Abstract

The lateral shifts from a slab of lossy chiral metamaterial are predicted for both perpendicular and parallel components of the reflected field, when the transverse electric (TE)-polarized incident wave is applied. By introducing different chirality parameter, the lateral shifts can be large positive or negative near the pseudo-Brewster angle. It is found that the lateral shifts from the negative chiral slab are affected by the angle of incidence and the chirality parameter. In the presence of inevitable loss of the chiral slab, the enhanced lateral shifts will be decreased, and the pseudo-Brewster angle will disappear correspondingly. For the negative chiral slab with loss which is invisible for the right circularly polarized (RCP) wave, we find that the loss of the chiral slab will lead to the fluctuation of the lateral shift with respect to the thickness of the chiral slab. The validity of the stationary-phase analysis is demonstrated by numerical simulations of a Gaussian-shaped beam.

© 2011 Optical Society of America

1. Introduction

The Goos-Hänchen (GH) effect [1] has been analyzed both theoretically [24] and experimentally [57]. This phenomenon has already been extended to other areas such as acoustics, surface optics, nonlinear optics, and quantum mechanics. Furthermore, with the development of near-field scanning optical microscopy and lithography [8], the GH shift has attracted more and more attention for potential device applications in optical modulations. On the other hand, there exist some other lateral shifts, which are quite different from the GH effect, since the magnitude of the reflection coefficient is dependent on the angle of incidence for the partial reflection. For instance, at an oblique incidence, the lateral shifts were found to be large positive or negative for both reflected and transmitted beams in different media such as dielectric surfaces or slabs [9, 10], metal surfaces [11], dielectric-chiral surface [1215], absorptive media [1618], and so on. Later, Lima et al reported that a normally incident beam reflected from an antiferromagnet can result in a lateral shift too [19].

Recently, the lateral shift associated with metamaterial [2022] is of interest owing to its very unusual properties. For these metamaterials, their permittivity and permeability are both negative. On the other hand, Pendry found that the chiral medium with the Swiss roll structure may also possess negative refraction [23]. After that, chiral metamaterial with negative refraction (or negative chiral metatamaterial) received great interest from both theoretical [24, 25] and experimental views [26, 27]. Since the realistic chiral material is dissipative, in this paper, we would like to investigate the lateral shift of the reflected beam from a chiral metamaterial slab with inherent loss. We demonstrate that these perpendicular and parallel polarized waves can, to the first order, be independently separated, each with its own lateral shifts. As a consequence, the validity of the stationary phase method is proved and further confirmed with the numerical simulation. We predict that the lateral shift near the angle of the pseudo-Brewster dip from such a slab can be large, and both positive and negative lateral shifts are possible. It is also shown that the lateral shift depends on the thickness of the slab, the angle of the incident wave and the constitutive parameters of the negative chiral metameterials. Throughout the paper, only transverse-electric (TE) polarized incident wave is discussed below, and the results for transverse-magnetic (TM) polarized wave can be easily obtained in the same way.

2. Formulation

2.1. Reflection and transmission amplitudes

The configuration for the chiral slab is shown in Fig. 1. We assume that a linearly TE polarized wave is incident at an angle θi upon the surface of a chiral slab with the thickness d. For simplicity, time dependence exp(−iωt) is applied and suppressed. The constitutive relations of the chiral slab are defined as [28]

D=ɛɛ0E+iκɛ0μ0H,B=μμ0Hiκɛ0μ0E,
where κ is the chirality parameter, ε and μ are the relative permittivity and permeability of the chiral medium, respectively (ε0 and μ0 are the permittivity and permeability in vacuum). The electric and magnetic fields of an incident TE wave can be written as
Ei=Eiey=E0eyexp[iki(cosθiz+sinθix)],Hi=ɛ0μ0Ei(cosθiex+sinθiez),
with the wave number ki = k0ω/c. It is known that, an electric or magnetic excitation will produce both the electric and magnetic polarizations in a chiral material simultaneously. As a consequence, the reflected wave must be a combination of both perpendicular and parallel components in order to satisfy the boundary conditions. In our paper, the linearly polarized incident wave is considered, and then we express the reflected wave in terms of the combination of the perpendicular and parallel polarized waves [12, 13, 29]. Then, the electric and magnetic fields of the reflected wave are expressed as,
Er=E0[Rey+R(cosθiexsinθiez)]exp[iki(cosθiz+sinθix)],
Hr=ɛ0μ0E0[Rey+R(cosθiex+sinθiez)]exp[iki(cosθiz+sinθix)],
where R and R|| are, respectively, the reflected coefficients associated with perpendicular and parallel components. Here we note that for linearly polarized incident wave, when the angle of incidence is the Brewster angle, the reflected wave is still linearly polarized but its plane of polarization is rotated with respect to the plane of polarization of the incident wave [28,30,31], which explains the phase difference between perpendicular and parallel components.

