Abstract

We report on transferring the concept of light-field streaking with intense terahertz fields from free-electron lasers to the laboratory scale. Utilizing a commercial laser system, synchronized 300μm terahertz and 13nm extreme ultraviolet pulses are generated by optical rectification and high harmonic generation, respectively. The terahertz fields are sufficiently strong to support electron wave packet sampling with a few fs resolution. The capability of this approach is demonstrated by measuring the duration of electron pulses formed by direct photoemission from a neon gas target.

©2011 Optical Society of America

1. Introduction

In ultrafast optics, dynamic information is in most cases obtained from experiments applying the pump-probe technique, where the response of a system on two subsequent light pulses is studied as a function of their relative timing. This approach requires scanning of a time delay; the evolution has therefore to be assembled from a set of experiments, taken consecutively at different delay settings. For a linear system response, the time resolution is then given by a convolution of the envelopes of both light fields. A different approach, which is able to sample the evolution of a process in a single sweep, resembles the streak camera principle, where time information imprinted in the temporal profile of an electron pulse is projected onto a spatial coordinate by a rapidly varying electric field across deflection plates. In the realization of the ’atomic streak camera’ this principle was modified by streaking photo-emitted electron wave packets with the electric field of near infrared (NIR) light [1, 2]. The temporal resolution in this case is not limited by the duration of the streaking light pulse envelope, but given by the rate of change of the oscillating electromagnetic field. With an oscillation period of 2.7 femtosecond (fs) for 800nm light, events shorter than 100 attoseconds have been resolved [3, 4].

The upper limit for the detectable wave packet duration within this concept is set by the linear part of the field slope, corresponding to approximately a quarter of the field period, or 670 attoseconds for a 800nm wavelength. However, many relevant electronic and nuclear processes in atoms and molecules evolve on a slower time scale. Inner shell relaxation by Auger decay is often found in the few fs range [5, 6]. Fragmentation following inner-shell relaxation occurs on a few fs to a few tens of fs scale [7]. Transfer of the concept of single-sweep light-field streaking to this temporal regime requires considerably slower oscillating, i.e. longer wavelength, fields. Correspondingly, the principle outlined above was utilized to realize a single-shot streak camera based on a terahertz (THz) streaking field with a 300fs period and a usable time window of about 70fs [8], providing information on the duration of individual XUV pulses from the free-electron laser source FLASH. While for effective streaking THz pulse energies in the μJ range are mandatory, the synchronized extreme ultraviolet (XUV) pulses can be scaled down from the several 100μJ delivered by FELs to the nJ and pJ range, where laser-based XUV sources are available. This opens the opportunity to realize femtosecond electron wave packet sampling in the laboratory.

In this report, we introduce fully laser-based terahertz-field-driven streaking. Intense THz pulses generated by optical rectification in a nonlinear crystal are used to streak photoelectrons emitted from a gaseous target after irradiation with well synchronized, spectrally filtered XUV pulses from high-order harmonic generation (HHG). We demonstrate the applicability of the femtosecond streaking concept by measuring the duration and linear chirp rate of electron wave packets formed by direct photoemission from a neon target.

2. Theory

The basic theory of electrons generated by photoionization of an XUV pulse in the presence of an intense, linearly polarized light field can be adopted from attosecond metrology [9]. According to the classical model, the momentum of the photoelectrons in the direction of the interacting THz field is changed by

Δp(r,t)=etETHz(r,t')dt'=eATHz(r,t),
where t is the ionization time, e the electron charge, E⃗THz the THz electric field strength and A⃗THz the THz vector potential. Thus the momentum gain of the photoelectrons depends on the THz vector potential at the ionization time. For electrons with a final drift velocity parallel to the THz polarization, this translates into an energy shift of [2]
ΔW||(t)2W0meeATHz(t),
with W 0 being the electron kinetic energy without THz field and me being the the electron mass. We consider a linearly chirped Gaussian XUV pulse with an electric field given by
EXUV(t)=EX0e2ln2(t/τX)2ei(ω0t+ct2),
where EX0 is the amplitude of the field, τX is the full width at half maximum (FWHM) pulse duration of the intensity envelope, ω 0 the frequency of the XUV field and c is the linear chirp rate. The time t = 0 corresponds to the pulse peak.

