPT Slide | PDF

Channels of Δn can be written by moving the sample across the focal point and parallel to the beam propagation direction. This longitudinal scheme of writing is allowed by the very high photosensitivity of ChG resulting from the ease of plasma generation. In the experiments we have fixed the translation speed to 200 μm·s−1. As it can be seen from the figure 5b, the result is a very homogeneous Δn of magnitude and full width at half maximum (FWHM) equal to 1 ·10−3 and 2.07 μm, resp. The homogeneity is directly connected to the intrinsic properties of the filament. First, because the lowest order laser beam mode is the smaller one, it will be the first to generate the filament. All the others are then defocused by the plasma (at moderate power above the critical power for the beam collapse) and are not entering into the filament. Consequently only the lowest order mode is forming the channel, an effect known as spatial mode self-cleaning [25]. Next the intensity is clamped in the filament [42] and therefore Δn is not sensitive to laser fluctuations both in shape and in power.

An example of the measured transverse profile (circles) of Δn(r) is represented on figure 6a where the red line is a Gaussian fit. The high symmetry of Δn profile is highlighted in figure 6b. The figures 6c and 6d give the evolution of the FWHM and the magnitude of Δn with the intensity of the incoming fs pulse for different values of the repetition rate (20, 50 and 200 kHz).

First for low value of the intensity, modification of the refractive index is not observed (FWHM and magnitude of Δn are equal to 0 in figures 6c and 6d). The formation of the filament requires that the power is above a critical value (Pc). This value can be calculated from [43]:

Pc=3.77λ28πnn2
where λ is the wavelength, n and n2 are the linear and nonlinear refractive index of the glass. The corresponding values for our glass are n = 2.0728 and n2 = 2.57 × 10−5 GW/cm2 [30], so that the critical power is evaluated to Pc = 18 kW. Considering a beam waist of w0 = 3 μm, laser filamentation occurs at intensities higher than 63 GW/cm2. Therefore, it can be concluded that Δn is observed only when a filament is formed.

As expected [42] the FWHM does not present any dependence with the intensity. The absence of dependence with the repetition rate (within our experimental spatial resolution) confirms once again the low influence of thermal effect.

The evolution of the magnitude of Δn is more complex (see figure 6d). This parameter saturates as the intensity increases at a value that depends on the repetition rate. First the saturation can easily be understood in term of the already mentioned intensity clamping effect in the filament. If it is well seen at 200 kHz, it is obviously less marked at lower repetition rate. This can be understood because the length of filament slightly increases with the intensity. Therefore the overlapping length between two filaments due to two consecutive fs pulses is longer at higher intensity. So the accumulation effect evidenced in section 2.2 is more efficient. This accumulation effect has also been shown to lead to higher free carrier density at higher repetition rate. Therefore the difference in the saturation level of the magnitude of Δn for different repetition rate could be explained by this dependence of the free carrier density.

4. Conclusions

In conclusion positive refractive index modifications of ChG under fs laser filamentation conditions are presented. The intrinsic properties of the filament lead to homogeneous Δn with a diameter independent of the intensity. Because of their very long lifetime, free carrier density can be enhanced by several orders of magnitude by increasing the laser repetition rate, the consequence being a higher value of Δn magnitude.

So the control of Δn magnitude is shown to be more easily achieved by controlling the time separation between the laser pulse or equivalently the translation speed. An increase of the laser intensity is not efficient because of intensity clamping effect and second, a too large augmentation would result unavoidably in multifilamentation and an inhomogeneous Δn structure [44, 45].

Acknowledgments

We are very grateful to Pr. Andrei Tveryanovich for stimulating discussion. O. Caulier is very grateful also to the Direction Générale de l’Armement and the Syndicat Mixte de la Côte d’Opale for financial support. The Laboratoire de Physico-Chimie de l’Atmosphère participates in the Institut de Recherche en ENvironnement Industriel (IRENI) which is financed by the Communauté Urbaine de Dunkerque, the Région Nord Pas-de-Calais, the Ministère de l’Enseignement Supérieur et de la Recherche, the CNRS and European funds (ERDF). This work was also supported by the European Commission within the framework of the Interreg IVA-2Seas (CleanTech project) programme.

