Abstract

Using coordinate transformation stated earlier by Pendry et al. [Science 312, 1780 (2006)], we investigate the two-dimensional elliptical electromagnetic superscatterer and superabsorber, based on the concept of complementary media. Such an elliptical electromagnetic superscatterer (or superabsorber) is realized by coating an elliptical negative refractive material shell. The effectiveness of the elliptical electromagnetic superscatterer and superabsorber designs is verified by finite element simulations. The proposed design provides a more practical superscatterer (or superabsorber) geometry when compared to previous designs with axial and radial symmetries. Our results can be extended to an arbitrarily shaped electromagnetic superscatterer and superabsorber.

©2010 Optical Society of America

1. Introduction

In the past few years, the exciting issue of achieving invisibility of objects has received much attention [128]. Based on the coordinate transformation of Maxwell’s equations, Pendry et al theoretically proposed an invisibility cloak that can hide the objects inside the cloak from detection, the cloak having electrical permittivity and magnetic permeability that are both spatially varying and anisotropic [2]. Following this theory, an electromagnetic cloak bends and guides incoming waves smoothly around the cloaked region, so that the fields after having emerged from the cloak are the same as if the incident waves have just passed through the free space. Cummer et al. first reported full-wave electromagnetic simulations of the cylindrical version of this cloaking structure using ideal and nonideal (but physically realizable) electromagnetic parameters [3]. Based on low-index electromagnetic metamaterials, a microwave invisibility cloak was soon realized in experiments [4]. Recently, acoustic transparency phenomenon for a multilayered sphere with acoustic metamaterial has been proposed by Zhou et al., which opened a new possibility to enrich the applications of metamaterials cloaking techniques [12,13]. In addition, electromagnetic cloaks with arbitrary geometries have also been investigated [23,24].

In contrast to concealing an object, another interesting phenomenon such as superscatterer which means that the object looks like a scatterer bigger than its geometric size in electromagnetic wave detection, was proposed by Yang et al. based on the concept of complementary media [2936]. Such a superscatterer [29] was realized by coating a negative refractive material shell on a perfect electrical conductor cylinder. Based on the mechanism of superscatterer, Jack et al. designed a frequency-selective superabsorber metamaterial [30], which could be constructed by using an absorbing core material coated with a shell of isotropic double negative metamaterial. They found that the absorption cross section of a fixed volume could be made arbitrarily large at one frequency. Chen et al. proposed a general theoretical method to design a superscatterer with an arbitrary cross section [34]. Their theoretical results showed that the PEC reshaper could reshape the PEC boundary arbitrarily. But, they demonstrated the properties of the PEC reshaper with a circular PEC coating with circular metamaterial shell.

In the above investigations [2933] of superscatterer and superabsorber, all theoretical analyses, numerical simulations and parameter designs were devoted mainly to circular objects(axial and radial symmetries), which were relatively easier to design and analyse. Although Chen et al. [34] used coordinate transformations theory to design a superscatterer with an arbitrary cross section, their numerical simulation is only on a circular object with perfect axial and radial symmetries. In the practical application or in general, most objects don’t have such perfect symmetries, what happen to the arbitrarily shaped superscatterer and superabsorber? An ellipse may have very good representative of arbitrarily shaped objects to a very great extent, because the boundary of the ellipse is a function of angle just as arbitrarily shaped objects’ boundaries versus their corresponding angles (the boundary of a circle is constant versus its angle). Therefore, in this paper, we proposed the designs of two-dimensional elliptical electromagnetic superscatterer and superabsorber with elliptical cross section described by three functions R1(θ), R2(θ), and R3(θ), giving an angle-dependent distance from the origin. Our designs can be extended to the arbitrarily shaped electromagnetic superscatterer and superabsorber. The elliptical electromagnetic superscatterer (or superabsorber) could be realized by coating an elliptical negative refractive material shell. The properties of elliptical electromagnetic superscatterer and superabsorber were investigated by using the finite-element simulation.

