Abstract

The first demonstration of a mid-infrared optical parametric oscillator pumped by 1-μm optical vortex pulses is presented. A 0.5-mJ 2-μm fractional vortex pulse having half-integer topological charge is generated. Using this system, 0.24-mJ vortex pulses with a topological charge of 1 can be created. The topological charges of the mid-infrared vortex pulses are observed by an interferometric technique in combination with second-harmonic frequency conversion.

©2011 Optical Society of America

1. Introduction

Optical vortices [14], which have intriguing features such as a doughnut-shaped spatial profile, a helical (twisted) wavefront, and orbital angular momentum characterized by L (where L is an integer called the topological charge) due to a phase singularity, have been actively investigated for many applications such as optical tweezers [57], super-resolution microscopes [810], and spectroscopy [11]. In particular, we have demonstrated laser ablation [12] and micro-needle fabrication using optical vortices having specific values of the total angular momentum (sum of the orbital and spin angular momenta) [13].

To date, the conservation of orbital angular momentum of an optical vortex has been demonstrated in nonlinear frequency conversion processes such as second harmonic generation (SHG) [14-15] and sum-frequency generation [16-17]. Anisotropic transfer of orbital angular momentum to the idler (or signal) output has been reported in a continuous-wave optical parametric oscillator in the visible region [18]. Smith et.al. have reported the direct production of optical vortex from the rotated image singly-resonant twisted-rectangle cavity [19]. However, those experiments only investigated the existence of a conservation law of orbital angular momentum or mode conversion of Gaussian pump beam to the vortex signal (or idler) output, in nonlinear frequency conversion processes. They did not explore the generation of a fractional vortex output having half-integer topological charge, nor measure quantitatively the output energy and power of the frequency-converted vortices.

Furthermore, they did not generate mid-infrared optical vortices, which can potentially lead to new generations of molecular spectroscopy and organic material processing.

In this study, 0.5-mJ 2-μm fractional vortex pulses of half-integer topological charge are produced for the first time from a mid-infrared optical parametric oscillator pumped by 1-μm optical vortices. The generation of 0.24-mJ mid-infrared vortex pulses with a topological charge of 1 is also demonstrated.

2. Experimental results

2.1 Setup

The experimental setup of the mid-infrared optical parametric oscillator pumped by 1-μm optical vortex pulses is sketched in Fig. 1 . The pump laser is a conventional flashlamp Q-switched Nd:YAG laser (Lotis LS-2136) with a wavelength of 1.064 µm and a pulse duration of 45 ns at a repetition rate of 50 Hz. Its collimated output has a Gaussian profile and is delivered to a spiral phase plate (SPP) azimuthally divided into 16 parts with an /8 phase shifter (where n is an integer between 0 and 15) [20]. It is converted into an optical vortex (OV1) with a topological charge L of 1. Next the output is converted into a second optical vortex (OV2) having a topological charge L of 2 by using two overlaid SPPs. The optical vortices, exhibiting the annular spatial form shown in Fig. 2 , are used to pump an optical parametric oscillator [21] consisting of a KTiOPO4 (KTP) crystal into which they are focused. The crystal has dimensions of 5 × 5 × 30 mm, cut at θ = 51.4° relative to the z-axis normal for type II (o-wave → o-wave + e-wave) phase matching in degenerate downconversion from 1.064 to 2.128 µm. The crystal faces are anti-reflection coated at 1.064 and 2.128 µm. The oscillator consists of a flat input mirror M1 with high reflection (R = 98%) at 2.128 µm and high transmission (T = 90%) at 1.064 µm, and a flat output mirror M2 with 80% reflection at 2.128 µm and high transmission at 1.064 µm.

 figure: Fig. 1

Fig. 1 Experimental setup for a mid-infrared KTP OPO pumped by a 1-μm vortex beam.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 Spatial profiles of the 1.064-μm vortex output for (a) OV1, and (b) OV2.

Download Full Size | PPT Slide | PDF

2.2 Laser performance

Figure 3 panels (a) and (b) plot the output energy measured from the optical parametric oscillator as a function of the pump energy. For OV1 pumping, the lasing threshold is found to be 11 mJ, and a maximum signal energy of 0.5 mJ is obtained for maximum pumping. The temporal width of the signal output is typically 31 ns, as shown in panel (c). The lasing spectrum of signal output is also shown in panel (d). The idler energy of 0.41 mJ is nearly identical with the signal energy because of the frequency degeneracy. On the other hand, OV2 pumping results in a higher lasing threshold (13 mJ) and smaller output energy (0.24 mJ) compared to OV1 pumping, because OV2 has a larger beam propagation factor (M 2≈3) than does OV1 (M 2≈2). Spatial forms of the signal and idler outputs observed with a pyroelectric CCD camera (Spiricon PyrocamIII) are shown in Fig. 4 .

 figure: Fig. 3

Fig. 3 Characteristics of the output vortices: energies per pulse pumped by (a) OV1 and (b) OV2; (c) temporal evolution of the signal output, and (d) lasing spectrum of the signal output.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Spatial profiles of (a) the signal output pumped by OV1, (b) the signal output pumped by OV2, (c) the idler output pumped by OV1, and (d) the idler output pumped by OV2.

Download Full Size | PPT Slide | PDF

To investigate the wavefront of the signal output, the interferometric fringes formed by a frequency-doubled signal beam and its plane reference beam are analyzed. The 2-μm pyroelectric CCD camera has poor spatial resolution (~100 μm) which limits the accuracy of the interferometric measurements. To overcome this limitation, the signal output is frequency-doubled using another KTP crystal (for type-II phase-matching) with dimensions of 10 × 10 × 20 mm, cut at θ = 53° and φ = 0° relative to the z-axis normal. A conventional silicon CCD camera can then be used. The spatial forms and wavefronts of the doubled signal output are shown in Fig. 5 .

 figure: Fig. 5

Fig. 5 Spatial profiles and wavefronts of the frequency-doubled signal output: SHG profiles pumped by (a) OV1 and (b) OV2; panels (c) and (d) show the interference patterns corresponding to panels (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

For OV1 pumping, the signal output for ordinary polarization shows a radial opening in its profile in Fig. 4(a), while its second harmonic exhibits a complete doughnut shape with a topological charge of 1 in Fig. 5(a) and forked fringes in Fig. 5(c). The signal output is thus a fractional optical vortex [2224] with half-integer topological charge. For OV2 pumping, the signal output for ordinary polarization has a doughnut-shaped profile in Fig. 4(b) due to a phase singularity. The frequency-doubled signal output has a doubled topological charge in Fig. 5(b), as evidenced by the two forked fringes in Fig. 5(d), although a slight spatial separation of the vortices due to walk-off is seen.

In contrast, the idler output for extraordinary polarization looks a slightly distorted Gaussian profile without a phase singularity, as depicted in Figs. 4(c) and 4(d). We also measured the wavefronts of the frequency-doubled idler output. Owing to walk-off effects [25], the phase singularity displaces spatially toward the margin of the spatial intensity profile of the idler output, resulting in that the topological charge of the idler output looked to disappear. The idler outputs for OV1 and OV2 pumpings have also topological charges of 0.5 and 1, respectively, as evidenced by a forked fringe and two forked fringes (Fig. 6(c) and 6(d)).

 figure: Fig. 6

Fig. 6 Spatial profiles and wavefronts of the frequency-doubled idler output: SHG profiles pumped by (a) OV1 and (b) OV2; panels (c) and (d) show the interference patterns corresponding to panels (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

These results indicate that the topological charge of the pump laser is shared by the signal and idler outputs, and that half of the orbital angular momentum of the pump beam is transferred to the signal and idler outputs. The topological charge sharing between the signal and idler outputs stems from the cavity configuration. The (unstable) plane-parallel resonator makes the Rayleigh length xR inside the cavity infinite because xR 2 = L 2 ‖2RmL|/4, resulting in a zero Gouy phase shift of the beam accumulated over a round trip inside the cavity. Here L is the cavity length and Rm is the curvature of the cavity mirror. Therefore, anisotropic transfer of orbital angular momentum is prevented and topological charge sharing occurs. Further investigation is needed to fully understand the mechanism of the fractional vortex generation with half-integer topological charge.