References and links

1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]  

2. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009). [CrossRef]  

3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003). [CrossRef]  

4. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002). [PubMed]  

5. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2006). [CrossRef]   [PubMed]  

6. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006). [CrossRef]  

7. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010). [CrossRef]  

8. A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011). [CrossRef]  

9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef]   [PubMed]  

10. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005). [CrossRef]   [PubMed]  

11. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006). [CrossRef]   [PubMed]  

12. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

13. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

14. D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002). [CrossRef]  

15. L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, “M-lines characterization of selenide and telluride thick films for mid-infrared interferometry,” Opt. Express 14, 8459–8469 (2006). [CrossRef]   [PubMed]  

16. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001). [CrossRef]  

17. L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007). [CrossRef]  

18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007). [CrossRef]  

19. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007). [CrossRef]  

20. P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011). [CrossRef]  

21. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005). [CrossRef]   [PubMed]  

22. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006). [CrossRef]   [PubMed]  

23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

24. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]  

25. S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010). [CrossRef]  

26. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004). [CrossRef]  

27. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001). [CrossRef]   [PubMed]  

28. P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

29. I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010). [CrossRef]  

30. P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

31. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011). [CrossRef]   [PubMed]  

32. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

33. G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977). [CrossRef]  

34. D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966). [CrossRef]  

35. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007). [CrossRef]  

36. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004). [CrossRef]  

37. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011). [CrossRef]  

38. R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004). [CrossRef]   [PubMed]  

39. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004). [CrossRef]   [PubMed]  

40. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006). [CrossRef]  

41. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005). [CrossRef]   [PubMed]  

42. E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972). [CrossRef]  

43. J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975). [CrossRef]  

44. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004). [CrossRef]   [PubMed]  

45. H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  2. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
    [CrossRef]
  4. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002).
    [PubMed]
  5. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2006).
    [CrossRef] [PubMed]
  6. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
    [CrossRef]
  7. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
    [CrossRef]
  8. A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
    [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  10. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
    [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006).
    [CrossRef] [PubMed]
  12. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).
  13. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  14. D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
    [CrossRef]
  15. L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, “M-lines characterization of selenide and telluride thick films for mid-infrared interferometry,” Opt. Express 14, 8459–8469 (2006).
    [CrossRef] [PubMed]
  16. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
    [CrossRef]
  17. L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
    [CrossRef]
  18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
    [CrossRef]
  19. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
    [CrossRef]
  20. P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
    [CrossRef]
  21. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [CrossRef] [PubMed]
  22. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
    [CrossRef] [PubMed]
  23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
  24. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [CrossRef]
  25. S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010).
  26. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
    [CrossRef]
  27. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
    [CrossRef] [PubMed]
  28. P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.
  29. I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
    [CrossRef]
  30. P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.
  31. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
    [CrossRef] [PubMed]
  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).
  33. G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
    [CrossRef]
  34. D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
    [CrossRef]
  35. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
    [CrossRef]
  36. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
    [CrossRef]
  37. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
    [CrossRef]
  38. R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
    [CrossRef] [PubMed]
  39. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  40. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
    [CrossRef]
  41. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005).
    [CrossRef] [PubMed]
  42. E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
    [CrossRef]
  43. J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [CrossRef]
  44. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
    [CrossRef] [PubMed]
  45. H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
    [CrossRef]

2011 (4)

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

2010 (2)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

2009 (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

2007 (5)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

2006 (6)

2005 (3)

2004 (6)

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

2002 (2)

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002).
[PubMed]

2001 (2)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

1996 (1)

1977 (1)

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

1975 (1)

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

1972 (1)

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

1966 (1)

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

Aiello, L.

Akola, J.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Ampem-Lassen, E.

Ams, M.

Anderson, T.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

André, Y.-B.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Arai, A.

Arezki, B.