When the XUV pulse duration is short compared to the THz oscillation period and the delay between the XUV and THz pulses is chosen such that the slope of ATHz is approximately linear, streaking will imprint an additional linear chirp to the electron wavepacket. The streaked photoelectron spectrum maintains a Gaussian shape with a FWHM of

σXstreak=σX02+τX2(s2±4cs),
where σ X–0 corresponds to the measured width of the field-free spectrum and
s=(ΔW||)t2W0meeETHz(t)
is the streaking speed. The ± sign in Eq. (4) corresponds to the two different observation directions parallel and anti-parallel with respect to the THz polarization at a specific time. By measuring the field-free spectrum and the streaked spectra in two opposite directions, the XUV pulse duration and its linear chirp rate are determined.

3. Experiment

For the generation of HHG and THz radiation, we use a Ti:sapphire laser that delivers 3mJ pulses with a duration of 25fs at a repetition rate of 1kHz. High harmonics are generated by focusing the laser into a tube which is continuously filled with neon gas to a pressure of 110mbar. The harmonics are separated from the fundamental laser by a mirror with a central aperture. Thus the less divergent harmonic radiation propagates through the aperture while the major fraction of the (NIR) light is recollimated and coupled out of the vacuum chamber. A zirconium filter is used to efficiently block the fundamental beam propagating through the aperture. The 59th harmonic order is selected by a molybdenum-silicon multilayer mirror and reflected into the experimental vacuum chamber.

The recollimated fundamental beam is used for the generation of THz radiation by optical rectification [10] in a lithium niobate crystal. In order to prevent photorefractive damage, the crystal is stoichiometrically doped with 1% of magnesium oxide. Efficient velocity matching of the NIR and THz pulses is achieved by tilting the pulse front of the NIR beam after diffraction off a grating (2000lines/mm) [11, 12]. A λ/2 wave plate rotates the linear NIR polarization by 90° to make it parallel to the optical axis of the lithium niobate crystal. The diffracted beam is imaged into the crystal by a f = 75mm achromatic lens. After losses due to the HHG process, the optical setup and the diffraction grating, NIR pulses with an energy of 1.8mJ reach the crystal. The divergent THz radiation is collimated by a teflon lens and coupled into the experimental vacuum chamber. A periscope rotates the THz polarization by 90° to be in the plane of the electron detectors. Since both XUV and THz pulses are generated by the same laser pulse, an inherent synchronization between them is ensured.

The experimental setup of the streaking experiment is sketched in Fig. 1. An off-axis parabolic mirror with f = 100mm focuses the collimated THz beam to a FWHM size of 1.0mm. Its pulse energy in the focal plane was measured with a calibrated pyroelectric detector as 1.7μJ, Taking into account losses of the THz beam recollimation and focusing as well as absorption in air, the overall NIR-to-THz conversion effciency is well above 1 · 10−3. The HHG beam is focused by a concave molybdenum-silicon multilayer mirror with a focal length of 500mm. It passes through a central hole in the parabolic mirror such that it collinearly propagates with the THz radiation. The XUV diameter in the focal plane was measured to be 100μm (FWHM). Neon is injected into the interaction zone with a gas nozzle. The photoelectrons generated by the XUV pulse and streaked by the THz field are simultaneously detected with two time-of-flight (TOF) spectrometers which are placed in opposite directions along both the XUV and the THz polarization axes.

 

Fig. 1 Experimental setup. HHG (blue beam) and THz (red beam) pulses are collinearly focused into the interaction zone which consists of a neon gas jet. Two time-of-flight spectrometers detect the kinetic energies of the generated photoelectrons.

Download Full Size | PPT Slide | PDF

4. Results

The time-dependent THz vector potential is directly measured by acquiring streaked photoelectron spectra upon scanning the delay between the HHG and THz pulses. We exploit the fact that the electron drift velocity change is in good approximation proportional to the vector potential of the THz field (Eq. (2)). Figure 2 depicts series of kinetic energy spectra for the streaked photoelectrons measured simultaneously with two TOF detectors. The time delay between HHG and THz pulses was varied in steps of 30fs, and each spectrum was averaged over 10000 shots. The scan reveals the single-cycle behavior of the THz pulse that is typically observed for this kind of source. The measured energy shift at the right detector is just reversed with respect to the left detector. From this measurement, the electric field is obtained by differentiation according to ETHz = ∂ATHz/∂t which yields a maximal field strength of 14MV/m. For the calculation, the center of mass of each spectrum was determined, and the resulting curve was smoothed over five neighboring points. Albeit the obtained value is small compared to the electric field strengths used in attosecond metrology, the electrons are accelerated for a longer time and thus similar ponderomotive potentials and corresponding streaking amplitudes are achieved.