2. Elliptical electromagnetic superscatterer

We consider an elliptical-cylindrical object with elliptical cross section embedded in free space, which is covered by elliptical negative refractive material shell as shown in Fig. 1 . The inner and outer boundaries of the shell are described by two functions R1(θ) and R2(θ), and their minor semi-axis in the y direction are a and b, respectively. Based on the concept of complementary media, the practical cross section is equal to a bigger ellipsoid with the outer boundary of R3(θ) as shown in Fig. 1. The geometric coordinate transformation between the new system (f(ρ), θ', z') and the original system (ρ, θ, z) can be expressed as:

f(ρ)=R3(θ)R2(θ)R2(θ)R1(θ)(R(θ)2ρ)+R2(θ),R1(θ)<ρ<R2(θ)
θ'=θ,
z'=z,
where f(ρ) is a monotonic differentiable function. The inner, middle and outer boundaries are:
R1(θ)=asin2θ+cos2θ/k2R2(θ)=bsin2θ+cos2θ/k2,R3(θ)=csin2θ+cos2θ/k2
where k is the ratio between the major semi-axis and minor semi-axis of the corresponding ellipse.

 figure: Fig. 1

Fig. 1 (Color online). Computational domain of the elliptical superscatterer and superabsorber. The inner ellipse is a PEC (or an absorber core) with boundary of R1(θ) and minor semi-axis of a. The middle shell is an elliptical negative refractive material shell with outer boundary of R2(θ) and minor semi-axis of b. If the inner ellipsoid coating with the elliptical negative refractive shell, its cross section is the same as a large ellipsoid with boundary of R3(θ) and minor semi-axis of c.

Download Full Size | PPT Slide | PDF

The corresponding permittivity and permeability tensors of the transformation media in the cylindrical coordinates are,

ε¯¯ε=μ¯¯μ=[f[1+(1ffθ)2]ρfρ1ffθ01ffθρffρ000fρfρ],
Substituting Eqs. (1), (2) into Eq. (3), we obtain
ε¯¯ε=μ¯¯μ=μrrμrθ0μθrμθθ000μzz=[f0[1+1f02(f2)2]ρf11f0f201f0f2ρf0f1000f0ρf1],
where f0=bcbaρ+cababsin2θ+cos2θ/k2, f1=bcba, and f2=cabab(1/k21)sinθcosθ(sin2θ+cos2θ/k2)3/2.

The corresponding permittivity and permeability tensors of the transformation media in Cartesian coordinates are

[μxxμxyμyxμyy]=[cosθ'sinθ'sinθ'cosθ'][μrrμrθμθrμθθ][cosθ'sinθ'sinθ'cosθ']
where
μxx=(f0ρf1+f22ρf0f1)cos2θ+ρf1f0sin2θ+2f2f0sinθcosθ,μxy=μyx=(f0ρf1+f22ρf0f1ρf1f0)sinθcosθf2f0(cos2θsin2θ),μyy=ρf1f0cos2θ+(f0ρf1+f22ρf0f1)sin2θ2f2f0sinθcosθ,μzz=εzz=f0f1ρ.
In what follows, we perform numerical simulations on elliptical-cylindrical superscatterer by using the finite element method (FEM) to demonstrate the designed formulae of Eq. (6). The computational domain consists of perfectly matched layers (PML) to simulate the absorbing boundary conditions as shown in Fig. 1. The inner ellipse is a perfectly electric conducting (PEC) coating with an elliptical negative refractive material shell. Plane wave propagates from left to right with unit amplitude and frequency of 3GHz.

