Abstract

We report on the effect of arrays of Au nanopillars of controlled size and spacing on the spectral response of a P3HT: PCBM bulk heterojunction solar cell. Prototype nanopillar-patterned devices have nearly the same overall power conversion efficiency as those without nanopillars. The patterned devices do show higher external quantum efficiency and calculated absorption in the wavelength range from approximately 640 nm to 720 nm, where the active layer is not very absorbing. The peak enhancement was approximately 60% at 675 nm. We find evidence that the corresponding resonance involves both localized particle plasmon excitation and multiple reflections/diffraction within the cavity formed by the electrodes. We explore the role of the attenuation coefficient of the active layer on the optical absorption of such an organic photovoltaic device.

© 2010 OSA

1. Introduction

Bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices have been the focus of much recent work [1] due to their potential in enabling affordable solar energy by a simple coating or printing process. The efficiencies of BHJ OPV devices, however, are significantly lower than silicon-based photovoltaic devices. One possible approach toward raising the efficiency of OPV’s is to increase their absorption of solar radiation. This is not the only consideration, however; in a typical BHJ organic solar cell, the optimal thickness of the absorbing layer is determined by a tradeoff: the absorber must be optically thick to absorb a significant fraction of the incident light but the thickness should not be large compared to the carrier collection length. This and other tradeoffs ultimately limit the maximum power conversion efficiency.

Introducing noble metal nanoparticles and thus coupling of light to particle plasmons in thin film photovoltaic absorber layers is emerging as a potential method for enhancing their absorption. Several experiments, calculations, and combined studies have been done in inorganic solar cells, particularly those based on silicon [211]. The dielectric properties of organic materials and that of silicon, however, are different. Silicon, an indirect bandgap semiconductor absorbs relatively weakly in much of the visible part of the spectrum, while the organic materials used in OPV devices have significant absorption coefficients in this range. As a result the plasmonic characteristics of noble nanoparticles in organic OPV are quite different. For organic solar cells, many reports to date involving nanoparticles are of simple absorption measurements (i.e. without the presence of electrodes and intermediate layers) or external quantum efficiency (EQE) measurements [1215]. However, the absorption spectrum of an OPV device is expected to be considerably different in the presence of electrodes, due to reflectance at the interfaces and interference effects [16]. The use of metallic cathodes generally prevents measurement of the absorption of the active layer in functional devices. In addition, in previous reports [1215,1719] the relative positions of the NPs are not well defined, making it difficult to identify the role of particle plasmon excitation. A direct comparison of measured [17] and calculated [1820] optical spectral responses for a well defined metallic nanostructure configuration in a BHJ OPV has not as yet been fully carried out. In this paper, we present a systematic experimental and numerical study of the effect of periodic Au nanopillar arrays on absorption of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) BHJ solar cells.

2. Experimental

Our device architecture is shown in Fig. 1(a) . ITO (thickness 200 nm) was used as high work function anode and a 300 nm thick aluminum (Al) layer was used as a low work function cathode. We defined square arrays of square-cross section Au nanopillar patterns on a ITO-coated glass substrate using e-beam lithography; a scanning electron microscope (SEM) image of a typical NP pattern is shown in Fig. 1(b). Details of the method have been discussed elsewhere [21]. Individual pillars were approximately 180 nm in width, approximately 70 nm in height, and spaced with a period of 540 nm. The total pattern size was 120 μm × 120 μm. The region in which the active organic layer overlaps the anode and cathode was much larger, 2.5 mm × 2.5 mm. We thus created an opaque mask, consisting of a 200 nm thick Au film and 100 nm insulator of aluminum oxide, around the nanopillar patterned area to ensure that the measured photocurrent comes almost entirely from the region of the NP pattern. The oxide layer was added to prevent a short circuit between the Al (top) and ITO (bottom) electrodes. We spun-cast a solution of regio-regular P3HT and PCBM with weight ratio 1:1 in dichlorobenzene (DCB) onto a Au nanopillar (NP) layer, which had been patterned onto a transparent indium-tin-oxide (ITO) coated glass substrate. Immediately after spin-coating, the film was “solvent dried”, i.e. placed in a covered glass container with a small amount of DCB solvent added into the bottom, for 30 min. The typical thickness of the resulting active layer was determined to be approximately 220 nm. These latter two steps were carried out in an inert nitrogen gas atmosphere inside a glove box to minimize photo-oxidative degradation. A TiOx precursor solution prepared by a sol-gel method [22] was spun-cast onto the P3HT:PCBM composite, resulting in a 30 nm thick layer. To maximize the volume of P3HT/PCBM in which an enhanced field due to particle plasmons within the nanopillars occurs, no PEDOT:PSS layer was used. Finally, a control cell was fabricated on each sample, using the same architecture as for the nanopillar-patterned cells.

 

Fig. 1 (a). Schematic cross section of nanopillar-patterned organic solar cell. (b). SEM image of Au nanopillar arrays on ITO surface; nanopillar edge length 180 nm, pitch 540 nm, and height 70 nm.

Download Full Size | PPT Slide | PDF

3. Results

The insert in Fig. 2(a) shows the results an of external quantum efficiency measurement (EQE) across the wavelength range from 400 nm – 800 nm. While the overall performance of cells with and without nanopillars in this range is similar, the control sample shows very slightly higher efficiency at wavelengths below ~640 nm. The close correspondence with the shape of calculated |E|2 within the active layer vs. λ (Fig. 2(b)), which is also smaller for the patterned sample, suggests that this is due to limited transmission through the array of nanopillars. Interestingly, however, the nanopillar patterned devices show higher EQE in the wavelength range from ~640 nm to 720 nm.

 

Fig. 2 (a). Measured external quantum efficiency (EQE) for the (unpatterned) control cell and nanopillar-patterned cells under zero bias. (b). Simulated absorbance for control and patterned cells. (c). Ratios between measured EQE (blue curve) and simulated |E|2 (black curve) for a nanopillar-patterned cell and those for a control cell.

Download Full Size | PPT Slide | PDF

We now consider the origin of the improved EQE within this narrow band of wavelengths. We recall that EQE (λ) = A(λ) × IQE (λ), where A(λ) is the absorbance of the photoactive layer at a given wavelength and IQE (λ) is the internal quantum efficiency. This latter quantity is related to the conversion of the absorbed photons into free carriers and their subsequent collection at the electrodes [23], and has been reported to depend on λ due to the wavelength dependence of the relative absorption in P3HT and PCBM [24]. We expect the dominant λ-dependence to come from A(λ), which we can calculate for both the nanopillar-patterned and control devices, given the geometry and optical constants of the individual structures within each device. As a first step we determined the complex refractive index, n + ik, of ITO and P3HT:PCBM by ellipsometry. Optical constants for glass [25], Au [26], titanium oxide [27], and Al [28] were taken from literature values. We calculated the optical field within our devices via the finite-difference time-domain (FDTD) method [29,30]. Based upon the calculated local field EA(x,y,z), we next find the absorbed optical power per unit volume within the active layer, which is given by

QA(x,y,z)=2πcεonAkA|EA(x,y,z)|2/λ

Finally the absorbance A(λ) is calculated by dividing the integration of QA over the volume of the active layer by the incident optical power [16].

The results of the above-described calculations for devices with and without nanopillar arrays are shown in Fig. 2(b). As seen in the inset, the overall shapes of the calculated absorption spectra for the NP patterned and control devices between 400 nm and 800 nm are also similar, with the control samples showing very slightly higher EQE below ~640 nm. Strikingly, the calculated absorbance is enhanced in the nanopillar patterned device above ~640 nm, in qualitative agreement with the enhancement in the experimentally determined EQE in this range.

To test further whether the increased EQE in this wavelength range results from the optical field enhancement, we calculated the ratio of the field strength for NP device to that for the control device and compared the |E|2 ratio to that for the measured EQE. The shapes of the simulated and experimental ratio curves, shown in Fig. 2(c), are similar; both show a peak at 675 nm wavelength. Furthermore, the magnitude of peak enhancement agrees well in the two cases: 63 % and 60 % increase for the simulated absorption and measured EQE, respectively. These results indicate that within a narrow range of wavelength: (1) the optical field enhancement occurs within the Au nanopillar arrays in the patterned devices, (2) this results in increased absorption within the bulk heterojunction organic layer, leading to (3) higher photocurrent. Near the peak of the measured EQE (i.e. λ ~575 nm, inset Fig. 2(a)) our simulations (Fig. 3(a) ) do not show strong field in the organic layer near the nanopillars.

 

Fig. 3 (a). Simulated |E|2 image cutting though the center of Au nanopillar in patterned cell at peak of P3HT:PCBM absorption, but off resonance (575 nm wavelength). (b). Corresponding image on resonance (675 nm wavelength). (c). Simulated |E|2 image cutting though the center of Fe nanopillar in patterned cell on resonance (675 nm wavelength).