 

Fig. 2 Series of neon 2p electron kinetic energy spectra obtained by a delay scan between the ionizing XUV pulse and the THz streaking field (false-color representation) detected at (a) left and (b) right TOF. Each spectrum was normalized to a constant area.

Download Full Size | PPT Slide | PDF

As can be seen in Fig. 3, the obtained temporal profile of the THz field is in good agreement with measurements at this source utilizing an electro-optic sampling (EOS) [13] setup with a 0.3mm thick ZnTe crystal. The two electric field transients in Fig. 3 have different amplitude ratios in positive and negative directions and thus a slightly different carrier envelope phase (CEP). This can be explained by the influence of the Gouy phase [14] which describes the phase change of the THz beam during propagation through the focus. A small displacement of the interaction region of both measurements will therefore result in such a change of the CEP phase. In addition, the temporal profile of the THz pulse might have changed due to changing pump pulse parameters. As a result, ponderomotive streaking represents an alternative measurement technique for the temporal characterization of THz pulses. Unlike EOS, it does not suffer from saturation effects, bandwidth limitations and imperfections in a crystal and therefore yields a more accurate representation of the electric field strength. The THz spectrum is determined from a Fourier transform of the electric field transient obtained by the streaking measurement. In accordance to the single-cycle behavior, the spectrum has a large width of 0.8THz, and the average frequency is centered at 1.0THz. The shot-to-shot fluctuations of the THz field strength measured by EOS were 3% at the first slope (at a time delay of 2.8ps). However, the fluctuations at the maximum vector potential (at a time delay of 3.1 ps) are enhanced to 7%. Therefore, we restrict the determination of the XUV pulse duration to an analysis at a single delay setting.

 

Fig. 3 Comparison of the electric field transients obtained by electro-optic sampling and by the THz streaking method.

Download Full Size | PPT Slide | PDF

For characterizing the duration of electron wave packets formed by direct photoionization, field-free (Fig. 4(a), 4(b)) and streaked (Fig. 4(c), 4(d)) photoelectron spectra were taken with both detectors at a time delay of 2.8ps where the slope of the vector potential has a maximum. The streaking speed (Eq. (5)) evaluated from Fig. 2 is 48meV/fs. The spectra show photoelectron peaks resulting from the 59th (at about 69eV) and the 61st harmonic (at about 72eV) shifted by the neon 2p binding energy. For an accurate determination of the field-free spectral widths, the peaks were fitted by individual Gaussian functions with a common fitted width parameter, resulting in a FWHM of the 59th harmonic of 1.08eV for both TOFs. After switching on the THz field, the streaked spectra clearly exhibit a broadening (Fig. 4(c), 4(d)). The width of the 59th harmonic was now obtained by utilizing the spectral position, the amplitude and the common width as fit parameters, while the spectral distances between the peaks and their amplitude ratio obtained from the unstreaked spectra were kept constant. The corresponding widths are 1.63eV and 1.75eV for the left and right TOF, respectively. According to Eq. (4), this results in a temporal width of 27fs (for more details of the calculation cf. [8]). However, this value slightly overestimates the actual HHG pulse duration. Since the focused THz beam experiences a Gouy phase shift [14] with respect to the HHG pulse, signal is acquired from slightly different phases along the interaction zone between HHG beam and the gas volume. For an evaluation of this effect, we have used EOS to measure temporal profiles at a distance of one Rayleigh length (=10mm) before and after the focus. Both curves showed a temporal shift of 330fs. Taking into account the arctan behavior of the Gouy phase, this allowed us to estimate the temporal shift within the 0.75mm long interaction zone as 16fs. The measured temporal width represents a convolution of the XUV pulse duration and the temporal broadening due to averaging over a range Gouy phases. Deconvolution yields a corrected value for the XUV pulse duration of τX=(226+4)fs. The ratio in pulse durations between harmonic and fundamental beam is larger than what is typically observed at lower harmonic orders [15, 16]. In contrast to these lower harmonics, however, the order of nonlinearity is close to one for the 59th harmonic [17]. Therefore, the measured pulse duration is in good agreement with the expectation. The different widths of the streaked spectra are due to a small linear chirp of the harmonic beam with a value of c = −(2 ± 2)meV/fs. Here the negative sign for a non-chirped fundamental pulse is attributed to the atomic dipole phase and is consistent with earlier observations [18]. When a negative chirp is applied to the driving laser, this is transferred to the 59th harmonic (Fig. 4(e), 4(f)). For a fundamental pulse with a duration of 35fs, the resulting XUV pulse duration after accounting for the Gouy phase-induced broadening is τX=(315+4)fs. The spectra detected with the two TOFs have clearly different widths from which an increased negative linear chirp rate of c = −(4 ± 2)meV/fs is determined.