First, we consider a circular superscatterer with parameters a = 0.1m b = 0.2m, c = 0.3m and k = 1 as shown in Fig. 2(a) (the radius of the PEC is 0.1m). We find that the pattern of electric field (Fig. 2(a)) in the region r>0.3m is equal to Fig. 2 (a). In the interior region, the value of the field exceeds the bounds and appears white flecks. This is the same as Ref [29].

 figure: Fig. 2

Fig. 2 (Color online) Electric field distribution of PEC (left column) and our designed device (right column) with system parameters (a) c = 0.3m, k = 1, (a’)a = 0.1m, b = 0.2m, k = 1, (b)c = 0.15m, k = 2, (b’)a = 0.05m, b = 0.1m, k = 2, (c) c = 0.15m, k = 2, (c’)a = 0.05m, b = 0.1m, k = 2.The unit is meter.

Download Full Size | PPT Slide | PDF

Next, we investigate the elliptical superscatterer with parameters a = 0.05m b = 0.1m, c = 0.15m, and k = 2. The elliptical PEC with minor semi-axis c = 0.15m and the corresponding scattering electric field distribution is shown in Fig. 2 (b), where the incident plane wave propagates along the horizontal direction. When a small elliptical PEC with minor semi-axial a = 0.05m is coated by an elliptical negative refractive material shell with outer minor semi-axial b = 0.1m as shown in Fig. 2(b), we can find that scattered field in region r>R3(θ) is the same as Fig. 2 (b). Figure 2(c) gives the scattering distribution of the electric field when the incident angle of the plane wave is 45°. It is found that scattered field distribution of Fig. 2(c) in region r>R3(θ) is also the same as Fig. 2(c). Therefore, the elliptical superscatterer is valid for arbitrary angle of incident plane waves. In a word, the elliptical negative refractive material shell makes object look like a scatterer bigger than its geometric size. Such a phenomenon of elliptical superscatterer can be extended to arbitrarily shaped superscatterer.

For the physical realization, one can easily obtain the material parameters of the elliptical superscatterer according to Eq. (6). Figure 3 shows the values of the permeability μxx, μxy ( = μyx), and μyy and the permittivity εzz( = μzz)of the elliptical shell. It is found that the shell of the metamaterial is made of anisotropic and inhomogeneous material similar to the case of circular superscatterer in Ref [29]. The variations of the permeability μxx, μxy ( = μyx), and μyy with a fixed radius r (r=L/sin2θ+cos2θ/k2, aLb) versus angle are shown in Fig. 3 (a), (b), (c). In Fig. 3(d), the value of the permittivity εzz increases with the increase of the radius r.

 figure: Fig. 3

Fig. 3 (Color online) Permittivity and permeability tensor parameters for the superscatterer (a) μxx. (b) μxy = μyx. (c) μyy. (d) εzz = (μzz). The unit is meter.

Download Full Size | PPT Slide | PDF

3. Elliptical electromagnetic superabsorber

Now, we discuss the elliptical superabsorber. Let us consider geometric coordinate transformation between the new system (f(ρ), θ', z') and the original system (ρ, θ, z):

f(ρ)=R2(θ)2ρ,R1(θ)<ρ<R2(θ)
θ'=θ,
z'=z,
with R1(θ)=asin2θ+cos2θ/k2, R2(θ)=bsin2θ+cos2θ/k2 (a, b are the inner and outer minor semi-axial of the shell, respectively). R3(θ)=b2/asin2θ+cos2θ/k2 is the outside surface of the practical absorber.

Substituting Eq. (7) into Eq. (4) and using Eq. (5), we obtain

μxx=(f0ρf1+f22ρf0f1)cos2θ+ρf1f0sin2θ+2f2f0sinθcosθ,μxy=μyx=(f0ρf1+f22ρf0f1ρf1f0)sinθcosθf2f0(cos2θsin2θ),μyy=ρf1f0cos2θ+(f0ρf1+f22ρf0f1)sin2θ2f2f0sinθcosθ,μzz=εzz=f0f1ρ,
where f0=bsin2θ+cos2θ/k2, f1=b2ρ2(sin2θ+cos2θ/k2)2, and f2=b(1/k21)sin(2θ)(sin2θ+cos2θ/k2)2.