Download Full Size | PPT Slide | PDF

Our FDTD simulations of the near field-squared indicate that the resonance seen in Fig. 2(c) is of mixed nature. Figure 3(b) displays the |E|2 image for a cross-section of a nanopillar for 675 nm wavelength incident radiation. High field intensity occurs both at the corners of the nanopillars and further into the organic layer and substrate, in the form of intense cloverleaf-shaped lobes. Fig. 3(c) shows the results of an additional FDTD simulation, in which we substitute for the dielectric function of the nanopillars values corresponding to Fe [31], for which the imaginary component dominates the real component. This effectively suppresses excitation of the localized particle plasmon, as evidenced by the absence of intense fields at the corners. The extended lobes however remain, suggesting that they are due to multiple reflections within the cavity formed by the nanopillars and the top electrode and/or diffraction. Fig. 4 shows the results of increasing the thickness of the P3HT:PCBM layer, and thus the height of the cavity on the near field-squared. Fig. 4(a) and Fig. 4(b) show |E|2 integrated over the entire organic layer volume for Au and Fe nanopillars, respectively. In this case the lobes dominate the integration; the magnitudes are similar, and both show a red shift with increasing thickness. Fig. 4(c) and Fig. 4(d) show the result of integrating over a narrow shell, 20 nm thick, around the nanopillars; again a red shift occurs for the Au case. In the case of the Fe nanopillars the integration yields nearly zero due to the suppression of the particle plasmon by the large imaginary component of the dielectric function.

 

Fig. 4 (a). |E|2 integrated over volume of P3HT:PCBM layer for Au NP-patterned cell. For this and following panels: nanopillar edge length 180 nm, pitch 540 nm, and height 70 nm, illumination is at 675 nm wavelength at normal incidence, blue curve is for a P3HT:PCBM layer thickness of 220 nm, green curve for 250 nm and red curve for 280 nm. (b). |E|2 integrated over volume of P3HT:PCBM layer for Fe NP-patterned cell illuminated with 675 nm wavelength light at normal incidence. (c). |E|2 integrated over volume of a 20 nm wide shell around an Au NP. (d). |E|2 integrated over volume of a 20 nm wide shell around a Fe NP.

Download Full Size | PPT Slide | PDF

Finally we investigated whether the overall efficiency would be increased for a different active layer whose absorption peak (red curve, Fig. 2(b)) coincided with the peak in the wavelength dependence of the enhanced local field near the nanopillars. We checked this by increasing the attenuation coefficient of the active layer at the wavelength corresponding to the plasmon resonance, and calculated the absorption of the active layer with and without NPs at the resonance wavelength (675 nm) with kA varying from 0 to 0.8, bracketing the measured value of 0.03. Example |E|2 images at a series of increasing values of kA are shown in Fig. 5 (a); the high field from the nanoparticles is effectively suppressed by the higher attenuation within the active layer. Interestingly, the difference between the calculated absorption within the active layer with and without nanopillars, shown in Fig. 5(b), reaches a maximum at a value of ~0.03. Figure 5(c) (although the ratio of the absorbance with and without nanopillars, shown in the inset decreases monotonically with increasing kA). For further increases in kA, the enhancement decreases, and for kA larger than ~0.2 there is no enhancement. Our calculation indicates that the measured kA (~0.03) for P3HT:PCBM is already close to optimum for maximum enhancement of absorption by Au nanopillars for the resonance we observe.

 

Fig. 5 (a). |E|2 images of the active layer cutting though the center of the Au nanopillars (dashed rectangles) in patterned cells for kA = 0.01 (upper panel), kA = 0.03 (middle panel) and kA = 0.8 (lower panel). (b). Calculated active layer absorption of the active layer with (pink curve) and without (black curve) NPs as function of its absorption coefficient (kA) at an incident wavelength of 675 nm. (c). Difference between absorption of the patterned cell and that of the control cell. Insert: ratio of absorption of the patterned cell to that of the control cell.