 

Fig. 4 Photoelectron spectra measured at the left detector (a) and at the right detector (b) without THz field. The main peak corresponds to the 59th harmonic shifted by the neon 2p binding energy, while the peak on the right side results from the 61st harmonic. When switching on the THz field, the spectra at the left (c) and right (d) detector show a broadening. (e),(f) Introducing a negative chirp to the fundamental laser leads to an increased negative linear chirp of the harmonic pulse. The streaking speed in (c),(d) was 46meV/fs and in (e),(f) it was 48meV/fs.

Download Full Size | PPT Slide | PDF

The temporal resolution of a light-field-driven streak camera is typically defined as the condition where the XUV bandwidth is equal to the broadening induced by the streaking field. When we optimize the laser parameters for a maximum output of THz energy, a streaking speed of 0.1 eV/fs is achieved which corresponds to a temporal resolution of 10fs for a field-free spectral width of 1eV. With the tilted-pulse-front setup the THz energies can further be scaled by using pump pulses with higher energies. In this way it is possible to achieve a time resolution of a few fs.

For a complete reconstruction of the temporal profile including higher orders of chirp, an appropriate reconstruction algorithm known as FROG-CRAB is now widely used [19, 20]. However, the transfer of this technique from NIR streaking to THz streaking is problematic due to several reasons. Although it has been shown that FROG-CRAB is robust against laser shot noise [21], one has to realize that the significance of field fluctuations is dramatically enhanced in the case considered here. While for NIR streaking the maximum energy shift is similar to the photoelectron spectral widths [2], the maximum energy shift for THz streaking is an order of magnitude higher than the corresponding spectral widths. As an example, the fluctuations at the maximum vector potential in Fig. 2 are approximated by 0.07 · 13eV= 0.91eV which leads to a significant broadening of the measured spectra. In addition, the improvement of the FROG-CRAB algorithm due to the redundant information from several NIR oscillation cycles mentioned in [21] is not given for the single-cycle THz pulse considered here. Therefore, we limit the reconstruction of the pulse duration and the linear chirp to one time delay, where the fluctuations are the lowest and the energy shift is small. Here the field fluctuations are carefully accounted for by an increased uncertainty of the streaking speed. An improvement of the THz source is expected to reduce the influence of the fluctuations on the measured streaking trace. This can explicitly be achieved by higher THz frequencies and thus shorter oscillation periods. Such an improvement may possibly allow for an application of the FROG-CRAB algorithm in the future.

5. Conclusion

In conclusion, a completely laser-based terahertz-field-driven streak camera for measuring the duration of femtosecond electron wave packets was presented. We have demonstrated its applicability for sampling the temporal profile of electron wave packets formed from ultrashort XUV pulses by direct photoemission. The results represent a novel way of determining the duration and linear chirp of high-order harmonic pulses. A single-shot capability for characterizing XUV pulses in the nJ range is predicted.

Acknowledgments

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Graduiertenkolleg 1355), the Landesexzellenzinitiative Hamburg and the Joachim Herz Stiftung.

References and links

1. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004). [CrossRef]   [PubMed]  

2. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004). [CrossRef]   [PubMed]  

3. P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008). [CrossRef]   [PubMed]  

4. M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010). [CrossRef]   [PubMed]  

5. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002). [CrossRef]   [PubMed]  

6. M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007). [CrossRef]   [PubMed]  

7. M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011). [CrossRef]   [PubMed]  

8. U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009). [CrossRef]  

9. J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002). [CrossRef]   [PubMed]  

10. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990). [CrossRef]  

11. J. Hebling, G Almási, I. Z. Kozma, and J Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002). [PubMed]  

12. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]  

13. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996). [CrossRef]  