On the other hand, there are two propagation modes inside the slab: a right circularly polarized (RCP) wave with the phase velocity ω/k1 and a left circularly polarized (LCP) wave with the phase velocity ω/k2. The wave numbers k1 and k2 have the form k1,2=k0(ɛμ±κ) and the refractive indices of the two eigen-waves are n1,2=ɛμ±κ [28]. It is evident that for κ>ɛμ, which can occur at least at or near the resonant frequency of the permittivity of a chiral medium [24], the refraction index n1ɛμ+κ will still be positive, but the refraction index n2ɛμκ will become negative. Correspondingly, negative refraction will arise for LCP wave. In the chiral slab, there exist four waves in total: two propagating toward the interface z = d and the other two propagating toward the interface z = 0 (see Fig. 1). The electric and magnetic fields of these waves propagating inside the chiral medium toward the interface z = d are written as,

Ec+=Ecr++Ecl+andHc+=iη1(Ecl+Ecr+),
with Ecr+=E0[A1iey+A1(cosθ1exsinθ1ez)]exp[ik1(cosθ1z+sinθ1x)], Ecl+=E0[A2iey+A2(cosθ2exsinθ2ez)]exp[ik2(cosθ2z+sinθ2x)], and η=μ/ɛ.

Similarly, the total electromagnetic fields of the other two waves toward the interface z = 0 are

Ec=Ecr+EclandHc=iη1(EclEcr),
with Ecr=E0[B1iey+B1(cosθ1exsinθ1ez)]exp[ik1(cosθ1z+sinθ1x)], and Ecl=E0[B2iey+B2(cosθ2exsinθ2ez)]exp[ik2(cosθ2z+sinθ2x)]. In addition, in Eqs. (5) and (6), A1(2) and B1(2) are the transmitted coefficients, and θ1(2) denote the refracted angles of the two eigen-waves in the chiral slab, respectively.

Outside the slab (z > d), the total transmitted wave can be expressed as

Et=E0[Tey+T(cosθtexsinθtez)]exp[iki(cosθtz+sinθtx)],
Ht=ɛ0μ0E0[Tey+T(cosθtex+sinθtez)]exp[iki(cosθtz+sinθtx)],
where θt is the transmitted angle, T and T|| are coefficients associated with perpendicular and parallel components of the transmitted wave.

The coefficients R, R||, T, and T|| are determined by matching the boundary conditions at two interfaces z = 0 and z = d, and the following matrix can be obtained,

([Ψ]11[Ψ]12[Ψ]21[Ψ]22)(RRTT)=(iηcosθi+icosθ1iηcosθi+icosθ1iηcosθiicosθ2iηcosθiicosθ2),
where
[Ψ]11=(i(ηcosθicosθ1)cosθi+ηcosθ1i(ηcosθi+cosθ1)cosθi+ηcosθ1)
[Ψ]21=(i(ηcosθi+cosθ2)cosθi+ηcosθ2i(ηcosθi+cosθ2)cosθi+ηcosθ2)
[Ψ]12=(i(ηcosθi+cosθ1)ei(kizk1z)d(cosθiηcosθ1)ei(kizk1z)di(ηcosθi+cosθ1)ei(kiz+k1z)d(cosθiηcosθ1)ei(kiz+k1z)d)
[Ψ]22=(i(ηcosθi+cosθ2)ei(kizk2z)d(cosθiηcosθ2)ei(kizk2z)di(ηcosθicosθ2)ei(kiz+k2z)d(cosθiηcosθ2)ei(kiz+k2z)d).
The analytic solutions to four coefficients can be obtained after some lengthy mathematic manipulations, but the final results are too complicated to be reproduced here.

2.2. Stationary phase method for chiral slab

Next, in order to derive the approximate expressions for the lateral shift from the chiral slab, we adopted the angular spectrum representation approach [32]. We consider the two-dimensional (2D) incident TE wave as a sum of plane waves,

Ei(x,z=0)=eyA(kx)exp(ikxx)dkx,
where A(kx) is the amplitude angular-spectrum distribution. Then, the reflected field admits the form,
Er(x,z=0)=eyR(kx)A(kx)exp(ikxx)dkx[ex1(kxk0)2+ezkxk0]R(kx)A(kx)exp(ikxx)dkx.
For simplicity, let Rj(kx) = ρj(kx)exp[iΦj(kx)] (j = ⊥, ||), where ρj(kx) is the reflection amplitude and Φj(kx) is the phase of the reflectance.

Note that if the incident light beam is well collimated and wide enough, A(kx) should be sharply peaked around kx0. In the case of a wide enough beam, there will only be significant contributions to the integrals of Eq. (15) within a narrow distribution of kx values around kx0. As a consequence, we can expand ρj(kx), Φj(kx), and the quantity for the polarization direction ex1(kx/k0)2+ezkx/k0 as a Taylor series [19]. Keeping terms to the first order of Δkx = kxkx0, we have

ρj(kx)ρj(kx0)+Δkxρj(kx0),Φj(kx)Φj(kx0)+ΔkxΦj(kx0),
and,
ex1(kxk0)2+ezkxk0(ex1(kx0k0)2+ezkx0k0)+Δkx(ex1k02kx02kx0k0+ez1k0)e+Δkxe2.

Substituting Eq. (17) into Eq. (15), we have the perpendicular component (along y−axis) and parallel component (in xz plane) for the electric field of the reflected beam, which can be rewritten as

Er(x,z=0)=eyEr[eEr+e2E2r],
with
E()r(x,z=0)=R()(kx)A(kx)exp(ikxx)dkx,
E2r(x,z=0)=ΔkxR(kx)A(kx)exp(ikxx)dkx.

Substitution of Eq. (16) into Eqs. (19) and (20) gives

E()r(x,z=0)=r()(kx0)A(kx)exp{ikx[x+Φ()(kx0)]}dkx+r()(kx0)(kxkx0)A(kx)exp{ikx[x+Φ()(kx0)]}dkx,
E2r(x,z=0)=r(kx0)(kxkx0)A(kx)exp{ikx[x+Φ(kx0)]}dkx+r(kx0)(kxkx0)2A(kx)exp{ikx[x+Φ(kx0)]}dkx,
with rj(kx0)=ρj(kx0)exp[iΦj(kx0)ikx0Φj(kx0)] and rj(kx0)=ρj(kx0)exp[iΦj(kx0)ikx0Φj(kx0)].

For a Gaussian-shaped incident beam, the electric field of the incident beam has the form Ei(x,z=0)=exp(x2/2wx2+ikx0x), where wx = w0 sec θi, w0 is the beam width at the waist. As a consequence, from Eq. (14), the amplitude angular-spectrum distribution is derived to be A(kx)=wx/(2π)1/2exp[wx2(kxkx0)2/2] [10, 12]. Since we have assumed that the beam is well collimated and wide enough, A(kx) should be a sharply distributed Gaussian function around kx0. By comparing these two terms on the right hand of Eq. (21), it is expected that the first term dominates for a narrow distribution of kx values, and we can ignore the second term as a first approximation. In Fig. 2(a), it is numerically demonstrated that the second term can be regarded as a perturbation to the first term. Similarly, comparing the magnitude of E2r [see Eq. (20) or Eq. (22)] with that of Er [see Eq. (19) or Eq. (21)], one can ignore E2r, as shown in Fig. 2(b). Therefore, as a first approximation, we have,

Er(x,z=0)=eyEreEr=eyr(kx0)A(kx)exp{ikx[x+Φ(kx0)]}dkxer(kx0)A(kx)exp{ikx[x+Φ(kx0)]}dkx.
Note that the integral for the reflected beam E()r is identical to that for the incident beam [Eq. (14)], except that x is replaced by x+Φ()(kx0). This indicates that the center of the peak of the reflected field is given by
x+Φ()(kx0)=0,
and correspondingly, the reflected beam is shifted along the surface of the chiral slab by a distance Δ⊥(||),
Δ()=dΦ()(kx)dkx|kx0.

Here we mention that for chiral materials, the reflected wave will have two polarizations (perpendicular and parallel components) due to the chirality. Fortunately, these two polarized reflected waves can be independently separated, each with its own magnitude and lateral shift. Note that the derivation is for the chiral materials, but it is actually equivalent to the classic expression of stationary phase method [2]. Actually, although Artmann’s formula was derived initially for an isotropic material, it was further successfully used to investigate lateral shifts in antiferromagnet with anisotropic dielectric tensors [19], an anisotropic metamaterial slab [33], and a gyrotropic slab [34].

 figure: Fig. 1

Fig. 1 Schematic diagram of a light beam propagating through the chiral slab placed in free space.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 the magnitude of (a) the first and second components in Er (see Eq. (21)) and (b) Er in Eq. (21) and E2r in Eq. (22) as a function of x. The relevant parameters are ε = 0.64 + 0.01i, μ = 1 + 0.02i, κ = 2, w0 = 20λ, d = 1.5λ, and θi = 50°.

Download Full Size | PPT Slide | PDF

3. Results and discussion

We are now able to present numerical results on the lateral shifts of the chiral slab. Actual chiral materials are usually dissipative in the resonant frequency in which the chirality is significant but has a lossy part. In this connection, the parameters are taken to be ε = 0.64 + 0.01i, μ = 1 + 0.02i, ω = 2π × 10 GHz, and d = 1.5λ [12]. Without loss of generality, we consider two types of chiral slabs: (1) a positive (conventional) chiral slab with κ = 0.4, whose refraction indices of RCP and LCP waves are both positive (Re(n1) = 1.2 and Re(n2) = 0.4); (2) a negative chiral slab with κ = 1.4 whose refraction indices of RCP wave and LCP wave are Re(n1) = 2.2 and Re(n2) = −0.6, respectively. For the two cases above, there are no critical angles for RCP waves, but for LCP waves, there exists the critical angle at θc ≃ 23.6° for a positive chiral slab and θc ≃ 37° for a negative chiral slab. Under such critical situations, only LCP waves in the chiral slab become evanescent waves when the angle of incidence exceeds the critical angle, while the RCP waves will still propagate through the chiral slab. Correspondingly, the angle of incidence is defined as pseudo-critical angle. However, the true total internal reflection will never arise under these parameters.

Figure 3(a) and 3(c) show the lateral shifts of the reflected waves for both perpendicular and parallel components. In addition, the insets show, respectively, the absolute values of perpendicular and parallel reflection coefficients for two cases. It is easily found that there is a dip in each reflection curve, at which |R| reaches the minimum. The corresponding angle of incidence is defined as the pseudo-Brewster angle. Note that the pseudo-Brewster angles for both perpendicular and parallel components are always smaller than the pseudo-critical angles. From Fig. 3(a) and 3(c), we clearly see that the behavior of the lateral shifts for perpendicular and parallel components are similar, and the shifts will be greatly enhanced near the angle of pseudo-Brewster dip. To one’s interest, there exist large negative (positive) lateral shifts near the angle of pseudo-Brewster dip for the positive (negative) chiral slab. The phenomenon can be easily explained in terms of the change of phases, as shown in Fig. 3(b) and 3(d). Near the angle of pseudo-Brewster dip, the phase of reflection experiences a distinct sharp variation, which decreases quickly for the negative chiral slab. As a result, one predicts a large positive lateral shift for a negative chiral slab. On the other hand, for the positive chiral slab, both components have negative lateral shifts near the angle of pseudo-Brewster dip, and then experience small positive shifts over other angles of incidence. We conclude that the lateral shifts of both perpendicular and parallel components can be greatly enhanced near the pseudo-Brewster angle for both the positive and negative chiral slabs, and the dependence of lateral shifts on the angle of incidence θi for a negative chiral slab is opposite to that for a positive chiral slab.

 figure: Fig. 3

Fig. 3 The dependences of the lateral shifts Δ/λ (a,c) and the phases of the reflection coefficients (b,d) for perpendicular (a,b) and parallel components (c,d) on the angle of incidence θi. The insets of (a) and (c) show the absolute values of perpendicular and parallel reflection coefficients, respectively. Solid line and dashed line correspond to positive chiral slab with κ = 0.4 and negative chiral slab with κ = 1.4.