3. Conclusion

A mid-infrared optical parametric oscillator pumped by a 1-μm optical vortex has been demonstrated for the first time. Mid-infrared fractional vortex pulses having half-integer topological charge have been created. The fractional vortex pulse has an energy of 0.5 mJ and a width of 31 ns. Generation of 0.24-mJ mid-infrared vortices with a topological charge of 1 were also achieved. Disappearance of the topological charge in the idler output, owing to walk-off effects in the KTP, has been observed. Further power scaling of the mid-infrared vortex output with half-integer (or integer) topological charge should be possible by optimizing the outcoupling of the resonator. The system can potentially be extended to terahertz vortex pulses by difference frequency generation.

Acknowledgments

The authors were funded by a Scientific Research Grant-in-Aid (16032202 and 18360031) and a program for improving graduate school education from the Ministry of Education, Science, and Culture of Japan and from the Japanese Society for the Promotion of Science.

References and links

1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]   [PubMed]  

2. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993). [CrossRef]  

3. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004). [CrossRef]  

4. M. S. Soskin and M. V. Vasnetsov, “Optical vortices,” in Progress in Optics, 42, E. Wolf, ed., (Elsevier, North-Holland, 2001).

5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef]   [PubMed]  

6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]  

7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]  

8. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007). [CrossRef]   [PubMed]  

9. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003). [CrossRef]  

10. Y. Iketaki, T. Watanabe, N. Bokor, T. Omatsu, T. Hiraga, K. Yamamoto, and M. Fujii, “Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy,” Appl. Spectrosc. 61(1), 6–10 (2007). [CrossRef]   [PubMed]  

11. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24198. [CrossRef]  

12. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2144. [CrossRef]   [PubMed]  

13. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-17-17967. [CrossRef]   [PubMed]  

14. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef]   [PubMed]  

15. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-2-994. [CrossRef]   [PubMed]  

16. A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997). [CrossRef]  

17. A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998). [CrossRef]  

18. M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004). [CrossRef]  

19. A. V. Smith and D. J. Armstrong, “Generation of vortex beams by an image-rotating optical parametric oscillator,” Opt. Express 11(8), 868–873 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-868. [CrossRef]   [PubMed]  

20. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004). [CrossRef]   [PubMed]  

21. K. Miyamoto and H. Ito, “Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator,” Opt. Lett. 32(3), 274–276 (2007). [CrossRef]   [PubMed]  

22. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]  

23. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]  

24. W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004). [CrossRef]  

25. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
    [Crossref]
  3. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  4. M. S. Soskin and M. V. Vasnetsov, “Optical vortices,” in Progress in Optics, 42, E. Wolf, ed., (Elsevier, North-Holland, 2001).
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [Crossref]
  7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [Crossref]
  8. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
    [Crossref] [PubMed]
  9. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
    [Crossref]
  10. Y. Iketaki, T. Watanabe, N. Bokor, T. Omatsu, T. Hiraga, K. Yamamoto, and M. Fujii, “Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy,” Appl. Spectrosc. 61(1), 6–10 (2007).
    [Crossref] [PubMed]
  11. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24198 .
    [Crossref]
  12. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2144 .
    [Crossref] [PubMed]
  13. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-17-17967 .
    [Crossref] [PubMed]
  14. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
    [Crossref] [PubMed]
  15. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-2-994 .
    [Crossref] [PubMed]
  16. A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
    [Crossref]
  17. A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
    [Crossref]
  18. M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
    [Crossref]
  19. A. V. Smith and D. J. Armstrong, “Generation of vortex beams by an image-rotating optical parametric oscillator,” Opt. Express 11(8), 868–873 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-868 .
    [Crossref] [PubMed]
  20. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
    [Crossref] [PubMed]
  21. K. Miyamoto and H. Ito, “Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator,” Opt. Lett. 32(3), 274–276 (2007).
    [Crossref] [PubMed]
  22. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995).
    [Crossref]
  23. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
    [Crossref]
  24. W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
    [Crossref]
  25. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
    [Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (1)

2007 (3)

2004 (5)

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[Crossref] [PubMed]

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
[Crossref]

W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

2003 (3)

A. V. Smith and D. J. Armstrong, “Generation of vortex beams by an image-rotating optical parametric oscillator,” Opt. Express 11(8), 868–873 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-868 .
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

2002 (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
[Crossref] [PubMed]

1998 (1)

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

1997 (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

1995 (1)

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995).
[Crossref]

1993 (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

’t Hooft, G. W.

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Aoki, N.

Armstrong, D. J.

Basistiy, I. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
[Crossref]

Beržanskis, A.

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

Bokor, N.

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Chujo, K.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Dholakia, K.

W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Eggeling, C.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Eliel, E. R.

Fujii, M.

Y. Iketaki, T. Watanabe, N. Bokor, T. Omatsu, T. Hiraga, K. Yamamoto, and M. Fujii, “Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy,” Appl. Spectrosc. 61(1), 6–10 (2007).
[Crossref] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Hamazaki, J.

Hell, S. W.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Hiraga, T.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Hirose, T.

Huguenin, J. A. O.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Iketaki, Y.

Y. Iketaki, T. Watanabe, N. Bokor, T. Omatsu, T. Hiraga, K. Yamamoto, and M. Fujii, “Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy,” Appl. Spectrosc. 61(1), 6–10 (2007).
[Crossref] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

Ishiuchi, S.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

Ito, H.

Kato, K.

Khoury, A. Z.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Kloosterboer, J. G.

Kobayashi, Y.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Koyama, M.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Lee, W. M.

W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[Crossref]

Martinelli, M.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Matijošius, A.

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

Miyamoto, K.

Morita, R.

Nakamura, K.

Nussenzveig, P.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Oemrawsingh, S. S. R.

Oka, K.

Okida, M.

Omatsu, T.

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Piskarskas, A.

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

Sakai, M.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Shimatake, K.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Smilgevicius, V.

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

Smith, A. V.

Soskin, M. S.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Stabinis, A.

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

Takaoka, E.

Tanda, S.

Toda, Y.

Tokizane, Y.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Tsubota, M.

van Houwelingen, J. A. W.

Vasnetsov, M. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995).
[Crossref]

Verstegen, E. J. K.

Watanabe, T.

Y. Iketaki, T. Watanabe, N. Bokor, T. Omatsu, T. Hiraga, K. Yamamoto, and M. Fujii, “Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy,” Appl. Spectrosc. 61(1), 6–10 (2007).
[Crossref] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

Woerdman, J. P.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yamamoto, K.

Y. Iketaki, T. Watanabe, N. Bokor, T. Omatsu, T. Hiraga, K. Yamamoto, and M. Fujii, “Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy,” Appl. Spectrosc. 61(1), 6–10 (2007).
[Crossref] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

Yuan, X.-C.

W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[Crossref]

J. Mod. Opt. (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (5)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140(4-6), 273–276 (1997).
[Crossref]

A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[Crossref]

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (3)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Other (1)

M. S. Soskin and M. V. Vasnetsov, “Optical vortices,” in Progress in Optics, 42, E. Wolf, ed., (Elsevier, North-Holland, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for a mid-infrared KTP OPO pumped by a 1-μm vortex beam.
Fig. 2
Fig. 2 Spatial profiles of the 1.064-μm vortex output for (a) OV1, and (b) OV2.
Fig. 3
Fig. 3 Characteristics of the output vortices: energies per pulse pumped by (a) OV1 and (b) OV2; (c) temporal evolution of the signal output, and (d) lasing spectrum of the signal output.
Fig. 4
Fig. 4 Spatial profiles of (a) the signal output pumped by OV1, (b) the signal output pumped by OV2, (c) the idler output pumped by OV1, and (d) the idler output pumped by OV2.
Fig. 5
Fig. 5 Spatial profiles and wavefronts of the frequency-doubled signal output: SHG profiles pumped by (a) OV1 and (b) OV2; panels (c) and (d) show the interference patterns corresponding to panels (a) and (b), respectively.
Fig. 6
Fig. 6 Spatial profiles and wavefronts of the frequency-doubled idler output: SHG profiles pumped by (a) OV1 and (b) OV2; panels (c) and (d) show the interference patterns corresponding to panels (a) and (b), respectively.

Metrics