Abstract

This paper studies the relation between photoexcitation of a single-walled carbon nanotube (SWNT) based device, and its THz output power in the context of THz photoconductive (PC) switching and THz photomixing. A detailed approach of calculating output THz power for such a device describes the effect of each parameter on the performance of the THz PC switch and highlights the design dependent achievable limits. A numerical assessment, with typical values for each parameter, shows that–subject to thermal stability of the device–SWNT based PC switch can improve the output power by almost two orders of magnitudes compared to conventional materials such as LT-GaAs.

© 2011 OSA

1. Introduction

Since the initial success of Auston et al with photoconductive switches (PC switches) in 1983, there has been an increasing demand for terahertz (THz) sources. Many approaches for generation of coherent THz radiation have been proposed so far, each having its own advantages and disadvantages [1,2]. Among alternatives, THz PC switches have received considerable attention, mostly due to wide frequency tunability range, fabrication simplicity and recent advancement of ultrafast pulse lasers [38]. Different types of THz photoconductive switches have been developed in recent decades mostly by the use of fast semiconductor materials such as low temperature grown GaAs (LT-GaAs), LT-InGaAs and more recently GaAsBi. These materials are used as the base material that feeds an antenna structure with the photocurrent (Fig. 1(a) ) [38]. THz PC switches can also work in continuous wave mode (CW mode) as THz photomixers, offering more flexibility in different applications. However, low output power (less than 10µW) for PC switches and photomixers has been a major challenge, leaving these THz sources as inefficient choices for many applications [4,7,8].

 

Fig. 1 (a) Illustration of optical excitation of a THz photoconductive switch that has a center fed dipole antenna structure. (b) A PC switch made on a thin SiO2 oxide layer grown on a Si wafer. The gap is filled with aligned SWNTs and the antenna pattern is fabricated similar to conventional PC switches through common lithography processes (c) Block diagram of different steps of the analysis that links input laser excitation power and output THz emitted power.

Download Full Size | PPT Slide | PDF

Nanomaterials —especially carbon nanotubes (CNT) and graphene— offer a set of exceptional properties that are potentially suitable for more efficient THz PC switches and photomixers [810]. This includes both using these materials as high impedance waveguides in the antenna structure and as a high mobility, high absorption, base material in the antenna gap (Fig. 1(b)) [810].

In both cases, increase in output power is anticipated, based on primary estimations [8,10]. However, there has been no design guidance for fabrication of such devices. So the effect of different parameters, such as tube alignment, carrier lifetime, exciton-exciton annihilation rate and contact resistance on the performance of such devices remains questionable. In order to choose a design path, the dynamics of a PC switch based on CNT material should be addressed thoroughly and that is the main focus of this paper.

In this paper, we present a theoretical analysis that links the input optical pump excitation power and the output THz power (Fig. 1(c)). The first step in the link deals with fast free photocarrier dynamics of the single-walled carbon nanotube (SWNT) films. The second step is to model the photoconductivity based on the photocarrier dynamics from the first step. Finally, the dynamics of the metallic antenna structure and equivalent circuit model are engaged. The purpose is to address the effect of important parameters and highlight the limits and behaviors of each one on the THz PC switching process. This procedure then can be further modified for any specific desired antenna and gap structure.

2. Conversion of input power to free photocarriers in SWNT film

The connection between input power and free photocarriers in the SWNT film is found in two steps. First, the initial absorbed photon density is calculated and then, the dynamics of the excitons and photocarriers are considered in the film. The initial absorbed photon density is expressed by:

nabsη(ν)0Tpi(t)dthνV,
where pi(t)is the illuminating pulsed-laser power with repetition rate of 1/T. In the denominator, hνis the energy of each photon with frequency ν, and V is the volume of the material in which the photons are absorbed. The function η(ν) takes values between 0 and 1, depending on the optical density and quantum efficiency of SWNT film [11,12]. These parameters depend on CNT types present in the film, alignment of the tubes with the direction of the input light polarization, and filling factor of the CNT bundles. In the case of continuous wave illumination, the integration in Eq. (1) can be reduced to average power per second that will result in average absorbed photon density. Equation (1) is essentially the ratio of number of incident photons to the volume of the sample times the quantum efficiency. This equation assumes a linear relation between input power amplitude and absorbed photon density at a given frequency, thus slight variations of quantum efficiency with input power amplitude is neglected for simplicity [12,13]. If a wide, non-uniform frequency spectrum is assumed for input power (pi(t)pi(t,ν)), the right hand side of Eq. (1) can be integrated over the total frequency range.

The conversion of the input light into photocurrent in the THz spectrum range is related to fast photocarrier dynamics of the SWNT film. This is different from previously measured photocurrents for SWNT films under infrared and visible illumination [1416]. The latter is mainly considered for solar cell applications and is described by drift-diffusion equations that are proper for lower frequency dynamics [17,18]. Experimental studies on fast photoconductivity of CNT films have confirmed that given the initial absorbed photon densitynabs, the fast carrier dynamics can be described by a set of joint continuity equations between exciton density function ne(t) and total photogenerated carrier density n(t) as in Eq. (2) [19].

dne(t)dt=γEEne2(t)γCCne(t),ne(0)=nabs;dn(t)dt=γCCne(t)γdn(t),n(0)=0.

In this equation γEE is exciton-exciton annihilation rate, γCCis the carrier generation rate by exciton dissociation, andγdis the carrier decay rate equal to the reciprocal of the carrier life time τ [20]. In Eq. (2), n(t) itself can be written as sum of free (nf(t)) and localized (n(t)-nf(t)) photocarrier densities; however, the equation holds regardless of the nature of the total photocarrier density. In the boundary conditions of Eq. (2) the initial exciton density is equated to the initial absorbed photon density; therefore, it is implicitly assumed that each absorbed photon immediately generates an exciton in the material. Also it is further assumed that excitons don’t decay during the period of integration (0 to T) in Eq. (1). It is noteworthy that this mathematical assumption holds in pulsed excitation because p(t) is typically nonzero only for a very short period of time (from 0 to pulse width, which is typically less than 200fs) and the excitons will enter the carrier dynamics (Eq. (2)) immediately after the pulse have been absorbed by the material. In other words, for pulsed excitation the exciton decay is ignored in the small period of excitation itself, however, for continuous wave excitation a proper period of integration should be considered in Eq. (1) so that ne(0) can be fairly equated to nabs in Eq. (2). Equation (2) can be solved explicitly, and the result is in the form of a hypergeometric function 2F1 ;

n(t)=γCC2[k2γCC2F21(1,γdγCC,1+γdγCC,eγCC(t+k1)γEE)γEEγd],
where,
       k1=ln(γEE+γCC/nabs)γCC,            and      k2=γCC2F21(1,γdγCC,1+γdγCC,eγCC×k1γEE)γEEγd.
Since the conversion of absorbed photons to excitons is assumed to be instantaneous on the femtosecond time scales, the results of Eq. (2) can be considered as an approximation of the pulse response of the material to nabsδ(t). Therefore, the response to the Gaussian pulse would be roughly (due to presence of nonlinearity between nabs and n(t)) estimated by the convolution of the n(t) with the Gaussian profile of input power (inset graph in Fig. 2(a) ). This estimate matches the previous experimental measurement of photocarrier density both in profile and scale [19].

 

Fig. 2 (a) Peak total photocarrier density as a function of excitation pulse duration and carrier decay rate, γd (carrier life time, τ=1/γd). The inset graph depicts the carrier density as a function of time (optical excitation pulse duration = 100fs, nabs = 1019 cm−3 and decay rate = 1.23 ps−1). (b) Peak total photocarrier density as a function of nabs. The inset graph shows the behavior of the same function within allowable carrier life time of SWNT.

Download Full Size | PPT Slide | PDF

As it will be seen in sections 3 and 4, two key parameters of the carrier density function are its peak value and its pulse width (bandwidth). Both of these parameters are strongly influenced by excitation profile and the other rate parameters involved in Eq. (3). A typical set of experimental values, for randomly deposited SWNT films, is mentioned in Table 1 [1921].

Tables Icon

Table 1. A Typical Set of Experimental Values for Rate Parameters in Eq. (2)

Figure 2 shows the influence of nabs and excitation pulse width on the peak total number of photocarriers.

As it can be seen in Fig. 2(a), the peak photocarrier density curve has a knee after which the peak n(t) falls with exponential behavior. The location of the knee is directly influenced by carrier lifetime. For example, if a reduction to 90% of the maximum n(t) is allowed in a design, based on Fig. 2(a), the maximum of allowable input pulse width is increased from 0.26 ps to 4.42 ps with a decrease of carrier decay rate from 3.19 ps−1 to 0.03 ps−1. Care must be taken when using this graph in its lower limits, as the physics of the material excitation can change for pulse width less than 20fs range. The curves in Fig. 2(a) are likely to roll off on the left hand side as well [22,23]. Also, the saturation of peak n(t) in higher absorbed carrier densities is captured with Eqs. (3) and (4), as shown in Fig. 2(b). This is consistent with the experimental measurement of photocarriers reported in [19]. The inset graph in Fig. 2(b) reveals that the variation of carrier lifetime has an exponential dependence for values less than 3 ps. The peak photocarrier density, however, enters a saturation region immediately after this value, and thus further increase of carrier lifetime will no longer have a significant contribution.

It should be further emphasized that unlike the case of CW THz photomixing where a short carrier lifetime (less than 2ps) is vital to deepen the THz photoconductivity modulation of the material in the gap, short carrier lifetime is not a necessity for THz PC switching. This is due to the pulsed nature of THz PC switching and the fact that the pulses are well distanced in time relative to carrier lifetime. In THz PC switching the THz components of the microantenna feed current are generated mainly by the initial sharp rise in the photocarrier density as seen in the inset graph of Fig. 2(a). Consequently, the smoother roll-off of photocarrier density that is affected by the carrier lifetime does not induce THz components in the current. In THz PC switching the carrier lifetime affects the peak photocarrier density as seen in the inset graph of Fig. 2(b) and the peak photocarrier density can affect the output THz power as it will be explained in the rest of this study.

3. Photocarriers conversion to photoconductivity in SWCNT film

The calculation of photoconductivity of a SWNT film is a challenging problem. It can be viewed from a diverse range of perspectives, varying from non-equilibrium ab initio simulations [24] and consideration of Luttinger liquid behavior for individual CNTs [25] to use of an equivalent drude model for the entire sample [26]. Other than free photocarrier density that was calculated in the previous section, there are a considerable number of other parameters that can affect the photoconductivity of SWNT film. In order to focus this study, we will determine the anticipated range based on modified Drude-Smith (DS) model. Different fabrication conditions are considered, ranging from the idealistic fabrication condition of perfectly aligned, perfectly purified to totally random and partially purified cases. The DS model has given fair results for the study of ultrafast conductivity of varieties of nanomaterials [19,27,28]. In general the photoconductivity can be calculated via the Drude-Smith model as [27]

σphoto(ω)=μnfe(1iωτs)(1ξ1iωτs)+iμ(nnf)eωτs(ω2ωl2iωγl).
In this equation μ is the mobility of the material, nf is the free photocarrier density, e is the electron charge, ω is the frequency of the voltage applied to the material, ωlis the Lorentzian frequency, γl is the Lorentzian momentum rate, τs is the average carrier scattering time, and ξ is a constant between 0 and 1 that indicates the photocarrier localization level. The second Lorentzian term is introduced for generality. This term is for localized carrier density that typically constitutes a small fraction of total photocarrier density (n-nf<0.3n). The proportion of localized to free photocarriers can be obtained through Time-Resolved THz Spectroscopy (TRTS) and does not play a significant role in Eq. (2). However, this proportion can affect the photoconductivity as explained by DS formula in Eq. (5) [19]. For the chopping frequency range of THz heterodyne systems (ω typically less than 1MHz for the bias voltage of the emitter) the second term is negligible and can be ignored. This term, however, can play an important role in the receiver PC switch, where the THz received field also contributes to THz modulation of conductance and photoconductance. As mentioned previously in section 2, n and nf are both functions of time (inset graph of Fig. 2(a)). Consequently, σphoto(ω)is also a function of time. The time variable, t, is omitted from Eq. (5) for simplicity. It is this temporal variation of photocarrier density that contains THz components and thus modulates the antenna feed current with THz components through DC or low-frequency bias voltage applied to the gap of THz emitting PC switch.

The previously reported value ranges and dimensions of these parameters are given in Table 2 . These values are experimentally justified in previous studies [19,2931].

Tables Icon

Table 2. Previously Reported Values for Drude Smith Modeling of CNT Films

For the case of a perfectly aligned, perfectly purified CNT film, values of mobility, localization constant, and percentage of free photocarriers are chosen within the range from Table 2 so that the conductivity is maximized. In a real case, however, parameters such as carrier lifetime, carrier mobility, electrical coupling and alignment with the applied field, etc., can be different for each CNT in the film. Therefore, a Monte Carlo (MC) integration method should be used for a more realistic result [32]. This integration is based on Eq. (5) and is presented in Eq. (6) for qth iteration of calculation.

σphotoq(ω)=j=1Jk=1Kμjknfjke(1imωμjk/e)(1ξ1imωμjk/e).
In Eq. (6) m is the average effective mass of electrons.

The MC integration is performed by iteratively generating the initial distribution of the photocarriers. This distribution is based on a 3D probability density function with a 2D Gaussian (normal) distribution cross section and an exponential distribution along the radiation axis. This represents an illumination with Gaussian beam, and a material with Beer-Lambert absorption behavior [33]. In each iteration, the simulation bins the carriers into J × K cells along the gap (Fig. 3(a) ), applies randomly generated parameters to each cell, and does an overall summation. The outcomes of Q iterations are then averaged to give the final result.

 

Fig. 3 (a) An illustration of binning process in MC calculation of conductivity in a partially aligned SWNT film. Each cell is a rectangular cuboid extending along the gap. (b) SEM image of a typical dip and slip deposition method results for s-SWNTs on a SiO2 substrate.

Download Full Size | PPT Slide | PDF

There have been many different reports on mobility of CNTs in semiconducting SWNT samples [24,30,31]. Based on Eq. (5), it is found that the conductivity is approximately linearly affected by the mobility at lower frequencies (f<1MHz). Here the mobility itself is assumed to be affected by alignment of CNTs with the applied field and the local carrier density of the bin ρjk as below [30]:

μjk=(0.1+0.9u1)(10.99ρjkρmax)cos(15°×u2).

In Eq. (7), u1 and u2 are two independent random variables, sampled from a uniform distribution between zero and one, and mobility has units of m2/Vs. ρmax is the maximum local carrier density in the total volume. Also, the average effective mass is affected by local carrier density (mjk1(185ρjk)me1) as reported in [30]. An angular deviation of almost 15° is consistent with our observation under scanning electron microscope (SEM) (Fig. 3(b)). This alignment is realizable via the slip-stick method [34]. Alignment is assumed to affect the mobility so that the conductance can be approximated with simple classical formulation without concerns of CNTs directional conductance [35] (section 4).

Figure 4 depicts the peak photoconductance, so each point is the peak of a time varying photoconductance that has the same temporal profile as n(t) in the inset graph of Fig. 2(a).

 

Fig. 4 Photoconductivity for three cases of: perfectly aligned and purified, partially aligned and purified, and randomly deposited and partially purified s-SWNT.

Download Full Size | PPT Slide | PDF

The lower limit (blue dotted line) is based on the random alignment and experimental verification in [19]. The higher limit shown with dotted red line is based on the experimental semiconductor SWNT mobility measurement of 10 m2/Vs reported in [30,31]. The MC integration result agrees closely with the DS model with mobility of 0.55 m2/Vs for lower carrier concentrations. The inset graph in Fig. 4 shows a close-up of the extra photoconductivity saturation effect due to mobility reduction with carrier density increase. This saturation is only due to phonon scattering effects, although further defects can also cause such behavior [30].

4. Modeling the photoconductance effect on output power

For both PC switches and THz photomixers the last step of the analysis that connects the input power to the output THz power is the photoconductance, which appears in the equivalent circuit model (Fig. 5 ).

 

Fig. 5 Schematic of the circuit model for the PC switch with s-SWNT in the gap. VB is the DC bias voltage, RL is the antenna resistance,Vc is the contact voltage, Rc and cʹ are contact resistance and capacitance, and C is the capacitance of the gap.

Download Full Size | PPT Slide | PDF

Unlike two previous steps, this step is not affected by the physics of the material, but it is rather affected by the design of the electrodes and fabrication of the antenna itself. The effects of antenna structure and contact fabrication are some widely studied topics both in PC switches and in CNT film research [3639]. We address the dynamics, rather than proposing an optimized design by focusing on parameters that affect and the output power. The design of the gap can affect the conductance; assuming the gap has dimensions of x, y, z depicted in Fig. 3(a), then the conductance can be calculated by classical definition of conductanceG(t)=(σdark+σphoto(t))yz/x. This is the average conductance in the gap, since the misalignment and directional conductivity of CNTs [35] have already been considered in calculation of photoconductance.

Based on the equivalent circuit model in Fig. 5, the voltage V across both the time varying conductance G(t) and the contacts is given by the solution to the following set of coupled, first-order inhomogeneous linear differential equations;

dVdt+(1+RLG(t))RLCVVB+2RLG(t)VCRLC=0,    with          V(0)=(2RC+G1(0))VB2RC+G1(0)+RL,dVCdt+(1+2RCG(t)cRC)VCG(t)cV=0,  with     VC(0)=RCVB2RC+G1(0)+RL.
The parameters in this formula are explained in Fig. 5. Unlike THz photomixers, where two lasers are beating together and the circuit model can be simplified into steady state sinusoidal form [6,7], for a PC switch such simplification is not possible. Contact resistances cannot be ignored as in LT-GaAs model [7]. Contact resistance values can vary significantly, depending on the electrode material and fabrication method; this is a widely studied topic for CNTs in a gap [38,39]. It is very likely that in higher frequencies a shunt capacitance dominates the contact behavior. This capacitance models the portion of CNTs that do not reach the contact and thus couple capacitively [3840]. Considering the hypergeometric behavior embedded in conductivity and thus conductance, the value of V(t) cannot be expressed explicitly. Here, we have used the numerical Euler method with 10 fs step sizes to estimate V(t).

The output THz power can be calculated directly from the voltage V(t) and the Kirchoff voltage law in the main loop of the circuit as:

PTHz(t)=(VBV(t))2(VBV(0))2RL.

Since carrier density is a linear function of input power as shown in Eq. (1), the analytic link between input power and output THz power, illustrated in Fig. 1(c), is completed at this point.

As an example, consider a design with typical gap dimensions of x = 5 µm, y = 5 µm and z = 100 nm; a common set of values for the parameters in Eq. (8) and Eq. (1) are assumed as follow: VB = 36V [7,38,39], RL≈30Ω [6,7], C≈10fF [6,7], cʹ≈100fF [40], Rc≈20kΩ [40,41], G0≈2.5µΩ−1 [41], η(ν)=η = 0.1 [12], pulse duration of 70fs, repetition rate = 76MHz, and the illumination wavelength of 1030nm. Using these values (some estimated relative to gap dimensions) and the photoconductivity values of Fig. 4, the THz output power can be calculated as a function of excitation power. In this calculation, nabs is converted to average power with means of Eq. (1) and consideration of repetition rate of the excitation laser. As can be seen in Fig. 6 , the average output power for CNT is higher than GaBiAs PC switches [42], LT-GaAs PC switches and LT-GaAs photomixers [4244]. Previous work reports a few microwatts of output THz power for GaBiAs, hundreds of nanowatts for LT-GaAs PC switches and tens of nanowatts for LT-GaAs photomixers, biased with the same voltage (36V) and excited with incident power of 10 to 30 mW. At 20mW of input power, the MC results for CNT’s THz output power show 66 fold improvement relative to GaBiAs and 95 fold increase relative to LT-GaAs PC switches. Due to lower efficiency in continuous wave photomixing, the average output power for the LT-GaAs photomixer hardly shows up on the scale; it is lower than the CNT output power by almost 3 to 4 orders of magnitude [44].

 

Fig. 6 Emitted average THz power vs average input excitation power. CNT curves are based on the conductivity values in Fig. 4. The GaBiAs PC switch and GaAs based photomixer output powers are inserted in 10, 20 and 30 mW of excitation power for comparison [4244].

Download Full Size | PPT Slide | PDF

Figure 6 reveals that GaBiAs and LT-GaAs PC switches perform better than randomly aligned and partially purified CNTs; the case that we have chosen as lower limit condition (blue dotted line in Fig. 6). Improvement in alignment and purification boosts the CNT THz power to around 103µW, calculated based on MC results for photoconductivity; the output power is then limited by the saturation effect induced by high carrier density and circuit dynamics at around 561µW in 36.6mW of input power. Figure 6 shows that curves for higher conductivity are distorted by circuit dynamics, and as a result the power reaches saturation for lower carrier densities compared to the conductivity in Fig. 4. This is the direct result of the nonlinear relation between these two parameters. Although SWNT films are well known for high thermal conductance [45], it must be considered that the experimental validation of this increase in THz power is also subject to the thermal stability of the device.

This specific example shows the emitted THz power range for the full spectrum of the pulse. Further dynamics of the output power relative to different parameters, however, can only be found by sweeping each parameter in the solution of Eq. (8). This is necessary, since each parameter can affect both power level and bandwidth. Via this method, it is found that the peak power changes approximately quadratically with VB. This is consistent with previous models for fast semiconductor cases [6,7]. Also, the dynamics of the output power with variation of each parameter in Eq. (8) is presented in Fig. 7 .

 

Fig. 7 The dynamics of output THz power with: (a) antenna resistance, RL (b) CNT to metal plate contance resistance, Rc (c) contance capacitace, cʹ (d) gap capacitance, C (e) photoconductance, Gphoto (f) dark conductance, G0 .

Download Full Size | PPT Slide | PDF

Based on Fig. 7(a), PTHz has a maximum in certain value of RL. Increasing RL widens the pulse and thus reduces the bandwidth. This suggests that increase of RL might be desired up to a certain limit (here 500Ω) with trade off for bandwidth of the emitted THz pulse. Figure 7(b) shows the exponential decrease of power with increase in contact resistance. This exponential decrease is the result of voltage drop on the contacts, and also, it depends on the relative value of contact capacitance and G0. The dependence of PTHz on contact capacitance can be of interest for cases in which a capacitive coupling mechanism is unavoidable due to difficulties in fabrication of low resistance contacts [3841]. This can be the case when the gap is wider than the average length of CNTs in the film. It is found that with variation of contact capacitance, the power changes between two constant values with an exponential transition (Fig. 7(c)). These two lower level and higher level powers are reached when cʹ impedance is considered a short circuit or open circuit compared to Rc. Additionally, it is seen that the higher value of cʹ decreases the bandwidth; this is highlighted with dashed orange line in Fig. 7(c). Such increase of the pulse bandwidth is expected based on circuit theory, and the low-pass behavior of a capacitive contact. The gap capacitance C can also play a similar role. It is seen that by increasing the gap capacitance, the bandwidth and amplitude of the output THz power is dramatically reduced (Fig. 7(d)). This can be a significant factor in the design of the PC switch structure, sinceC=εfilmyz/x, whereεfilm is the average permittivity of the CNT film placed in the gap.

The photoconductance (Gphoto) and dark conductance (G0) are also affected by the geometry of the gap. The variation of these two parameters also affects the terahertz power. As can be seen in Figs. 7(e) and 7(f), the power has a non-monotonic behavior with variations of G0, while it increases exponentially with initial increase in Gphoto and then saturates at higher values. The variation of Gphoto in its typical µΩ−1 range is too small to have a significant effect on the output pulse bandwidth.

Finally, it is worthwhile to mention that the circuit dynamics presented here can also be applied to the photomixing case in which G(t) is changed in Eq. (8) with a sinusoidal function of time.

6. Conclusion

Based on exceptional properties of SWNTs such as high mobility (up to 10 m2.v−1s−1) [2931], high thermal conductance [45], and high absorption in infrared region [33], SWNTs were previously proposed as an attractive material for efficient THz PC switching and photomixing [10,46]. Through this study, we established a theoretical link between the input excitation power on a PC switch made by a SWNT film as semiconducting material and its output THz power. We addressed the effect of each parameter. Based on the fast photocarrier dynamics of the SWNT nanomaterial, it was found that the photocarrier density temporal profile can be expressed as a hypergeometric function. The effect of key parameters such as mobility, carrier lifetime, pulse width, and exciton-exciton annihilation rate were explicitly addressed in this function. The upper and lower limits of the photoconductivity were calculated, based on the Drude-Smith theory, and were compared with the average expected value, determined using Monte Carlo integration. Finally, the dependence of the emitted THz power with variation of different PC switch design parameters such as: contact impedance, dark resistance, and antenna resistance was explored. We found that higher mobility in highly purified and aligned SWNTs can increase the THz power. The power may also be increased by other desired parameters such as smaller contact resistance and smaller gap capacitance for the microantenna. Based on a numerical example with typical values for different parameters and assumption of thermal stability of the device, approximately 2 orders of magnitude increase in CNT THz power are anticipated compared to conventional GaBiAs and LT-GaAs based PC switches.

References and links

1. D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983). [CrossRef]  

2. T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004). [CrossRef]  

3. S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005). [CrossRef]  

4. V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010). [CrossRef]  

5. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006). [CrossRef]  

6. J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010). [CrossRef]  

7. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993). [CrossRef]  

8. M. J. Hagmann, “Possibility of generating terahertz radiation by photomixing with clusters of carbon nanotubes,” J. Vac. Sci. Technol. B 26(2), 794 (2008). [CrossRef]  

9. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010). [CrossRef]  

10. B. Heshmat, H. Pahlevaninezhad, T. E. Darcie, and C. Papadopoulos, “Evaluation of carbon nanotubes for THz photomixing,” IEEE Radar Conference (IEEE, 2010), pp. 1176–1179.

11. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006). [CrossRef]   [PubMed]  

12. D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005). [CrossRef]   [PubMed]  

13. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003). [CrossRef]  

14. A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004). [CrossRef]  

15. X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005). [CrossRef]   [PubMed]  

16. A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008). [CrossRef]   [PubMed]  

17. S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006). [CrossRef]  

18. S. Chuang, Physics of Optoelectronic Devices (J. Wiley, 1995), Chap. 2.

19. M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008). [CrossRef]   [PubMed]  

20. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005). [CrossRef]  

21. Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005). [CrossRef]   [PubMed]  

22. E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005). [CrossRef]  

23. A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express 16(16), 11727–11734 (2008). [CrossRef]   [PubMed]  

24. T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002). [CrossRef]  

25. P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999). [CrossRef]  

26. T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004). [CrossRef]  

27. N. V. Smith, “Classical generalization of the drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001). [CrossRef]  

28. P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007). [CrossRef]  

29. M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006). [CrossRef]  

30. V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006). [CrossRef]   [PubMed]  

31. T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004). [CrossRef]  

32. A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007). [CrossRef]  

33. S. Haque, C. Marinelli, F. Udrea, and W. I. Milne, “Absorption characteristics of single wall carbon nanotubes,” NSTI Nanotech. Conference (NSTI, 2006), pp. 134–137.

34. M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008). [CrossRef]   [PubMed]  

35. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000). [CrossRef]  

36. S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997). [CrossRef]  

37. S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001). [CrossRef]  

38. Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010). [CrossRef]  

39. S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010). [CrossRef]  

40. M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008). [CrossRef]  

41. Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000). [CrossRef]   [PubMed]  

42. V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010). [CrossRef]  

43. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997). [CrossRef]   [PubMed]  

44. P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007). [CrossRef]  

45. K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007). [CrossRef]  

46. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

References

  • View by:
  • |
  • |
  • |

  1. D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983).
    [Crossref]
  2. T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
    [Crossref]
  3. S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
    [Crossref]
  4. V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
    [Crossref]
  5. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
    [Crossref]
  6. J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
    [Crossref]
  7. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
    [Crossref]
  8. M. J. Hagmann, “Possibility of generating terahertz radiation by photomixing with clusters of carbon nanotubes,” J. Vac. Sci. Technol. B 26(2), 794 (2008).
    [Crossref]
  9. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
    [Crossref]
  10. B. Heshmat, H. Pahlevaninezhad, T. E. Darcie, and C. Papadopoulos, “Evaluation of carbon nanotubes for THz photomixing,” IEEE Radar Conference (IEEE, 2010), pp. 1176–1179.
  11. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
    [Crossref] [PubMed]
  12. D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005).
    [Crossref] [PubMed]
  13. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
    [Crossref]
  14. A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
    [Crossref]
  15. X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
    [Crossref] [PubMed]
  16. A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
    [Crossref] [PubMed]
  17. S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006).
    [Crossref]
  18. S. Chuang, Physics of Optoelectronic Devices (J. Wiley, 1995), Chap. 2.
  19. M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008).
    [Crossref] [PubMed]
  20. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
    [Crossref]
  21. Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
    [Crossref] [PubMed]
  22. E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
    [Crossref]
  23. A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express 16(16), 11727–11734 (2008).
    [Crossref] [PubMed]
  24. T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002).
    [Crossref]
  25. P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
    [Crossref]
  26. T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004).
    [Crossref]
  27. N. V. Smith, “Classical generalization of the drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
    [Crossref]
  28. P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
    [Crossref]
  29. M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
    [Crossref]
  30. V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006).
    [Crossref] [PubMed]
  31. T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
    [Crossref]
  32. A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007).
    [Crossref]
  33. S. Haque, C. Marinelli, F. Udrea, and W. I. Milne, “Absorption characteristics of single wall carbon nanotubes,” NSTI Nanotech. Conference (NSTI, 2006), pp. 134–137.
  34. M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
    [Crossref] [PubMed]
  35. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
    [Crossref]
  36. S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
    [Crossref]
  37. S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
    [Crossref]
  38. Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010).
    [Crossref]
  39. S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
    [Crossref]
  40. M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
    [Crossref]
  41. Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000).
    [Crossref] [PubMed]
  42. V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
    [Crossref]
  43. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [Crossref] [PubMed]
  44. P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007).
    [Crossref]
  45. K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
    [Crossref]
  46. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

2011 (1)

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

2010 (6)

Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010).
[Crossref]

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

2008 (6)

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

M. J. Hagmann, “Possibility of generating terahertz radiation by photomixing with clusters of carbon nanotubes,” J. Vac. Sci. Technol. B 26(2), 794 (2008).
[Crossref]

M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008).
[Crossref] [PubMed]

A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express 16(16), 11727–11734 (2008).
[Crossref] [PubMed]

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

2007 (4)

P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007).
[Crossref]

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007).
[Crossref]

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

2006 (5)

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006).
[Crossref] [PubMed]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006).
[Crossref]

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

2005 (6)

D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005).
[Crossref] [PubMed]

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
[Crossref] [PubMed]

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

2004 (4)

T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004).
[Crossref]

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
[Crossref]

T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

2003 (1)

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

2002 (1)

T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002).
[Crossref]

2001 (2)

N. V. Smith, “Classical generalization of the drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
[Crossref]

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

2000 (2)

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000).
[Crossref] [PubMed]

1999 (1)

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

1997 (2)

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

1993 (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

1983 (1)

D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983).
[Crossref]

Achiba, Y.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Ahn, D.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Ajayan, P. M.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Andriukaitis, G.

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Auston, D.

D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983).
[Crossref]

Averitt, R. D.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

Avouris, P.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006).
[Crossref] [PubMed]

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
[Crossref] [PubMed]

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

Bachilo, S. M.

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

Balakauskas, S.

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Balents, L.

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Baltuska, A.

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Baltuška, A.

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Beard, M. C.

M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008).
[Crossref] [PubMed]

Behnam, A.

A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007).
[Crossref]

Biciunas, A.

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Blackburn, J. L.

M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008).
[Crossref] [PubMed]

Bockrath, M.

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Bokor, J.

Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010).
[Crossref]

Borondics, F.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Brown, E. R.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

Casavant, M. J.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Chi, C.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Cobas, E.

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
[Crossref]

Cobden, D. H.

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Darcie, T. E.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

Dekker, C.

Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000).
[Crossref] [PubMed]

Dexheimer, S. L.

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

Diwa, G.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Dragoman, M.