Download Full Size | PPT Slide | PDF

Lateral shifts and the reflection amplitudes of reflected waves for perpendicular and parallel components from a negative chiral slab with a large chirality parameter κ = 2.0 are shown in Fig. 4. In this situation, there are no critical angles for both the RCP and LCP waves. It can be seen that there is only one dip in the perpendicular reflection curve, at which the reflection coefficient reaches a minimal magnitude and the corresponding phase is monotonically increasing as a function of the angle of incidence [see Fig. 4(b)]. As a consequence, one expects that the lateral shift of the reflected perpendicular component has a negative peak near the angle of the dip [see Fig. 4(a)]. In contrast, there are two dips for the parallel component, where the absolute values of the reflection coefficient are very close to zero, and the corresponding phase in the vicinity of these two dips monotonically decreases quickly [see the inset in Fig. 4(b)]. Thus the shifts of the parallel component can be greatly enhanced to be large positive near the pseudo-Brewster angles where the phase decreases. Note that the lateral shift can be one order in magnitude greater than the wavelength. By comparing Fig. 3 to Fig. 4, we find that for the negative chiral slab, as the chirality parameter becomes large, the lateral shifts for the perpendicular component can change from positive to negative, while they are always positive for the parallel component. But the number of the peaks of the enhanced lateral shifts may increase at the angles of the dips, due to the resonant conditions.

 figure: Fig. 4

Fig. 4 (a) Δ/λ and the absolute values of reflection coefficients as a function of θi for a typical negative chiral slab. The inset of (b) is the phase of reflection coefficients.

Download Full Size | PPT Slide | PDF

In what follows, we discuss the lateral shifts as a function of the thickness of the slab under different angles of incidence. First, we consider the lateral shifts of the reflected wave from a negative chiral slab with the same parameters as in Fig. 3. We find that when θi is smaller than the pseudo-critical angle (θc ≃ 37°), the lateral shifts of the reflected perpendicular component could reach large positive or relatively small negative values, but there exists no periodic fluctuation of the lateral shifts with respect to the thickness as shown in Fig. 5(a). Similar phenomenon can be found from the shifts of the parallel component [see Fig. 5(c)]. The large positive enhancement corresponds to the dip of the reflection coefficients, which follows previous discussions. However, when θi is at the critical angle of the LCP wave, as shown in Figs. 5(b) and 5(d), the lateral shifts of both reflected components are always negative and the periodic fluctuation of the lateral shifts arises especially for the parallel component. Moreover, the fluctuations of the lateral shifts of both components first reach a maximally shifted distance, and then become saturated, keeping periodically fluctuating with respect to the thickness of the slab. In addition, if the angle of incidence θi is larger than the pseudo-critical angle and keeps increasing, the lateral shifts with periodic fluctuation under the same thickness of the slab will decrease, as shown in Figs. 5(b) and 5(d).

 figure: Fig. 5

Fig. 5 Δ/λ as a function of d of the negative chiral slab for different θi. Reflected perpendicular component for (a) and (b) and reflected parallel component for (c) and (d).

Download Full Size | PPT Slide | PDF

In order to demonstrate the role of the loss of the chiral slab, we further investigate the lateral shifts of the reflected perpendicular component at different absorption scales. Here we discuss two types of lossy chiral slabs, whose parameters are: (a) μ = 1 + 0.02i, Re(ε) = 0.64, (b) ε = 0.64 + 0.02i, Re(μ) = 1. The other parameters are the same: κ = 1.4, d = 1.5λ. The dependence of the lateral shifts on the angle of incidence is shown in Fig. 6. It can be seen that when the absorption of the chiral slab is weak, for the reflected perpendicular component, the behaviors of its lateral shift with respect to the angle of incidence for different dielectric loss or hysteresis loss are similar. However, the enhanced lateral shifts at the dip of the pseudo-Brewster angle will be always damped when the dielectric loss (see Fig.6(a)) or hysteresis loss (see Fig.6(b)) increases. On the other hand, when the absorption of the chiral slab becomes strong, the pseudo-Brewster angle disappears and the lateral shift becomes larger at close-to-grazing incidence. The insets of Fig. 6 show the reflected coefficients, from which we can also predict that the pseudo-Brewster angle (corresponding to the minimum of reflected coefficients) will disappear with increasing loss of the chiral slab. Here we notice that the high dielectric loss and the high hysteresis loss will lead to the different behaviors of the lateral shifts with respect to the angle of incidence, i.e., the high dielectric loss results in the large positive lateral shift while the high hysteresis loss leads to the large negative lateral shift at close-to-grazing incidence. In addition, for reflected parallel component, the behavior of the lateral shifts in the presence of dielectric loss is analogous to that in the presence of hysteresis loss (not shown here).

 figure: Fig. 6

Fig. 6 The dependence of the lateral shift on the angle of incidence at different absorption scales. (a)μ = 1 + 0.02i, (b)ε = 0.64 + 0.02i.