Figure 4(a) illustrates the electric field distribution in the computational domain illuminated by a plane incident wave with frequency 1.1GHz. The circular absorbentmaterial with radius c = 0.4m (k = 1), εc = μc = 1-i absorbs a large portion of the incident plane wave. Such a large circular absorbentmaterial with radius c = 0.4m can be replaced by a smaller circular absorbentmaterial with radius a = 0.1m coating with a circular negative refractive material shell as shown in Fig. 4(a). As can be seen from Fig. 4(a), when the inner circular has a radius of a = 0.1m, εc = 16(1-i), μc = 1-i and the shell has an outer radius of b = 0.2m, εb = μb = −1 and εzz = b2/r (0.1m<r<0.2m), the electric field distribution in the region r>0.4m is the same as Fig. 4(a) (similar to the case of Ref [30]).

 figure: Fig. 4

Fig. 4 (Color online) Electric field distribution of normal absorber(left column) and superabsorber(right column) with system parameters (a) c = 0.4m, k = 1, (a’)c = 0.1m, b = 0.2m, k = 1, (b)c = 0.2m, k = 2, (b’)a = 0.05m, b = 0.1m, k = 2, (c) c = 0.2m, k = 2, (c’)a = 0.05m, b = 0.1m, k = 2. The unit is meter

Download Full Size | PPT Slide | PDF

Let us now consider the elliptical superabsorber with parameters a = 0.05m, b = 0.1m, c = 0.2m, and k = 2. In Fig. 4(b), we give the electric field distribution of an elliptical absorber with minor semi-axis of 0.2m. For a small elliptical absorbentmaterial with minor semi-axis of 0.05m and coating with an elliptical negative refractive material shell with outer minor semi-axis of 0.1m, we find that the absorption cross section is the same as Fig. 4(b) (as shown in Fig. 4(b)). When the incident angle of the plane wave is 45°, the absorption cross section of the small elliptical absorbentmaterial coating with an elliptical negative refractive material shell shown in Fig. 4(c) is equal to the case of the large elliptical absorbentmaterial as shown in Fig. 4(c) in the region r>R3(θ). Such a phenomenon of elliptical superabsorber can be also extended to arbitrarily shaped superabsorber.

The corresponding material parameters of elliptical superabsorber are shown in Fig. 5 . The elliptical metamaterial shell is also made of anisotropic and inhomogeneous material different from the case of circular superabsorber with isotropic material in Ref [30]. The variations of the permeability with a fixed radius r (r=L/sin2θ+cos2θ/k2, aLb) versus angle are given in Fig. 5(a), (b), and (c). As can be seen in Fig. 5(d), the value of the permittivity εzz also increases with the increase of the radius r. It can be found that the elliptical superabsorber are highly anisotropic and must be realized with the metamaterial technology.

 figure: Fig. 5

Fig. 5 (Color online) Permittivity and permeability tensor parameters for the superabsorber (a) μxx. (b) μxy = μyx. (c) μyy. (d) εzz = (μzz). The unit is meter.

Download Full Size | PPT Slide | PDF

It should be noted that the parameters of μrr(εrr), μ(ε) and μθθ(εθθ) are no longer constant for the elliptical or arbitrarily shaped superabsorber compared with the Ref [30]. Taking elliptical superabsorber as example, the material parameters of μrr μ and μθθ on the outer boundary of the shell versus θ' are shown in Fig. 6 . The parameters of μrr(εrr) and μθθ(εθθ) are varied versus θ', while μ = −1.

 figure: Fig. 6

Fig. 6 (Color online) Superabsorber parameters of μrr, μθθ and μ on the outer boundary (R2(θ)) of the shell versus θ'.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we analyzed the electromagnetic response of elliptical superscatterer and superabsorber based on the concept of complementary media. Using coordinate transformation method, the parameters of permittivity and permeability in Cartesian coordinates are deduced. Our designs of elliptical electromagnetic superscatterer and superabsorber are demonstrated by using finite element simulation. The results can be extended to the arbitrarily shaped electromagnetic superscatterer and superabsorber.

Acknowledgment

This work was supported by Ministry of Education Foundation of China (Grant No. 708038).

References and links

1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef]   [PubMed]  

2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]   [PubMed]  

3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef]   [PubMed]  

4. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef]   [PubMed]  

5. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006). [CrossRef]   [PubMed]  

6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]  

7. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007). [CrossRef]   [PubMed]  

8. H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

9. B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008). [CrossRef]   [PubMed]  

10. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007). [CrossRef]   [PubMed]  

11. M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007). [CrossRef]  

12. X. Zhou and G. K. Hu, “Acoustic wave transparency for a multilayered sphere with acoustic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046606 (2007). [CrossRef]   [PubMed]  

13. H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007). [CrossRef]  

14. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 91, 183518 (2007). [CrossRef]  

15. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33(14), 1584 (2008). [CrossRef]   [PubMed]  

16. D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloak,” Appl. Phys. Lett. 92(1), 013505 (2008). [CrossRef]  

17. D.-H. Kwon and D. H. Werner, “Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,” Appl. Phys. Lett. 92(11), 113502 (2008). [CrossRef]  

18. P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008). [CrossRef]  

19. H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008). [CrossRef]  

20. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008). [CrossRef]   [PubMed]  

21. P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008). [CrossRef]  

22. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008). [CrossRef]  

23. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008). [CrossRef]   [PubMed]  

24. C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16(23), 19366–19374 (2008). [CrossRef]  

25. Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008). [CrossRef]  

26. J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009). [CrossRef]  

27. X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009). [CrossRef]  

28. C. W. Qiu, L. Hu, B. Zhang, B. I. Wu, S. G. Johnson, and J. D. Joannopoulos, “Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings,” Opt. Express 17(16), 13467–13478 (2009). [CrossRef]   [PubMed]  

29. T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008). [CrossRef]   [PubMed]  

30. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009). [CrossRef]   [PubMed]  

31. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009). [CrossRef]   [PubMed]  

32. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009). [CrossRef]   [PubMed]  

33. H. Y. Chen and C. T. Chan, ““Cloaking at a distance” from folded geometries in bipolar coordinates,” Opt. Lett. 34(17), 2649–2651 (2009). [CrossRef]   [PubMed]  

34. H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008). [CrossRef]  

35. D.-H. Kwon, “Virtual circular array using material-embedded linear source distributions,” Appl. Phys. Lett. 95(17), 173503 (2009). [CrossRef]  

36. Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
    [Crossref] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  7. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
    [Crossref] [PubMed]
  8. H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).
  9. B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
    [Crossref] [PubMed]
  10. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
    [Crossref] [PubMed]
  11. M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
    [Crossref]
  12. X. Zhou and G. K. Hu, “Acoustic wave transparency for a multilayered sphere with acoustic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046606 (2007).
    [Crossref] [PubMed]
  13. H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
    [Crossref]
  14. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 91, 183518 (2007).
    [Crossref]
  15. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33(14), 1584 (2008).
    [Crossref] [PubMed]
  16. D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloak,” Appl. Phys. Lett. 92(1), 013505 (2008).
    [Crossref]
  17. D.-H. Kwon and D. H. Werner, “Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,” Appl. Phys. Lett. 92(11), 113502 (2008).
    [Crossref]
  18. P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
    [Crossref]
  19. H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
    [Crossref]
  20. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
    [Crossref] [PubMed]
  21. P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008).
    [Crossref]
  22. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
    [Crossref]
  23. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
    [Crossref] [PubMed]
  24. C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16(23), 19366–19374 (2008).
    [Crossref]
  25. Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
    [Crossref]
  26. J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009).
    [Crossref]
  27. X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
    [Crossref]
  28. C. W. Qiu, L. Hu, B. Zhang, B. I. Wu, S. G. Johnson, and J. D. Joannopoulos, “Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings,” Opt. Express 17(16), 13467–13478 (2009).
    [Crossref] [PubMed]
  29. T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
    [Crossref] [PubMed]
  30. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
    [Crossref] [PubMed]
  31. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [Crossref] [PubMed]
  32. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
    [Crossref] [PubMed]
  33. H. Y. Chen and C. T. Chan, ““Cloaking at a distance” from folded geometries in bipolar coordinates,” Opt. Lett. 34(17), 2649–2651 (2009).
    [Crossref] [PubMed]
  34. H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
    [Crossref]
  35. D.-H. Kwon, “Virtual circular array using material-embedded linear source distributions,” Appl. Phys. Lett. 95(17), 173503 (2009).
    [Crossref]
  36. Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
    [Crossref]