T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

Dragoman, T. D.

T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

Drzaic, P.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Dubinov, A. A.

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

Duffy, S.

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Dürkop, T.

T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004).
[Crossref]

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
[Crossref]

Dworzak, M.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Engel, M.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

Fasel, R.

T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002).
[Crossref]

Ferrari, A. C.

Filippo, E.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Fischer, J. E.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Fleming, G. R.

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

Freitag, M.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
[Crossref] [PubMed]

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

Fuhrer, M. S.

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
[Crossref]

T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004).
[Crossref]

Fujiwara, A.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Fukuda, T.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Galzerano, G.

Gambetta, A.

Gao, Q.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Getty, S. A.

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
[Crossref]

Gossard, A. C.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Green, A. A.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

Haddon, R. C.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Hagmann, M. J.

M. J. Hagmann, “Possibility of generating terahertz radiation by photomixing with clusters of carbon nanotubes,” J. Vac. Sci. Technol. B 26(2), 794 (2008).
[Crossref]

Han, S. H.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Heben, M. J.

M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008).
[Crossref] [PubMed]

Hersam, M. C.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

Hertel, T.

T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002).
[Crossref]

Herz, L. M.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Heshmat, B.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

Hoffmann, A.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Hone, J.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Hong, S. H.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Hur, J. H.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Hwang, J. S.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Hwang, S. W.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Ichikawa, Y.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Irvin, G.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Itkis, M. E.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Jackson, A.

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Jagadish, C.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Jang, J.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Johnson, A. T.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Johnston, M.

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Johnston, M. B.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Kane, C. L.

Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000).
[Crossref] [PubMed]

Kang, M. G.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Kataura, H.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Khan, Z.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Kim, B. M.

T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004).
[Crossref]

Kordás, K.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Kordoš, P.

P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007).
[Crossref]

Krotkus, A.

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Kumpumäki, M.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Laporta, P.

Lee, D. J.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Lee, S. H.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Léonard, F.

D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005).
[Crossref] [PubMed]

Letizia Terranova, M.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Li, W.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Liao, Y.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Lim, J. H.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Llaguno, M. C.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Lloyd-Hughes, J.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Lorenc, D.

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Lu, J.

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Lu, S.

S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006).
[Crossref]

Ma, Y. Z.

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

Maniwa, Y.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Manno, D.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Marangoni, M.

Marso, M.

P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007).
[Crossref]

Martel, R.

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

Martin, Y.

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

Matsuoka, Y.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Matsuura, S.

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

McEuen, P. L.

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

McIntosh, K. A.

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

Mikulics, M.

P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007).
[Crossref]

Misewich, J. A.

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

Mitin, V.

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

Miyano, K.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Moilanen, P.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Moos, G.

T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002).
[Crossref]

Murakami, H.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Nagasaka, R.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Nakashima, S.

Nemes, N. M.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

O’Hara, J. F.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

Ogawa, N.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Ogino, H.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Ohshima, E.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Ono, S.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Orlanducci, S.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Otsuji, T.

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

Pacebutas, V.

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Pahlevaninezhad, H.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

Panchapakesan, B.

S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006).
[Crossref]

Park, Y.-B.

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Parkinson, P.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Perebeinos, V.

V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006).
[Crossref] [PubMed]

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
[Crossref] [PubMed]

Perng, T.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Pugzlys, A.

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Pugžlys, A.

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Qiu, X.

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
[Crossref] [PubMed]

Quema, A.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Ramponi, R.

Reich, S.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Rinzler, A. G.

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Rossi, M.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Rozhin, A. G.

Ryzhii, V.

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

Sakai, K.

Sarukura, N.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Schmidt, J.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Serra, A.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Shur, M. S.

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

Small, J. P.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

Smalley, R. E.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

Smith, N. V.

N. V. Smith, “Classical generalization of the drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
[Crossref]

Smith, P.

D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983).
[Crossref]

Steiner, M.

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

Stewart, D. A.

D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005).
[Crossref] [PubMed]

Strano, M. S.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Suematsu, H.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Suen, J. Y.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Suzuki, S.

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

Tai, N.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Tan, H. H.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Tani, M.

Taylor, A. J.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

Taylor, Z. D.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Tepore, A.

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

Tersoff, J.

V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006).
[Crossref] [PubMed]

Thomsen, C.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Tóth, G.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Tsai, M.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Tseng, Y.-C.

Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010).
[Crossref]

Tu, C.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Ural, A.

A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007).
[Crossref]

Uusimäki, A.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Vähäkangas, J.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Vajtai, R.

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Valkunas, L.

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

Verghese, S.

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Walters, D. A.

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

Whang, D.

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Yang, C.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Yao, Z.

Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000).
[Crossref] [PubMed]

Yoshikawa, A.

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

Yu, A.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Yu, C.