14. C. R. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251 (1890).

15. J. M. Schins, P. Breger, and P. Agostini, “Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics,” J. Opt. Soc. Am. B 13, 197–200 (1996). [CrossRef]  

16. Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999). [CrossRef]  

17. C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993). [CrossRef]   [PubMed]  

18. J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004). [CrossRef]  

19. Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 52, 011401 (2005). [CrossRef]  

20. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006). [CrossRef]   [PubMed]  

21. H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
    [Crossref] [PubMed]
  2. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
    [Crossref] [PubMed]
  3. P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
    [Crossref] [PubMed]
  4. M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
    [Crossref] [PubMed]
  5. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
    [Crossref] [PubMed]
  6. M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
    [Crossref] [PubMed]
  7. M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
    [Crossref] [PubMed]
  8. U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
    [Crossref]
  9. J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
    [Crossref] [PubMed]
  10. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
    [Crossref]
  11. J. Hebling, G Almási, I. Z. Kozma, and J Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
    [PubMed]
  12. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
    [Crossref]
  13. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
    [Crossref]
  14. C. R. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251 (1890).
  15. J. M. Schins, P. Breger, and P. Agostini, “Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics,” J. Opt. Soc. Am. B 13, 197–200 (1996).
    [Crossref]
  16. Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
    [Crossref]
  17. C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
    [Crossref] [PubMed]
  18. J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
    [Crossref]
  19. Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 52, 011401 (2005).
    [Crossref]
  20. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
    [Crossref] [PubMed]
  21. H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
    [Crossref]

2011 (1)

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

2010 (1)

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

2009 (2)

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

2008 (1)

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

2007 (2)

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

2006 (1)

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 52, 011401 (2005).
[Crossref]

2004 (3)

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

2002 (3)

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

J. Hebling, G Almási, I. Z. Kozma, and J Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[PubMed]

1999 (1)

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

1996 (2)

1993 (1)

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

1990 (1)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[Crossref]

1890 (1)

C. R. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251 (1890).

Agostini, P.

Almási, G

Altucci, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Auston, D. H.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[Crossref]

Avaldi, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Azima, A.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

Azzeer, A. M.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Balcou, P.

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Baltuska, A.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

Bammer, F.

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

Benedetti, E.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Biegert, J.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Breger, P.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

J. M. Schins, P. Breger, and P. Agostini, “Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics,” J. Opt. Soc. Am. B 13, 197–200 (1996).
[Crossref]

Budzyn, F.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Burgdörfer, J.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Büttiker, M.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Calegari, F.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Carre, B

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Cavalieri, A. L.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Chang, Z.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Chen, S.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Chini, M.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Cirelli, C.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Corkum, P. B.

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

De Silvestri, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Dörner, R.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Drescher, M.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Eckle, P.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Ernstorfer, R.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Feist, J.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Feng, X.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Fie, M.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Flammini, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Frühling, U.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Gaarde, M. B.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Gagnon, J.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Gebert, T.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Gensch, M.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Gilbertson, S.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Gobert, O.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Goulielmakis, E.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

Gouy, C. R.

C. R. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251 (1890).

Grimm, O.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Hebling, J.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

J. Hebling, G Almási, I. Z. Kozma, and J Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[PubMed]

Heinzmann, U.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Hende, S.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Hentschel, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Hoffmann, M. C.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Hofstetter, M.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Hu, B. B.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[Crossref]

Itatani, J.

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Ivanov, M. Y.

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Johnsson, P.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Kabachnik, N. M.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Kalms, R.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Karpowicz, N.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Keller, U.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Khan, S. D

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Kienberger, R.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Kleineberg, U.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Kling, M. F.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Komninos, Y.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Kompa, K. L.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Korbman, M.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Kornelis, W.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Kozma, I. Z.

Krausz, F.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Krikunova, M.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Kuhl, J

L’Huillier, A.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Larsson, J.

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Lezius, M.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

López-Martens, R.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Mairesse, Y.

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 52, 011401 (2005).
[Crossref]

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Maltezopoulos, T.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

Mashiko, H.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Mauritsson, J.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Mercouris, Th.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Merdji, H.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Meynadier, P.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Monchicourt, P.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Muller, H. G.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Muller, H.-G.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Nagele, S.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Nelson, K. A.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Neppl, S.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Nicolaides, C. A.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Nisoli, M.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Pazourek, R.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Perdrix, M.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

Persson, A.