Download Full Size | PPT Slide | PDF

Apart from the aforementioned negative chiral slab, we also consider the other lossless chiral metamaterial slab, as shown in Fig. 7. Here, we set the parameters of the chiral medium as ε = 0.2, μ = 0.2, and κ = 0.8 in Fig. 7(a) and (b). In this situation, the wave number matching condition k1 = k0 and the wave impedance matching condition η = η0 are satisfied simultaneously. Therefore the RCP wave is transmitted through the chiral medium without either reflection or refraction. Thus, the medium is invisible for RCP wave [35], whereas the LCP wave can be refracted and reflected, or totally reflected from the material. This unusual phenomenon can be physically understood as a destructive interference of electric and magnetic responses, due to the mixing through the chirality parameter. For k2 = −0.6k0, the critical angle for LCP wave is θc = arcsin0.6 ≃ 37°. Therefore, LCP wave is totally reflected with θi > 37° and it is easy to see that both reflected components have the same negative lateral shift. This is due to the fact that the reflected wave only has LCP wave, and the RCP wave contributes to the transmitted wave. Hence the perpendicular and the parallel reflection coefficients have the same absolute values, while their phases are different. We further find the lateral shifts will fluctuate with respect to the thickness of the slab when the angle of incidence is smaller than the critical angle of the LCP wave (θi < θc), while for θiθc, the lateral shifts will vary with the thickness monotonously. We believe that the difference of the behavior of the lateral shifts is caused by the change of the properties of the LCP wave, i.e, the LCP wave changes from the transmitted wave to an evanescent wave. Meanwhile, when the angle of incidence is close to the critical angle of the LCP wave, the lateral shifts are large and increase as the slab thickness increases. If the angle of incidence is greater than θc, the lateral shifts will increase quickly and then gradually approach to an asymptotic negative value with increasing the slab thickness(see Fig. 7(b)). In this connection, the phenomenon that the lateral shifts become saturated as the thickness increases is due to the Hartman effect.

 figure: Fig. 7

Fig. 7 The dependence of the lateral shift on the thickness of an invisible (for RCP wave) chiral slab at different θi.(a,b) lossless chiral slab; (c,d) lossy chiral slab.

Download Full Size | PPT Slide | PDF

Furthermore, in order to show the influence of the absorption of the chiral slab on the lateral shifts, we plot the dependence of the lateral shift on the thickness of a lossy chiral slab for ε = 0.2 + 0.01i, μ = 0.2 + 0.02i, and κ = 0.8, as shown in Fig. 7(c) and 7(d). The results show that: (1) both reflected components almost have the same lateral shifts; (2) the lateral shifts of both reflected components will fluctuate strongly with respect to the thickness of the slab for θi < θc. Moreover, for θi > θc, the larger the angle of incidence is, the stronger the periodic fluctuation becomes along the lossy chiral slab.

In the end, to show the validity of the stationary-phase method, we further perform numerical simulations with a two-dimensional incident Gaussian-shaped light beam. The electric fields ( Er and Er) of the reflected beam are directly determined from Eq. (23). The calculated beam shift can be obtained by finding the location where |Er|z=0 or |Er|z=0 is maximal [10]. Figure 8 shows the simulated data of curves in Fig. 4(a). For comparison, both the numerical and theoretical results are shown in Fig. 8. At w0 = 20λ, the peaks of the numerical shifts are: −4.5λ for the perpendicular reflected field; and 16.5λ (dip I), and 18λ (dip II) for the parallel reflected field. The peaks of the theoretical shifts are about −4.54λ for the perpendicular field and 24.25λ (19.66λ) for dip I (dip II) of the parallel field. It is noted that the discrepancy between theoretical and numerical results is due to the distortion of the reflected beam, especially when the waist of the incident beam is narrow [36]. Further numerical simulation shows that the wider the incident beam is, the smaller the discrepancy is.

 figure: Fig. 8

Fig. 8 Dependence of the lateral shift on the incident angle. The theoretical result is shown by the line; the numerical results (for w0 = 20λ) are shown by scatters, all the other optical parameters are the same as in Fig. 3(a).

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, an investigation on the lateral shifts of both reflected parallel and perpendicular components for the lossy chiral metamaterial slab has been done by using the stationary-phase approach. We show that the lateral shifts of the reflected perpendicular components can be large negative as well as positive near pseudo-Brewster angle, at which |R| reaches a minimum. In addition, at a given incident angle, the dependence of the lateral shifts on the slab thickness for a negative chiral slab has also been studied. It is shown that, when the angle of incidence is at the critical angle of the LCP wave, the lateral shifts of both reflected components oscillate. Along with the increasing thickness of the slab, the shifted distance is increasing first, experiences a maximum value, and then arrive at the saturation (i.e., the periodic fluctuation of the lateral shifts when the slab’s thickness is sufficiently big). Moreover, when the angle of incidence is larger than the critical angle and keeps increasing, the lateral shifts of both reflected components will decrease along with slab’s thickness. In addition, we calculate the lateral shifts of an invisible chiral medium with and without loss. In order to demonstrate the validity of the stationary-phase approach, numerical simulations are made for a Gaussian-shaped beam.