Download Full Size | PPT Slide | PDF

4. Conclusions

In summary, we find that while our prototype Au nanopillar-patterned devices show nearly the same overall power conversion efficiency as those without nanopillars, the patterned devices do show higher external quantum efficiency in a narrow wavelength range where the active layer absorption, however, is relatively low, from approximately 640 nm to 720 nm, with a peak of enhancement of about 60% at 675 nm. Our calculated variation of the local electric field squared with wavelength within the active layer follows that of the measured external quantum efficiency; this modeling can thus reliably be used in further optimization of the nanostructural pattern parameters and optical properties of individual photovoltaic components. We also find evidence that this resonance is of mixed nature, with contributions both from plasmon excitation and multiple reflections/diffraction within the cavity formed by the nanopillars and top electrode. Finally, our calculations indicate that the measured low value of attenuation coefficient kA of the P3HT:PCBM active layer in the wavelength range of the observed mixed resonance is already close to the optimum value for achieving maximum absorption enhancement, and that if kA were larger, which would be expected to increase the overall power conversion efficiency, then the resonance-field enhancement would be extinguished.

5. Appendix

For completeness, although the focus of our work is on the external quantum efficiency, we include in Table 1 the measured open circuit voltages, Voc, short circuit currents, Jsc, and fill factors, FF, for our nanopillar patterned device (Table 1, column (c)), a control device (Table 1, column (b)), and a device without nanopillars, but including a PEDOT:PSS layer (Table 1, column (a)). Clearly the absence of this layer causes a large reduction in the overall efficiency. The measurements were done by measuring the output current as a function of bias voltage during illumination of a simulated solar illumination source with an air mass 1.5 Global (AM 1.5 G) spectrum and with the input intensity 95 mW/cm2.

Tables Icon

Table 1. Measured short circuit current densities, open circuit voltages and fill factors for a standard BHJ OPV device including PEDOT:PSS (column (a)), a control device with neither PEDOT:PSS nor Au nanopillars (column (b)) and a Au nanopillar patterned device with no PEDOT:PSS layer (column (c)) under solar AM 1.5 G illumination.

Acknowledgments

We thank Ben Palmer for allowing us access to the e-beam lithography system used in fabricating the nanopillar arrays, Dong Hun Park for providing us access and assistance in using an ellipsometry system, and Victor Yun for fabrication of shadow masks. We are grateful to acknowledge the use of TEMPEST FDTD software, provided by Professor A. Neureuther of the University of California at Berkeley.

References and links

1. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009). [CrossRef]  

2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef]   [PubMed]  

3. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]  

4. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]  

5. V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009). [CrossRef]  

6. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]  

7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]  

8. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010). [CrossRef]  

9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef]   [PubMed]  

10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]  

11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009). [CrossRef]  

12. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009). [CrossRef]  

13. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008). [CrossRef]  

14. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008). [CrossRef]  

15. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000). [CrossRef]  

16. Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007). [CrossRef]  

17. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]  

18. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]  

19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009). [CrossRef]  

20. H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009). [CrossRef]  

21. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006). [CrossRef]  

22. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007). [CrossRef]  

23. P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002). [CrossRef]  

24. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009). [CrossRef]   [PubMed]  

25. I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004). [CrossRef]  

26. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

27. J. T. Rantala and A. H. O. Kärkkäinen, “Optical properties of spin-on deposited low temperature titanium oxide thin films,” Opt. Express 11(12), 1406–1410 (2003). [CrossRef]   [PubMed]  

28. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic Aluminum, ” in Handbook of Optical Constants of Solids, D. Palik, ed., (Academic Press, Orlando, 1985), pp. 369–406.

29. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]  

30. A. Neureuther, TEMPEST FDTD software developed by Univ. of California at Berkeley.

31. P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
    [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  3. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [CrossRef]
  4. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
    [CrossRef]
  5. V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  6. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  8. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
    [CrossRef]
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  12. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
    [CrossRef]
  13. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [CrossRef]
  14. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
    [CrossRef]
  15. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
    [CrossRef]
  16. Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
    [CrossRef]
  17. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [CrossRef]
  18. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
    [CrossRef]
  20. H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  21. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
    [CrossRef]
  22. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
    [CrossRef]
  23. P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
    [CrossRef]
  24. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
    [CrossRef] [PubMed]
  25. I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
    [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  27. J. T. Rantala and A. H. O. Kärkkäinen, “Optical properties of spin-on deposited low temperature titanium oxide thin films,” Opt. Express 11(12), 1406–1410 (2003).
    [CrossRef] [PubMed]
  28. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic Aluminum, ” in Handbook of Optical Constants of Solids, D. Palik, ed., (Academic Press, Orlando, 1985), pp. 369–406.
  29. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  30. A. Neureuther, TEMPEST FDTD software developed by Univ. of California at Berkeley.
  31. P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [CrossRef]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

2009 (7)

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

2008 (7)

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2007 (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

2006 (2)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

2004 (2)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

2003 (1)

2002 (1)

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

2000 (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Ballarotto, M.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Bienstman, P.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Brabec, C. J.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Burkhard, G. F.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Cao, W.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Cho, K.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Cho, S.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Corrigan, T. D.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Dennler, G.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Du, M.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Guo, S. H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Hagglund, C.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Heeger, A. J.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Heineman, W. R.