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

Zide, J. M. O.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

ACS Nano (1)

M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007).
[Crossref]

Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010).
[Crossref]

V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000).
[Crossref]

M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006).
[Crossref]

S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005).
[Crossref]

V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[Crossref]

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002).
[Crossref]

P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007).
[Crossref]

Carbon (1)

A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004).
[Crossref]

IEEE Photonics J. (1)

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

IEEE Trans. Microw. Theory Tech. (2)

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

J. Appl. Phys. (2)

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

J. Phys. Condens. Matter (1)

T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. J. Hagmann, “Possibility of generating terahertz radiation by photomixing with clusters of carbon nanotubes,” J. Vac. Sci. Technol. B 26(2), 794 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008).
[Crossref]

Nano Lett. (8)

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005).
[Crossref] [PubMed]

A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008).
[Crossref] [PubMed]

D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005).
[Crossref] [PubMed]

M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003).
[Crossref]

M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008).
[Crossref] [PubMed]

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006).
[Crossref] [PubMed]

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004).
[Crossref]

Nanotechnology (1)

S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006).
[Crossref]

Nature (1)

P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Opt. Express (1)

Phys. Rev. B (4)

N. V. Smith, “Classical generalization of the drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007).
[Crossref]

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[Crossref]

Phys. Rev. Lett. (2)

Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005).
[Crossref] [PubMed]

Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

Science (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Solid-State Electron. (1)

S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010).
[Crossref]

Other (3)

S. Haque, C. Marinelli, F. Udrea, and W. I. Milne, “Absorption characteristics of single wall carbon nanotubes,” NSTI Nanotech. Conference (NSTI, 2006), pp. 134–137.

B. Heshmat, H. Pahlevaninezhad, T. E. Darcie, and C. Papadopoulos, “Evaluation of carbon nanotubes for THz photomixing,” IEEE Radar Conference (IEEE, 2010), pp. 1176–1179.

S. Chuang, Physics of Optoelectronic Devices (J. Wiley, 1995), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Illustration of optical excitation of a THz photoconductive switch that has a center fed dipole antenna structure. (b) A PC switch made on a thin SiO2 oxide layer grown on a Si wafer. The gap is filled with aligned SWNTs and the antenna pattern is fabricated similar to conventional PC switches through common lithography processes (c) Block diagram of different steps of the analysis that links input laser excitation power and output THz emitted power.

Fig. 2
Fig. 2

(a) Peak total photocarrier density as a function of excitation pulse duration and carrier decay rate, γ d (carrier life time, τ = 1 / γ d ). The inset graph depicts the carrier density as a function of time (optical excitation pulse duration = 100fs, nabs = 1019 cm−3 and decay rate = 1.23 ps−1). (b) Peak total photocarrier density as a function of nabs. The inset graph shows the behavior of the same function within allowable carrier life time of SWNT.

Fig. 3
Fig. 3

(a) An illustration of binning process in MC calculation of conductivity in a partially aligned SWNT film. Each cell is a rectangular cuboid extending along the gap. (b) SEM image of a typical dip and slip deposition method results for s-SWNTs on a SiO2 substrate.

Fig. 4
Fig. 4

Photoconductivity for three cases of: perfectly aligned and purified, partially aligned and purified, and randomly deposited and partially purified s-SWNT.

Fig. 5
Fig. 5

Schematic of the circuit model for the PC switch with s-SWNT in the gap. VB is the DC bias voltage, RL is the antenna resistance,Vc is the contact voltage, Rc and cʹ are contact resistance and capacitance, and C is the capacitance of the gap.

Fig. 6
Fig. 6

Emitted average THz power vs average input excitation power. CNT curves are based on the conductivity values in Fig. 4. The GaBiAs PC switch and GaAs based photomixer output powers are inserted in 10, 20 and 30 mW of excitation power for comparison [4244].

Fig. 7
Fig. 7

The dynamics of output THz power with: (a) antenna resistance, RL (b) CNT to metal plate contance resistance, Rc (c) contance capacitace, cʹ (d) gap capacitance, C (e) photoconductance, Gphoto (f) dark conductance, G0 .

Tables (2)

Tables Icon

Table 1 A Typical Set of Experimental Values for Rate Parameters in Eq. (2)

Tables Icon

Table 2 Previously Reported Values for Drude Smith Modeling of CNT Films

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n a b s η ( ν ) 0 T p i ( t ) d t h ν V ,
d n e ( t ) d t = γ E E n e 2 ( t ) γ C C n e ( t ) , n e ( 0 ) = n a b s ; d n ( t ) d t = γ C C n e ( t ) γ d n ( t ) , n ( 0 ) = 0.
n ( t ) = γ C C 2 [ k 2 γ C C 2 F 2 1 ( 1 , γ d γ C C , 1 + γ d γ C C , e γ C C ( t + k 1 ) γ E E ) γ E E γ d ] ,
        k 1 = ln ( γ E E + γ C C / n a b s ) γ C C ,             and       k 2 = γ C C 2 F 2 1 ( 1 , γ d γ C C , 1 + γ d γ C C , e γ C C × k 1 γ E E ) γ E E γ d .
σ p h o t o ( ω ) = μ n f e ( 1 i ω τ s ) ( 1 ξ 1 i ω τ s ) + i μ ( n n f ) e ω τ s ( ω 2 ω l 2 i ω γ l ) .
σ p h o t o q ( ω ) = j = 1 J k = 1 K μ j k n f j k e ( 1 i m ω μ j k / e ) ( 1 ξ 1 i m ω μ j k / e ) .
μ j k = ( 0.1 + 0.9 u 1 ) ( 1 0.99 ρ j k ρ max ) cos ( 15 ° × u 2 ) .
d V d t + ( 1 + R L G ( t ) ) R L C V V B + 2 R L G ( t ) V C R L C = 0 ,     with           V ( 0 ) = ( 2 R C + G 1 ( 0 ) ) V B 2 R C + G 1 ( 0 ) + R L , d V C d t + ( 1 + 2 R C G ( t ) c R C ) V C G ( t ) c V = 0 ,   with       V C ( 0 ) = R C V B 2 R C + G 1 ( 0 ) + R L .
P T H z ( t ) = ( V B V ( t ) ) 2 ( V B V ( 0 ) ) 2 R L .

Metrics