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Benayas, A.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Bergé, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Bhardwaj, V. R.

Bloembergen, N.

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

Blonskyi, I.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Boussard-Plédel, C.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Bovatsek, J.

Broquin, J.-E.

Brunéel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Bureau, B.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Bychkov, E.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Calmano, T.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Calvez, L.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Carlie, N.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Cerami, L. R.

Cerullo, G.

Chen, F.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Chin, S. L.

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010).

Chiodo, N.

Choi, J.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Coq, D. L.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Corkum, P. B.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Couzi, M.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

D’Amico, C.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Davis, E. A.

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

Davis, K. M.

Dragomir, N. M.

Eaton, S.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

Ferraro, P.

Finizio, A.

Fonteneau, G.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Franco, M.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Gattass, R. R.

Gibbons, D.

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Herman, P.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Hirao, K.

Hnatovsky, C.

Honma, T.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Hudgens, S.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Huntington, S. T.

Ikenaga, E.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Iovu, M.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Ishizuka, T.

Itoh, K.

Jacinto, C.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Jaque, D.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Jha, A.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Johnson, B.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Jones, R. O.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kadan, V.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Kar, A.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Kar, A. K.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Keirsse, J.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Kern, P.

Killi, A.

Kobayashi, K.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kohara, S.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kojima, R.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kokorina, V. F.

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Kopf, D.

Labadie, L.

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Laporta, P.

Lederer, M.

Lepine, E.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Lépine, E.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Li, Y.

Lin, C.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Lucas, J.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Marburger, J.

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

Marshall, G. D.

Maselli, V.

Masselin, P.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Matsunaga, T.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Mazur, E.

Méchain, G.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Michel, K.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Miura, K.

Morgner, U.

Mott, N. F.

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Nicola, S. D.

Nishii, J.

Nolte, S.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Nugent, K. A.

Osellame, R.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Pavlov, I.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Petermann, K.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Petit, L.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Petracovschi, E.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Pfister, G.

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

Pierattini, G.

Prade, B.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Pradel, A.

Psaila, N.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Quéré, J.-M. L.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Ramponi, R.

Rayner, D. M.

Reid, D.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Richardson, K.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Richardson, M.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Roberts, A.

Ródenas, A.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Sauerbrey, R.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Scher, H.

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

Schroeder, H.

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

Shah, L.

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Shpotyuk, O.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Silva, W.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Simova, E.

Sire, O.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Sowa, S.

Spear, W.

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Stryland, E. V.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Sudrie, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Sugimoto, N.

Taccheo, S.

Takata, M.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Tamaki, T.

Tan, Y.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Taylor, R. S.

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Thomsom, R.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Torchia, G.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Tunnermann, A.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Tzortzakis, S.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Valle, G.

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Vázquez de Aldana, J.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Vigreux-Bercovici, C.

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Watanabe, W.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Withford, M. J.

Wuttig, M.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

Yamada, K.

Yamada, N.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Yin, A.

Yoshino, F.

Zakery, A.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

Zavelani-Rossi, M.

Zhang, H.

Zhang, X.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Zhou, Z.

Appl. Phys. A: Mater. Sci. Process. (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Appl. Phys. B: Lasers Opt. (2)

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

C. R. Chim. (1)

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

J. Phys. Chem. Solids (1)

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

MRS Bull. (1)

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Nature Mater. (2)

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

Opt. Commun. (1)

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

Opt. Express (8)

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
[CrossRef] [PubMed]

E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005).
[CrossRef] [PubMed]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[CrossRef] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2006).
[CrossRef] [PubMed]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
[CrossRef] [PubMed]

L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, “M-lines characterization of selenide and telluride thick films for mid-infrared interferometry,” Opt. Express 14, 8459–8469 (2006).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006).
[CrossRef] [PubMed]

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002).
[PubMed]

Opt. Lett. (3)

Opt. Mater. (4)

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

Phys. Rev. B (1)

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

Phys. Rev. Lett. (5)

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Prog. Quantum Electron. (1)

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Other (6)

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010).

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics