Abstract

We report a kind of broadband electromagnetic boundary mode at an interface of anti-parallel magnetized media, which can only propagate in one direction perpendicular to the magnetization and parallel to the interface. The unidirectionality of this mode originates from the permeability or permittivity tensor introduced by magnetization. We theoretically and numerically analyze the existence of the unidirectional mode, and point out that this mode can exist in both gyromagnetic and gyroelectric medium. We also propose a one-way waveguide based on this unidirectional mode, which may realize a new kind of electromagnetic isolation differing from those existing ones.

© 2010 OSA

1. Introduction

Nonreciprocal components, which break time-reversal symmetry, are proven to be important in electromagnetic circuits. Many theories and mechanisms have been approved to realize the nonreciprocal active components, such as circulators and isolators. The traditional way to achieve time-reversal breaking is to utilize the Faraday Effect, introduced by applying an external magnetic field. Under an external field, magneto-optical materials possess permeability or permittivity tensor with non-zero off-diagonal elements, which are imaginary. Thus the media is anisotropic, and breaks the time-reversal and space-inversion symmetries as well. Utilizing this effect, many nonreciprocal components have been developed [14], while some working in microwave frequencies have measured up to a commercial level. With the development of integrated optics [5,6], more and more attention is paid to the integratable nonreciprocal components [718], which may be suitable for on-chip optical circuits, and whose working frequencies are near infrared. Usually, on-chip isolators utilize magneto-optical (MO) effects other than Faraday rotation, such as a nonreciprocal propagation constant and nonreciprocal loss phenomenon. Recently, waveguide isolators are attempted [1923], and isolators based on dual-waveguide, Mach-Zehnder interferometers, have also been reported [2427]. With the help of MO photonic crystals (PhCs), analogous to edge mode in quantum hall effect, one-way waveguides have been proposed [28,29], which may provide a hopeful integratable solution. Another one-way waveguide is suggested utilizing nonreciprocal surface plasma polariton and the constraining of light by PhC [30]. Optical signals can propagate unidirectionally forward in both of these two one-way waveguides, suppressing backward scattering, if only the working frequency is in a particular range. In these one-way waveguides, MO materials play a key role in breaking time-reversal symmetry. With an external magnetic field applied, MO materials can introduce special MO effects, such as a nonreciprocal mode at the surface [31,32]. Using this nonreciprocal effect, more compact isolators suitable for integrated circuits may be achieved. Meanwhile, a magnetic domain wall, formed at an interface of anti-parallel magnetized media, has been used to obtain a nonreciprocal mode phase shift [33,34]. Combining PhCs with magnetic domain wall, an nonreciprocal waveguide can be achieved [35], which breaks time-reversal and space-inversion symmetries, respectively. However, all of these works mentioned above need complex structures or dynamic modulations, which may bring new challenges in integrated circuits. Besides, to the best of our knowledge, the existing isolations are all sensitive to frequency, which is a drawback for today’s broadband information processing. Thus it’s urgent to find a new isolating mechanism with a simple structure and broadband capacity.

Here we present and demonstrate a novel mechanism with a simple straight waveguide, in which broadband unidirectional mode exists along a magnetic domain wall formed in MO materials. Utilizing this effect, broadband isolation can be achieved with a simple structure. This nonreciprocal MO effect originates from the off-diagonal elements in permittivity or permeability tensor induced by magnetization. Different from the unidirectional mode mentioned in Ref [30], unidirectionality of this mode only depends on the signs of off-diagonal elements in the tensor. Thus, this mode can support broadband unidirectional frequencies, consequently.

2. Theoretical analysis

We start by analyzing the additional effects introduced by an external static magnetic field, as in this paper along the z axis in Cartesian coordinates, applied on homogenous MO materials. The external field changes the media’s response to an electromagnetic wave, by changing the permittivity or permeability into a tensor form, and making the media anisotropic. In frequencies near optical range, the change usually takes place in the permittivity, while in permeability near frequencies of microwave range, as below

ε=ε0[ε1iε20iε2ε10001],μ=μ0[μ1iμ20iμ2μ10001].

Where ε0 and μ0 are the permittivity and permeability of vacuum, respectively. Here the elements of these two tensors, i.e. ε1,2 and μ1,2, usually fluctuate with working frequency, but in a relatively large frequency range, the signs of them keep unchanged. We will show in this paper, the signs of these tensor’s elements will determine the propagating direction of boundary mode at domain walls, across which the signs of off-diagonal elements, i.e. ε2 or μ2 change rapidly while signs of diagonal elements, i.e. ε1 or μ1, keep unchanged. Technologically, this can be realized by applying anti-parallel external magnetic field along a fixed plane [35,36].

For detail, we focus on the case of permittivity, which means the working frequency is near optical range, and the media is gyroelectronic material. The tensor form of ε in Eq. (1) shows gyrotropic, which will only give chirality on the TM mode (with non-zero Hz, Ex and Ey), and leave the TE mode (with non-zero Ez, Hx and Hy) nonchiral. Then for the TE mode, the media is still an isotropic one, and there is no boundary mode at domain wall. For TM mode localized at the boundary, we want their field to exponentially decay on both sides of the boundary. Either side of the domain wall is composed of MO material, with reverse sign of ε2. Since ε2 is not homogeneous in the system, we consider ε2 as function of position r. Assuming the domain wall is at zx plane in Cartesian coordinate system, as shown in Fig. (1a) , then for y>0 and y<0 we have ε2(r)=ε2 and ε2(r)=ε2, respectively. For simplicity, we neglect the material loss. We therefore take

H(>)(r;t)=A(0,0,1)exp[ikxαyiωt]
Ε(>)(r;t)=Aiω[ε˜1α+ε˜2k, i(ε˜2α+ε˜1k), 0]exp[ikxαyiωt]
in the region y>0, and
H(<)(r;t)=B(0,0,1)exp[ikx+βyiωt]
Ε(<)(r;t)=Aiω[(ε˜1β+ε˜2k), i(ε˜2β+ε˜1k), 0]exp[ikx+βyiωt]
in the region y<0. Here ε˜1=ε1/(ε12ε22) and ε˜2=ε2/(ε12ε22), α and β are positive decay parameters, k is the wave number along the domain wall. Then the sign of k can determine propagating direction of the mode. A positive k means that the mode propagates along + x axis, while a negative k means the mode propagates along the -x axis. In order to complete the problem, we must match the solutions in each region by the use of boundary conditions at y = 0 plane, that the tangential components of E and the normal components of B are continuous. These two conditions reduce to the results that A=B and α=β. Also, we finally get to a novel result that

 

Fig. 1 Magnetic domain wall and steady-state field pattern for unidirectional mode. The external magnetic field for y>0 and y<0 are applied along + z and -z, respectively. A TE polarized (Ez) point source, indicated by the big arrow in (a), is located at the domain wall. Ez field pattern is indicated with blue-red color map in (a)-(e), while H field pattern is shown in (a) with arrows grid. At very boundary of the domain wall we can observe a unidirectional boundary mode, which is exactly a TEM mode. Different frequencies 0.050, 0.075, 0.100, 0.125 and 0.150 (×2πc/a) are utilized to show the unidirectional phenomenon, which are shown in (a), (b), (c), (d) and (e), respectively.

Download Full Size | PPT Slide | PDF

k=ε˜1ε˜2α=αQE.

Here QE=ε˜2/ε˜1=ε2/ε1, is the voigt parameter, which fluctuates with external field and working frequency, but whose sign keeps unchanged in a relative wide range of frequency. Thus, given the positive α and assuming positive ε1 and ε2, we therefore have positive QE and negative k, which determine the mode can only propagate along -x direction. On the other hand, with the reversed magnetization in y<0 and y>0 regions, respectively, ε2(r) changes signs and we can also get a boundary mode which can only propagate in + x direction. With the relation k=neffω/c, we conclude that the transverse decay parameter α, which defines the intensity of localization for boundary mode, is determined by frequency ω, effective refractive index neff and voigt parameter QE, with the relation α=|QEk|. Therefore, the larger QE, the larger α, and the stronger unidirectional phenomenon will be. Also we can conclude by taking Eq. (4) into Eq. (2) and Eq. (3) that this boundary mode is actually a TEM mode, with only non-zero Hz and Ey.

The situation is similar with gyromagnetic media, in which permeability is a tensor as μ in Eq. (1). The domain wall in gyromagnetic media can support unidirectional boundary mode which is proven to be TEM mode with non-zero Hy and Ez. The voigt parameter QM=μ2/μ1 determines the decay parameter by α=|QMk|, then the localization of the boundary mode at domain wall. And also, with signs of μ1 and μ2 unchanged, we have fixed-sign k with relation k=α/QM. Thus we have a broadband unidirectional boundary mode at the interface.

3. Numerical calculation

3.1 Unidirectional boundary mode at domain wall

As shown above, the unidirectional property of this boundary mode only depends on the signs reversing of off-diagonal elements in permittivity or permeability tensors. Therefore it is robust even concerning the loss and frequency dependency of real materials. To verify our theoretical analysis about this unidirectional boundary mode, we utilize a 2D finite-difference time-domain (FDTD) method [37] to demonstrate the propagation of the unidirectional mode. As discussed above, larger voigt parameter can show greater unidirectional boundary phenomenon, we choose gyromagnetic materials mentioned in Ref [28], which show a large voigt parameter. For detail, we choose μ1=14 and μ2=12.4, while the relative permittivity is ε=15. Here, the signs of these parameters keep unchanged in a wide frequency range, and for simplicity, we assume values of these parameters unchanged in our demonstration. As shown in Fig. 1, the nonreciprocal boundary mode can only propagate along + x direction, while the backward counterpart is absent. Magnetic field H is shown as arrows in Fig. 1(a), which is confirmed to be a TEM mode boundary at the interface. We choose five different working frequencies normalized to a unit length a, which are 0.050, 0.075, 0.100, 0.125 and 0.150 (×2πc/a), respectively. Here we use the normalized frequency instead of real frequency, for the idiomatic use in integrated optics. It is easy to transform to real frequencies, if only a is provided. All these frequencies can possess a unidirectional mode, which prove that this unidirectional boundary mode can work with a broadband frequency range. The localization intensity of boundary mode's energy increases with the frequency, as shown in Fig. 1(b-e). Simultaneously in our demonstration, there are bulk modes which can propagate off the domain wall, and which are reciprocal. With proper designation and with the help of a proper absorbing boundary, this reciprocal affection can be inhibited maximally.

Our discussion above bases on the conditions that magnetization over the domain wall reverses rapidly. In some occasions magnetization reversion may experience a thin layer of transition region. With transition layer, the unidirectional mode discussed above transforms into a nonreciprocal mode, which propagates alone the layer. It can be proved that with this layer’s thickness increasing, the unidirectionality of this mode decreases. Furthermore, in our discussion, the unidirectional effect relies on the anti-symmetrical profile of the domains. If the profile of the domain deviates from this situation, e.g. y>0 half part is partly demagnetized while y<0 half part keeps unchanged, the unidirectionality of boundary mode also decreases. In the extreme occasion, when y>0 half part is unmagnetized, the unidirectional mode disappears. The simulation results for deviation from anti-symmetrical profile of domain wall are shown in Fig. 2 . For a partly demagnetization, we assume the parameters as μ1=6and μ2=2 for y>0, and keep parameters the same as above for y<0. Different from the anti-symmetrical case, more energy radiates into bulk modes, while still keeping unidirectional boundary mode observable. For this case the result is shown in Fig. 2(a). Another extreme occasion, when y>0 half part is unmagnetized, we have μ1=1andμ2=0. The result is shown in Fig. 2(b). In this case we cannot find any boundary mode at the interface, and all the radiation energy transforms into bulk modes. In conclusion, the nonreciprocal effect and the unidirectionality mainly depend on the rapid reversion of the magnetization.

 

Fig. 2 Deviation cases from anti-symmetrical profile of domain wall. Partly demagnetization case with μ1=6 and μ2=2for y>0 is shown in (a); and unmagnetization case with μ1=1 and μ2=0 for y>0 is shown in (b). Operating frequency is chosen as 0.2×2πc/a for clearly demonstration, where a is the normalized length.

Download Full Size | PPT Slide | PDF

3.2 Broadband isolator based on unidirectional boundary mode

The introduction of this unidirectional mode at domain wall will provide us a potential alternative method to achieve compact nonreciprocal components such as broadband isolators, with a very simple structure. As an example, we consider a one-way waveguide composed of a straight domain wall, with anti-parallel magnetization on each side, which is shown in Fig. 3(a) . The material’s parameters are chosen the same as above in Fig. 1. In order to prevent perturbation of bulk modes, and to achieve high isolation ratio, we clad the isolating component with absorbing layers. We here use two reciprocal waveguides as input and output ports. In order to minimize the reflection between reciprocal waveguides and one-way waveguide, we assume the reciprocal waveguide with same relative permittivityε=15, and a relative permeabilityμ=18.7, for the purpose of impedance matching with one-way waveguide. The length of domain wall is chosen as 16a, while the input and output reciprocal waveguide’s width is a. As discussed above, this waveguide possess broadband unidirectional boundary mode at the interface. The forward and backward propagating transient field pattern are shown in Fig. 3(b) and Fig. 3(c) respectively, with forward and backward transmission, and isolation ratio shown in Fig. 4(a) and Fig. 4(b), respectively. We can observe a great isolation ratio in this simple isolation based on unidirectional boundary mode, and in a wide frequency range, the isolation is still robust. In Fig. 4, the fluctuating of transmissions and isolation ratio is induced by bulk mode which is reciprocal. Also we can observe ripples in both forward and backward transmissions, which are induced by reflection interference. Due to the unidirectionality of the boundary mode, backward propagating energy along the boundary is suppressed, and the only backward transmission of energy comes from bulk mode, which is reciprocal. This makes the backward transmission very low, as shown in the inside box in Fig. 4(a). The maximum of forward transmission is about 73%, due to the loss on reflections at interface with reciprocal waveguides, and also due to the loss on bulk modes which propagate off the domain wall deviating from the output port. The peak of forward transmission occurs at frequency 0.07 (×2πc/a), at which frequency the mode matching allows most energy from reciprocal waveguide coupled into unidirectional boundary mode. Considering the backward transmission, which is only affected by reciprocal bulk mode, the isolation ratio possesses a peak value of 25 dB at frequency 0.093 (×2πc/a).

 

Fig. 3 Isolator based on unidirectional boundary mode at the domain wall. The isolator is connected with two reciprocal waveguide, which work as input and output ports. The mechanism of this isolator is shown in (a), and the forward and backward transmitting steady-state field patterns are shown in (b) and (c). Operating frequency is 0.05×2πc/a, where a is the waveguide's width.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Forward and backward transmission (a), and the isolation ratio (b) for our example isolator. In (a), the blue line represents the forward transmission and the red one represents the backward counterpart. The magnified backward transmission is plotted in the inside box. (b) shows the high isolation ratio in a wide frequency range.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we report the theoretical and numerical demonstration of a unidirectional boundary mode at domain wall. This unidirectional property relies on the signs reversing of off-diagonal elements in permittivity or permeability tensors, therefore it is robust in a wide frequency range. This broadband nonreciprocal behavior may be used to design compact and integratable nonreciprocal component, such as isolators and circulators. The intensity of this boundary mode is proportional to the voigt parameter, which is limited in real MO materials. Metamaterials [38,39] may provide a more tunable way to achieve higher level unidirectional performance.

Acknowledgments

This work was supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No. 708038), and Thanks are given to Xiaofei Zang and Cai Huang for their helpful discussion.

References and links

1. P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002). [CrossRef]   [PubMed]  

2. C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004). [CrossRef]  

3. P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009). [CrossRef]  

4. B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009). [CrossRef]  

5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef]   [PubMed]  

6. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004). [CrossRef]  

7. Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986). [CrossRef]  

8. B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991). [CrossRef]  

9. A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998). [CrossRef]  

10. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066609 (2001). [CrossRef]   [PubMed]  

11. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood Jr, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004). [CrossRef]   [PubMed]  

12. W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006). [CrossRef]  

13. Y. Shoji, I. W. Hsieh, J. R. M. Osgood, and T. Mizumoto, “Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007). [CrossRef]  

14. A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008). [CrossRef]  

15. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor Waveguide Isolators,” J. Lightwave Technol. 26(2), 291–301 (2008). [CrossRef]  

16. H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008). [CrossRef]  

17. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009). [CrossRef]  

18. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009). [CrossRef]   [PubMed]  

19. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007). [CrossRef]   [PubMed]  

20. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008). [CrossRef]  

21. L. Tang, S. M. Drezdzon, and T. Yoshie, “Single-mode waveguide optical isolator based on direction-dependent cutoff frequency,” Opt. Express 16(20), 16202–16208 (2008). [CrossRef]   [PubMed]  

22. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17(11), 9276–9281 (2009). [CrossRef]   [PubMed]  

23. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009). [CrossRef]  

24. J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000). [CrossRef]  

25. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferomertic magneto-optical isolator using phase adjustment,” Opt. Express 15(20), 13446–13450 (2007). [CrossRef]   [PubMed]  

26. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach?Zehnder Interferometer,” J. Lightwave Technol. 26(17), 3166–3172 (2008). [CrossRef]  

27. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009). [CrossRef]  

28. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008). [CrossRef]   [PubMed]  

29. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009). [CrossRef]   [PubMed]  

30. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008). [CrossRef]   [PubMed]  

31. R. E. Camley, “Nonreciprocal Surface wave,” Surf. Sci. Rep. 7(3-4), 103–187 (1987). [CrossRef]  

32. J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007). [CrossRef]  

33. A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998). [CrossRef]  

34. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001). [CrossRef]  

35. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008). [CrossRef]  

36. J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

37. A. Taflove, and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House, Inc., Norwood, MA, 2005).

38. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef]   [PubMed]  

39. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002).
    [CrossRef] [PubMed]
  2. C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
    [CrossRef]
  3. P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
    [CrossRef]
  4. B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
    [CrossRef]
  5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
    [CrossRef] [PubMed]
  6. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004).
    [CrossRef]
  7. Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986).
    [CrossRef]
  8. B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991).
    [CrossRef]
  9. A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
    [CrossRef]
  10. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066609 (2001).
    [CrossRef] [PubMed]
  11. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004).
    [CrossRef] [PubMed]
  12. W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
    [CrossRef]
  13. Y. Shoji, I. W. Hsieh, J. R. M. Osgood, and T. Mizumoto, “Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
    [CrossRef]
  14. A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008).
    [CrossRef]
  15. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor Waveguide Isolators,” J. Lightwave Technol. 26(2), 291–301 (2008).
    [CrossRef]
  16. H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008).
    [CrossRef]
  17. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
    [CrossRef]
  18. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009).
    [CrossRef] [PubMed]
  19. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007).
    [CrossRef] [PubMed]
  20. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [CrossRef]
  21. L. Tang, S. M. Drezdzon, and T. Yoshie, “Single-mode waveguide optical isolator based on direction-dependent cutoff frequency,” Opt. Express 16(20), 16202–16208 (2008).
    [CrossRef] [PubMed]
  22. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17(11), 9276–9281 (2009).
    [CrossRef] [PubMed]
  23. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [CrossRef]
  24. J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
    [CrossRef]
  25. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferomertic magneto-optical isolator using phase adjustment,” Opt. Express 15(20), 13446–13450 (2007).
    [CrossRef] [PubMed]
  26. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach?Zehnder Interferometer,” J. Lightwave Technol. 26(17), 3166–3172 (2008).
    [CrossRef]
  27. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
    [CrossRef]
  28. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
    [CrossRef] [PubMed]
  29. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [CrossRef] [PubMed]
  30. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [CrossRef] [PubMed]
  31. R. E. Camley, “Nonreciprocal Surface wave,” Surf. Sci. Rep. 7(3-4), 103–187 (1987).
    [CrossRef]
  32. J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
    [CrossRef]
  33. A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
    [CrossRef]
  34. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001).
    [CrossRef]
  35. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
    [CrossRef]
  36. J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).
  37. A. Taflove, and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House, Inc., Norwood, MA, 2005).
  38. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [CrossRef] [PubMed]
  39. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
    [CrossRef]

2009 (8)

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[CrossRef]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009).
[CrossRef] [PubMed]

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17(11), 9276–9281 (2009).
[CrossRef] [PubMed]

2008 (10)

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach?Zehnder Interferometer,” J. Lightwave Technol. 26(17), 3166–3172 (2008).
[CrossRef]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor Waveguide Isolators,” J. Lightwave Technol. 26(2), 291–301 (2008).
[CrossRef]