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Herman, W. N.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Hoke, E. T.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kärkkäinen, A. H. O.

Kasemo, B.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, J. S.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Kim, J. Y.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Kim, S. H.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, Y.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Lee, C. H.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Lee, D. Y.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Lee, J. H.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Lee, K.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Li, H.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Luth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Maes, B.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

McGehee, M. D.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Park, D.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Park, J. H.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Park, S. H.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Petersson, G.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Phaneuf, R. J.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Rantala, J. T.

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Romero, D. B.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Rowlen, K. L.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Scharber, M. C.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

Schilinsky, P.

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Scully, S. R.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Seliskar, C. J.

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Shen, H. H.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Simon, J. J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Szmacinski, H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Tenent, R. C.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

van de Lagemaat, J.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Waldauf, C.

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Zach, M.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Zudans, I.

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Adv. Mater. (3)

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Appl. Phys. Lett. (12)

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys. (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Nano Lett. (1)

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Org. Electron. (1)

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Thin Solid Films (1)

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Other (2)

D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic Aluminum, ” in Handbook of Optical Constants of Solids, D. Palik, ed., (Academic Press, Orlando, 1985), pp. 369–406.

A. Neureuther, TEMPEST FDTD software developed by Univ. of California at Berkeley.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). Schematic cross section of nanopillar-patterned organic solar cell. (b). SEM image of Au nanopillar arrays on ITO surface; nanopillar edge length 180 nm, pitch 540 nm, and height 70 nm.

Fig. 2
Fig. 2

(a). Measured external quantum efficiency (EQE) for the (unpatterned) control cell and nanopillar-patterned cells under zero bias. (b). Simulated absorbance for control and patterned cells. (c). Ratios between measured EQE (blue curve) and simulated |E|2 (black curve) for a nanopillar-patterned cell and those for a control cell.

Fig. 3
Fig. 3

(a). Simulated |E|2 image cutting though the center of Au nanopillar in patterned cell at peak of P3HT:PCBM absorption, but off resonance (575 nm wavelength). (b). Corresponding image on resonance (675 nm wavelength). (c). Simulated |E|2 image cutting though the center of Fe nanopillar in patterned cell on resonance (675 nm wavelength).

Fig. 4
Fig. 4

(a). |E|2 integrated over volume of P3HT:PCBM layer for Au NP-patterned cell. For this and following panels: nanopillar edge length 180 nm, pitch 540 nm, and height 70 nm, illumination is at 675 nm wavelength at normal incidence, blue curve is for a P3HT:PCBM layer thickness of 220 nm, green curve for 250 nm and red curve for 280 nm. (b). |E|2 integrated over volume of P3HT:PCBM layer for Fe NP-patterned cell illuminated with 675 nm wavelength light at normal incidence. (c). |E|2 integrated over volume of a 20 nm wide shell around an Au NP. (d). |E|2 integrated over volume of a 20 nm wide shell around a Fe NP.

Fig. 5
Fig. 5

(a). |E|2 images of the active layer cutting though the center of the Au nanopillars (dashed rectangles) in patterned cells for kA = 0.01 (upper panel), kA = 0.03 (middle panel) and kA = 0.8 (lower panel). (b). Calculated active layer absorption of the active layer with (pink curve) and without (black curve) NPs as function of its absorption coefficient (kA ) at an incident wavelength of 675 nm. (c). Difference between absorption of the patterned cell and that of the control cell. Insert: ratio of absorption of the patterned cell to that of the control cell.

Tables (1)

Tables Icon

Table 1 Measured short circuit current densities, open circuit voltages and fill factors for a standard BHJ OPV device including PEDOT:PSS (column (a)), a control device with neither PEDOT:PSS nor Au nanopillars (column (b)) and a Au nanopillar patterned device with no PEDOT:PSS layer (column (c)) under solar AM 1.5 G illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q A ( x , y , z ) = 2 π c ε o n A k A | E A ( x , y , z ) | 2 / λ

Metrics