Some other comments are in the following. Though the lossless parameters of the chiral material have been discussed in references [12, 13, 3739], the realistic chiral material is dissipative. Here we take the absorption into account by adding imaginary parts to the parameters (such as ε and μ). Alternatively, one can also adopt the Drude model for ε and μ, and the Condon model for the chirality κ [40], in order to consider the effect of the dispersion within our method. As for the observability of the lateral shift in our paper, the magnitude of the reflectivity from the chiral slab is about 0.001 ∼ 0.02, which is larger than that (10−3) of the semiconductor [41]. Therefore, the lateral shift of the reflected beam near the Brewster angle is also detectable as discussed in Ref. [41]. In this regard, the shift may be determined by finding the spot of the maximum intensity with detectors, since the reflection (although it is weak) is still Gaussian as long as the incident beam is Gaussian with a large beam width. In our case, since the 2D TE incident wave is considered, one only needs to investigate the lateral shift, i.e., we confine ourselves to a 2D problem to focus on the lateral shift. However, for a 3D incident wave on an isotropic material, both lateral and transversal (Imbert-Fedorov) shifts may appear simultaneously [4244]. It would be of great interest to study the Imbert-Fedorov shifts from the chiral metamaterial slab.

Acknowledgments

This work was supported by the Key Project in Science and Technology Innovation Cultivation Program and the plan of Dongwu Scholar, Soochow University.

References and links

1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947). [CrossRef]  

2. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948). [CrossRef]  

3. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964). [CrossRef]  

4. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586–594 (1971). [CrossRef]  

5. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992). [CrossRef]   [PubMed]  

6. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995). [CrossRef]   [PubMed]  

7. B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998). [CrossRef]  

8. A. Madrazo and M. Nieto-Veperinas, “Detection of subwavelength Goos-Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995). [CrossRef]   [PubMed]  

9. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, “Negative and positive lateral shift of a light beam reflected from a grounded slab,” Opt. Lett. 31, 1124–1126 (2006). [CrossRef]   [PubMed]  

10. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003). [CrossRef]   [PubMed]  

11. M. Merano, A. Aiello, C. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007). [CrossRef]   [PubMed]  

12. D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

13. R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

14. F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004). [CrossRef]  

15. W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009). [CrossRef]  

16. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982). [CrossRef]  

17. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993). [CrossRef]   [PubMed]  

18. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009). [CrossRef]   [PubMed]  

19. F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008). [CrossRef]  

20. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002). [CrossRef]  

21. J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002). [CrossRef]  

22. A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003). [CrossRef]  

23. D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004). [CrossRef]   [PubMed]  

24. C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008). [CrossRef]  

25. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007). [CrossRef]  

26. S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef]   [PubMed]  

27. J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009). [CrossRef]  

28. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

29. J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

30. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988). [CrossRef]  

31. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab: errata,” J. Opt. Soc. Am. A 7, 2154–2155 (1990). [CrossRef]  

32. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977). [CrossRef]  

33. M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008). [CrossRef]  

34. H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009). [CrossRef]  

35. Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, “An invisible medium for circularly polarized electromagnetic waves,” Opt. Express 16, 20869–20875 (2008). [CrossRef]   [PubMed]  

36. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004). [CrossRef]  

37. Y. Jin and S. L. He, “Focusing by a slab of chiral medium,” Opt. Express 13, 4974–4979 (2005). [CrossRef]   [PubMed]  

38. Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006). [CrossRef]  

39. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009). [CrossRef]  

40. C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007). [CrossRef]  

41. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002). [CrossRef]  

42. K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007). [CrossRef]  

43. C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007). [CrossRef]  

44. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008), [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
    [Crossref]
  2. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
    [Crossref]
  3. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964).
    [Crossref]
  4. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586–594 (1971).
    [Crossref]
  5. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
    [Crossref] [PubMed]
  6. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
    [Crossref] [PubMed]
  7. B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
    [Crossref]
  8. A. Madrazo and M. Nieto-Veperinas, “Detection of subwavelength Goos-Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995).
    [Crossref] [PubMed]
  9. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, “Negative and positive lateral shift of a light beam reflected from a grounded slab,” Opt. Lett. 31, 1124–1126 (2006).
    [Crossref] [PubMed]
  10. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
    [Crossref] [PubMed]
  11. M. Merano, A. Aiello, C. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007).
    [Crossref] [PubMed]
  12. D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).
  13. R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).
  14. F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
    [Crossref]
  15. W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
    [Crossref]
  16. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
    [Crossref]
  17. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
    [Crossref] [PubMed]
  18. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009).
    [Crossref] [PubMed]
  19. F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
    [Crossref]
  20. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
    [Crossref]
  21. J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
    [Crossref]
  22. A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
    [Crossref]
  23. D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [Crossref] [PubMed]
  24. C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
    [Crossref]
  25. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
    [Crossref]
  26. S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [Crossref] [PubMed]
  27. J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [Crossref]
  28. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).
  29. J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).
  30. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988).
    [Crossref]
  31. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab: errata,” J. Opt. Soc. Am. A 7, 2154–2155 (1990).
    [Crossref]
  32. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
    [Crossref]
  33. M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
    [Crossref]
  34. H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
    [Crossref]
  35. Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, “An invisible medium for circularly polarized electromagnetic waves,” Opt. Express 16, 20869–20875 (2008).
    [Crossref] [PubMed]
  36. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
    [Crossref]
  37. Y. Jin and S. L. He, “Focusing by a slab of chiral medium,” Opt. Express 13, 4974–4979 (2005).
    [Crossref] [PubMed]
  38. Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
    [Crossref]
  39. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
    [Crossref]
  40. C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
    [Crossref]
  41. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002).
    [Crossref]
  42. K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
    [Crossref]
  43. C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
    [Crossref]
  44. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008),
    [Crossref] [PubMed]

2009 (6)

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

2008 (5)

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008),
[Crossref] [PubMed]

Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, “An invisible medium for circularly polarized electromagnetic waves,” Opt. Express 16, 20869–20875 (2008).
[Crossref] [PubMed]

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

2007 (5)

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

M. Merano, A. Aiello, C. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007).
[Crossref] [PubMed]

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

2006 (2)

2005 (1)

2004 (3)

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

2003 (2)

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
[Crossref]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
[Crossref] [PubMed]

2002 (3)

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
[Crossref]

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002).
[Crossref]

1998 (1)

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

1996 (1)

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

1995 (2)

A. Madrazo and M. Nieto-Veperinas, “Detection of subwavelength Goos-Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995).
[Crossref] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

1993 (1)

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

1992 (2)

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

1990 (1)

1988 (1)

1982 (1)

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

1977 (1)

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

1971 (1)

1964 (1)

1948 (1)

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
[Crossref]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

Aiello, A.

Albuquerque, E. L.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Al-Rashed, A. A. R.

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

Artmann, K.

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
[Crossref]

Bassiri, S.

Berman, P. R.

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
[Crossref]

Bliokh, K. Yu.

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Bliokh, Yu. P.

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Bonomo, N. E.

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

Bretenaker, F.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

Burokur, N.

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

Carniglia, C. K.

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

Chan, S. W.

Chen, H.

Chen, R.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Cheng, M.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Cheng, Q.

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
[Crossref]

Costa, J. A. P.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Cui, T. J.

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
[Crossref]

Depine, R. A.

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

Dong, J. F.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

Dong, W. T.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

Dumelow, T.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Dutriaux, L.

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

Eliel, E. R.

Emile, O.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

Engheta, N.

Fan, Y.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Feng, S.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Galstyan, T.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

Gao, L.

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009).
[Crossref] [PubMed]

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

Giles, C. L.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

He, S. L.

Hooft, C. W.

Hoppe, D. J.

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

Horowitz, B. R.

Huang, H.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Jin, Y.

Jost, B. M.

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

Kafesaki, M.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Kitano, M.

Kong, J. A.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Koschny, T.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Lai, H. M.

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
[Crossref]

Le Floch, A.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

Li, C. F.

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
[Crossref] [PubMed]

Li, J. S.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Li, L. W.

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Lima, F.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Lindell, I. V.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

Liu, B.

J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

Liu, N. H.

Lu, X. C.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

Madrazo, A.

Marseille, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

McGuirk, M.

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

Merano, M.

Nakanishi, T.

Nieto-Veperinas, M.

Papas, C. H.

Park, Y. S.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Pendry, D. R.

D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Pfleghaar, E.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

Qiu, C. W.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Rahmat-Samii, Y.

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

Renard, R. H.

Saleh, B. E. A.

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

Sihvola, A. H.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

Soukoulis, C. M.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Sugiyama, K.

Tamayama, Y.

Tamir, T.

Tretyakov, S. A.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

van Exter, M. P.

Viitanen, A. J.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

Wang, F.

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

Wang, L. G.

Wang, N. B.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Wang, Q.

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

Weis, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

Wild, W. J.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

Woerdman, J. P.

Wu, B. I.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Wu, B. K.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Yao, H. Y.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Yeo, S. T.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

Yeo, T. S.

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Zhang, S.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, W. L.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, Y.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Zhao, B.

Zhou, J. F.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Zhu, S. Y.

Zouhdi, S.

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Ann. Phys. (2)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
[Crossref]

Appl. Phys. A (1)

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Electromagnetics (1)

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
[Crossref]

Eur. Phys. J. D (1)

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Europhys. Lett. (1)

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

J. Electromagn. Waves Appl. (1)

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

J. Opt. Soc. Am (1)

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optik (1)

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

Phys. Rev. A (2)

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

Phys. Rev. B (5)

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

Phys. Rev. E (3)

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
[Crossref]

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Phys. Rev. Lett. (6)

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
[Crossref] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Prog. Electromagn. Res., PIER (1)

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

Science (1)

D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Other (2)

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of a light beam propagating through the chiral slab placed in free space.
Fig. 2
Fig. 2 the magnitude of (a) the first and second components in E r (see Eq. (21)) and (b) E r in Eq. (21) and E 2 r in Eq. (22) as a function of x. The relevant parameters are ε = 0.64 + 0.01i, μ = 1 + 0.02i, κ = 2, w0 = 20λ, d = 1.5λ, and θi = 50°.
Fig. 3
Fig. 3 The dependences of the lateral shifts Δ/λ (a,c) and the phases of the reflection coefficients (b,d) for perpendicular (a,b) and parallel components (c,d) on the angle of incidence θi. The insets of (a) and (c) show the absolute values of perpendicular and parallel reflection coefficients, respectively. Solid line and dashed line correspond to positive chiral slab with κ = 0.4 and negative chiral slab with κ = 1.4.
Fig. 4
Fig. 4 (a) Δ/λ and the absolute values of reflection coefficients as a function of θi for a typical negative chiral slab. The inset of (b) is the phase of reflection coefficients.
Fig. 5
Fig. 5 Δ/λ as a function of d of the negative chiral slab for different θi. Reflected perpendicular component for (a) and (b) and reflected parallel component for (c) and (d).
Fig. 6
Fig. 6 The dependence of the lateral shift on the angle of incidence at different absorption scales. (a)μ = 1 + 0.02i, (b)ε = 0.64 + 0.02i.
Fig. 7
Fig. 7 The dependence of the lateral shift on the thickness of an invisible (for RCP wave) chiral slab at different θi.(a,b) lossless chiral slab; (c,d) lossy chiral slab.
Fig. 8
Fig. 8 Dependence of the lateral shift on the incident angle. The theoretical result is shown by the line; the numerical results (for w0 = 20λ) are shown by scatters, all the other optical parameters are the same as in Fig. 3(a).