L. Tang, S. M. Drezdzon, and T. Yoshie, “Single-mode waveguide optical isolator based on direction-dependent cutoff frequency,” Opt. Express 16(20), 16202–16208 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008).
[CrossRef]

H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

2007 (5)

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007).
[CrossRef] [PubMed]

Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferomertic magneto-optical isolator using phase adjustment,” Opt. Express 15(20), 13446–13450 (2007).
[CrossRef] [PubMed]

Y. Shoji, I. W. Hsieh, J. R. M. Osgood, and T. Mizumoto, “Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
[CrossRef]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

2006 (1)

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

2004 (4)

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
[CrossRef]

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004).
[CrossRef] [PubMed]

2002 (1)

P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (2)

J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

1998 (2)

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[CrossRef]

A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
[CrossRef]

1991 (1)

B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991).
[CrossRef]

1987 (1)

R. E. Camley, “Nonreciprocal Surface wave,” Surf. Sci. Rep. 7(3-4), 103–187 (1987).
[CrossRef]

1986 (1)

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986).
[CrossRef]

Allen, M.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

Amiri, P. K.

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

Armelles, G.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Baets, R.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Bagnall, D. M.

A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008).
[CrossRef]

Bai, B.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Barrelet, C. J.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

Belov, P. A.

P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002).
[CrossRef] [PubMed]

Ben Youssef, J.

C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
[CrossRef]

Brosseau, C.

C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
[CrossRef]

Camley, R. E.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991).
[CrossRef]

R. E. Camley, “Nonreciprocal Surface wave,” Surf. Sci. Rep. 7(3-4), 103–187 (1987).
[CrossRef]

Cebollada, A.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Celinski, Z.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Clarke, R.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Clavero, C.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Dagens, B.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Decobert, J.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Dok Won, L.

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

Dötsch, H.

R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004).
[CrossRef] [PubMed]

O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001).
[CrossRef]

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[CrossRef]

Drezdzon, S. M.

Espinola, R. L.

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Fehndrich, M.

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[CrossRef]

A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
[CrossRef]

Figotin, A.

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066609 (2001).
[CrossRef] [PubMed]

Fujita, J.

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

García-Martín, A.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

García-Martín, J. M.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Goldman, J. R.

J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

González-Díaz, J. B.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Goto, S.

H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008).
[CrossRef]

Gouezigou, O. L.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

Guo, X.

Hensley, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

Hertel, P.

Hsieh, I. W.

Hsieh, I.-W.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Inuzuka, H.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986).
[CrossRef]

Izuhara, T.

Jiang, X.

Joannopoulos, J. D.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

Johnson, B. L.

B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991).
[CrossRef]

Kakihara, K.

Kikuchi, T.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986).
[CrossRef]

Kono, N.

Koshiba, M.

Kuanr, B. K.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

Kumah, D. P.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Ladd, T. D.

J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

Lagae, L.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Levy, M.

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Lieber, C. M.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

Lohmeyer, M.

O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[CrossRef]

Lukaszew, R. A.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Make, D.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Mallégol, S.

C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
[CrossRef]

Marson, R.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

Mishra, S. R.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

Mizumoto, T.

Moeyersoon, B.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Montoya, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Okamura, Y.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986).
[CrossRef]

Osgood, J. R. M.

Y. Shoji, I. W. Hsieh, J. R. M. Osgood, and T. Mizumoto, “Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
[CrossRef]

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Osgood, M.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Osgood, R. M.

Ozbay, E.

Parameswaran, K.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

Parys, W. V.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Popkov, A. F.

A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[CrossRef]

Potts, A.

A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008).
[CrossRef]

Quéffelec, P.

C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
[CrossRef]

Ram, R.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

Ram, R. J.

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Rejaei, B.

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

Richard, J.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Saitoh, K.

Serebryannikov, A. E.

Shimizu, H.

H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008).
[CrossRef]

Shoji, Y.

Skuza, J. R.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Soljacic, M.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Svirko, Y.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

Tang, L.

Thourhout, D. V.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Tretyakov, S. A.

P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002).
[CrossRef] [PubMed]

Tsai, M.-C.

Turunen, J.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Vanheertum, R.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Vanwolleghem, M.

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Veerakumar, V.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Viitanen, A. J.

P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002).
[CrossRef] [PubMed]

Vitebsky, I.