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Pfeiffer, A. N.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Plnjes, E.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Poletto, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Quéré, F.

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 52, 011401 (2005).
[Crossref]

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Rauschenberger, J.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Rossbach, J.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Salières, P.

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Sansone, G.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Schafer, K. J.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Schins, J. M.

Schlie, M.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

Schröder, H.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Schultze, M.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Schütte, B.

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Scrinzi, A.

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[Crossref]

Stagira, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Starczewski, T.

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Staudte, A.

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

Svanberg, S.

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Uiberacker, M.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Uphues, Th.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Varjú, K.

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Velotta, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Verhoef, A. J.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Villoresi, P.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Vozzi, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Vrakking, M. J. J.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Wahlström, C.-G.

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

Wang, H.

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Wessels, P.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

Westerwalbesloh, Th.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Wieland, M.

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Wu, Q.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

Yakovlev, V.

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

Yakovlev, V. S.

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Yudin, G. L.

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[Crossref]

Appl. Phys. Lett. (3)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

C. R. Acad. Sci. Paris (1)

C. R. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251 (1890).

J. Chem. Phys. (1)

M. Krikunova, T. Maltezopoulos, P. Wessels, M. Schlie, A. Azima, M. Wieland, and M. Drescher, “Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses,” J. Chem. Phys. 134, 024313 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

H. Wang, M. Chini, S. D Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, “Practical issues of retrieving isolated attosecond pulses,” J. Phys. B 42, 134007 (2009).
[Crossref]

Nat. Photonics (1)

U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plnjes, and M. Drescher, “Single-shot terahertz-field-driven X-ray streak camera,” Nat. Photonics 3, 523–528 (2009).
[Crossref]

Nature (3)

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427, 817–821 (2004).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[Crossref] [PubMed]

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hende, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627–632 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (3)

C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, and A. L’Huillier, “High-order harmonic generation in rare gases with an intense short-pulse laser,” Phys. Rev. A 48, 4709–4720 (1993).
[Crossref] [PubMed]

J. Mauritsson, P. Johnsson, R. López-Martens, K. Varjú, W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer, and A. L’Huillier, “Measurement and control of the frequency chirp rate of high-order harmonic pulses,” Phys. Rev. A 70, 021801 (2004).
[Crossref]

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 52, 011401 (2005).
[Crossref]

Phys. Rev. Lett. (2)

Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B Carre, “High harmonic XUV spectral phase interferometry for direct electric-field reconstruction,” Phys. Rev. Lett. 94, 173903 (1999).
[Crossref]

J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).
[Crossref] [PubMed]

Science (4)

P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, “Attosecond ionization and tunneling delay time measurements in helium,” Science 322, 1525–1529 (2008).
[Crossref] [PubMed]

M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup. HHG (blue beam) and THz (red beam) pulses are collinearly focused into the interaction zone which consists of a neon gas jet. Two time-of-flight spectrometers detect the kinetic energies of the generated photoelectrons.
Fig. 2
Fig. 2 Series of neon 2p electron kinetic energy spectra obtained by a delay scan between the ionizing XUV pulse and the THz streaking field (false-color representation) detected at (a) left and (b) right TOF. Each spectrum was normalized to a constant area.
Fig. 3
Fig. 3 Comparison of the electric field transients obtained by electro-optic sampling and by the THz streaking method.
Fig. 4
Fig. 4 Photoelectron spectra measured at the left detector (a) and at the right detector (b) without THz field. The main peak corresponds to the 59 th harmonic shifted by the neon 2p binding energy, while the peak on the right side results from the 61 st harmonic. When switching on the THz field, the spectra at the left (c) and right (d) detector show a broadening. (e),(f) Introducing a negative chirp to the fundamental laser leads to an increased negative linear chirp of the harmonic pulse. The streaking speed in (c),(d) was 46meV/fs and in (e),(f) it was 48meV/fs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ p ( r , t ) = e t E T H z ( r , t ' ) d t ' = e A T H z ( r , t ) ,
Δ W | | ( t ) 2 W 0 m e e A T H z ( t ) ,
E X U V ( t ) = E X 0 e 2 ln 2 ( t / τ X ) 2 e i ( ω 0 t + c t 2 ) ,
σ X s t r e a k = σ X 0 2 + τ X 2 ( s 2 ± 4 c s ) ,
s = ( Δ W | | ) t 2 W 0 m e e E T H z ( t )

Metrics