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

D = ɛ ɛ 0 E + i κ ɛ 0 μ 0 H , B = μ μ 0 H i κ ɛ 0 μ 0 E ,
E i = E i e y = E 0 e y exp [ i k i ( cos θ i z + sin θ i x ) ] , H i = ɛ 0 μ 0 E i ( cos θ i e x + sin θ i e z ) ,
E r = E 0 [ R e y + R ( cos θ i e x sin θ i e z ) ] exp [ i k i ( cos θ i z + sin θ i x ) ] ,
H r = ɛ 0 μ 0 E 0 [ R e y + R ( cos θ i e x + sin θ i e z ) ] exp [ i k i ( cos θ i z + sin θ i x ) ] ,
E c + = E cr + + E cl + and H c + = i η 1 ( E cl + E cr + ) ,
E c = E cr + E cl and H c = i η 1 ( E cl E cr ) ,
E t = E 0 [ T e y + T ( cos θ t e x sin θ t e z ) ] exp [ i k i ( cos θ t z + sin θ t x ) ] ,
H t = ɛ 0 μ 0 E 0 [ T e y + T ( cos θ t e x + sin θ t e z ) ] exp [ i k i ( cos θ t z + sin θ t x ) ] ,
( [ Ψ ] 11 [ Ψ ] 12 [ Ψ ] 21 [ Ψ ] 22 ) ( R R T T ) = ( i η cos θ i + i cos θ 1 i η cos θ i + i cos θ 1 i η cos θ i i cos θ 2 i η cos θ i i cos θ 2 ) ,
[ Ψ ] 11 = ( i ( η cos θ i cos θ 1 ) cos θ i + η cos θ 1 i ( η cos θ i + cos θ 1 ) cos θ i + η cos θ 1 )
[ Ψ ] 21 = ( i ( η cos θ i + cos θ 2 ) cos θ i + η cos θ 2 i ( η cos θ i + cos θ 2 ) cos θ i + η cos θ 2 )
[ Ψ ] 12 = ( i ( η cos θ i + cos θ 1 ) e i ( k i z k 1 z ) d ( cos θ i η cos θ 1 ) e i ( k i z k 1 z ) d i ( η cos θ i + cos θ 1 ) e i ( k i z + k 1 z ) d ( cos θ i η cos θ 1 ) e i ( k i z + k 1 z ) d )
[ Ψ ] 22 = ( i ( η cos θ i + cos θ 2 ) e i ( k i z k 2 z ) d ( cos θ i η cos θ 2 ) e i ( k i z k 2 z ) d i ( η cos θ i cos θ 2 ) e i ( k i z + k 2 z ) d ( cos θ i η cos θ 2 ) e i ( k i z + k 2 z ) d ) .
E i ( x , z = 0 ) = e y A ( k x ) exp ( i k x x ) d k x ,
E r ( x , z = 0 ) = e y R ( k x ) A ( k x ) exp ( i k x x ) d k x [ e x 1 ( k x k 0 ) 2 + e z k x k 0 ] R ( k x ) A ( k x ) exp ( i k x x ) d k x .
ρ j ( k x ) ρ j ( k x 0 ) + Δ k x ρ j ( k x 0 ) , Φ j ( k x ) Φ j ( k x 0 ) + Δ k x Φ j ( k x 0 ) ,
e x 1 ( k x k 0 ) 2 + e z k x k 0 ( e x 1 ( k x 0 k 0 ) 2 + e z k x 0 k 0 ) + Δ k x ( e x 1 k 0 2 k x 0 2 k x 0 k 0 + e z 1 k 0 ) e + Δ k x e 2 .
E r ( x , z = 0 ) = e y E r [ e E r + e 2 E 2 r ] ,
E ( ) r ( x , z = 0 ) = R ( ) ( k x ) A ( k x ) exp ( i k x x ) d k x ,
E 2 r ( x , z = 0 ) = Δ k x R ( k x ) A ( k x ) exp ( i k x x ) d k x .
E ( ) r ( x , z = 0 ) = r ( ) ( k x 0 ) A ( k x ) exp { i k x [ x + Φ ( ) ( k x 0 ) ] } d k x + r ( ) ( k x 0 ) ( k x k x 0 ) A ( k x ) exp { i k x [ x + Φ ( ) ( k x 0 ) ] } d k x ,
E 2 r ( x , z = 0 ) = r ( k x 0 ) ( k x k x 0 ) A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x + r ( k x 0 ) ( k x k x 0 ) 2 A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x ,
E r ( x , z = 0 ) = e y E r e E r = e y r ( k x 0 ) A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x e r ( k x 0 ) A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x .
x + Φ ( ) ( k x 0 ) = 0 ,
Δ ( ) = d Φ ( ) ( k x ) d k x | k x 0 .

Metrics