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066609 (2001).
[CrossRef] [PubMed]

Vroubel, M.

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

Wang, M.

Wang, S. X.

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Wilkens, L.

O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001).
[CrossRef]

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Yamaguchi, F.

J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

Yamamoto, S.

Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986).
[CrossRef]

Yamamoto, Y.

J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

Yan, Z.

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

Yang, J.

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Yoshida, S.

H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008).
[CrossRef]

Yoshie, T.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Yu, T.

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Zaman, T. R.

Zhang, W.

A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008).
[CrossRef]

Zhou, H.

Zhou, Q.

Zhuromskyy, O.

O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001).
[CrossRef]

A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[CrossRef]

W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006).
[CrossRef]

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[CrossRef]

J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).

IEEE Photon. Technol. Lett. (1)

H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008).
[CrossRef]

IEEE Trans. Magn. (1)

P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009).
[CrossRef]

J. Appl. Phys. (2)

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009).
[CrossRef]

A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998).
[CrossRef]

J. Lightwave Technol. (5)

Nano Lett. (1)

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

Nat. Photonics (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Nature (1)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (3)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008).
[CrossRef]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Phys. Rev. B (3)

B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991).
[CrossRef]

C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002).
[CrossRef] [PubMed]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066609 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Surf. Sci. Rep. (1)

R. E. Camley, “Nonreciprocal Surface wave,” Surf. Sci. Rep. 7(3-4), 103–187 (1987).
[CrossRef]

Other (1)

A. Taflove, and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House, Inc., Norwood, MA, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Magnetic domain wall and steady-state field pattern for unidirectional mode. The external magnetic field for y>0 and y<0 are applied along + z and -z, respectively. A TE polarized (Ez ) point source, indicated by the big arrow in (a), is located at the domain wall. Ez field pattern is indicated with blue-red color map in (a)-(e), while H field pattern is shown in (a) with arrows grid. At very boundary of the domain wall we can observe a unidirectional boundary mode, which is exactly a TEM mode. Different frequencies 0.050, 0.075, 0.100, 0.125 and 0.150 ( × 2 π c / a ) are utilized to show the unidirectional phenomenon, which are shown in (a), (b), (c), (d) and (e), respectively.

Fig. 2
Fig. 2

Deviation cases from anti-symmetrical profile of domain wall. Partly demagnetization case with μ 1 = 6 and μ 2 = 2 for y>0 is shown in (a); and unmagnetization case with μ 1 = 1 and μ 2 = 0 for y>0 is shown in (b). Operating frequency is chosen as 0.2 × 2 π c / a for clearly demonstration, where a is the normalized length.

Fig. 3
Fig. 3

Isolator based on unidirectional boundary mode at the domain wall. The isolator is connected with two reciprocal waveguide, which work as input and output ports. The mechanism of this isolator is shown in (a), and the forward and backward transmitting steady-state field patterns are shown in (b) and (c). Operating frequency is 0.05 × 2 π c / a , where a is the waveguide's width.

Fig. 4
Fig. 4

Forward and backward transmission (a), and the isolation ratio (b) for our example isolator. In (a), the blue line represents the forward transmission and the red one represents the backward counterpart. The magnified backward transmission is plotted in the inside box. (b) shows the high isolation ratio in a wide frequency range.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 0 [ ε 1 i ε 2 0 i ε 2 ε 1 0 0 0 1 ] , μ = μ 0 [ μ 1 i μ 2 0 i μ 2 μ 1 0 0 0 1 ] .
H ( > ) ( r ; t ) = A ( 0 , 0 , 1 ) exp[i k x α y i ω t ]
Ε ( > ) ( r ; t ) = A i ω [ ε ˜ 1 α + ε ˜ 2 k ,  i( ε ˜ 2 α + ε ˜ 1 k ), 0 ] exp[i k x α y i ω t ]
H ( < ) ( r ; t ) = B ( 0 , 0 , 1 ) exp[i k x + β y i ω t ]
Ε ( < ) ( r ; t ) = A i ω [ ( ε ˜ 1 β + ε ˜ 2 k ) ,  i( ε ˜ 2 β + ε ˜ 1 k ), 0 ] exp[i k x + β y i ω t ]
k = ε ˜ 1 ε ˜ 2 α = α Q E .

Metrics