2009 (9)

J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009).
[Crossref]

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

C. W. Qiu, L. Hu, B. Zhang, B. I. Wu, S. G. Johnson, and J. D. Joannopoulos, “Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings,” Opt. Express 17(16), 13467–13478 (2009).
[Crossref] [PubMed]

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

H. Y. Chen and C. T. Chan, ““Cloaking at a distance” from folded geometries in bipolar coordinates,” Opt. Lett. 34(17), 2649–2651 (2009).
[Crossref] [PubMed]

D.-H. Kwon, “Virtual circular array using material-embedded linear source distributions,” Appl. Phys. Lett. 95(17), 173503 (2009).
[Crossref]

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

2008 (14)

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[Crossref] [PubMed]

B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
[Crossref] [PubMed]

A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33(14), 1584 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloak,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,” Appl. Phys. Lett. 92(11), 113502 (2008).
[Crossref]

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[Crossref]

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[Crossref] [PubMed]

C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16(23), 19366–19374 (2008).
[Crossref]

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

2007 (8)

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[Crossref]

X. Zhou and G. K. Hu, “Acoustic wave transparency for a multilayered sphere with acoustic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046606 (2007).
[Crossref] [PubMed]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[Crossref]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
[Crossref] [PubMed]

H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chan, C. T.

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

H. Y. Chen and C. T. Chan, ““Cloaking at a distance” from folded geometries in bipolar coordinates,” Opt. Lett. 34(17), 2649–2651 (2009).
[Crossref] [PubMed]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[Crossref]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Chen, B.

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Chen, H.

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
[Crossref] [PubMed]

Chen, H. S.

H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

Chen, H. Y.

H. Y. Chen and C. T. Chan, ““Cloaking at a distance” from folded geometries in bipolar coordinates,” Opt. Lett. 34(17), 2649–2651 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[Crossref] [PubMed]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[Crossref] [PubMed]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[Crossref]

Cheng, Q.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chin, J. Y.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Cui, T. J.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Feng, Y.

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Guenneau, S.

Han, D. Z.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Hao, Y.

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

He, S.

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[Crossref]

Hu, G. K.

J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009).
[Crossref]

X. Zhou and G. K. Hu, “Acoustic wave transparency for a multilayered sphere with acoustic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046606 (2007).
[Crossref] [PubMed]

Hu, J.

J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009).
[Crossref]

Hu, L.

Huangfu, J.

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Jiang, T.

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

Jiang, W. X.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Jiang, X.

P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008).
[Crossref]

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Jin, Y.

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kong, J. A.

B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
[Crossref] [PubMed]

H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

Kwon, D.-H.

D.-H. Kwon, “Virtual circular array using material-embedded linear source distributions,” Appl. Phys. Lett. 95(17), 173503 (2009).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,” Appl. Phys. Lett. 92(11), 113502 (2008).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloak,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

Lai, Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, C.

Li, F.

Liang, Z.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008).
[Crossref]

Liu, R.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Luo, X.

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[Crossref] [PubMed]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

Luo, Y.

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Ma, H.

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16(22), 18545–18550 (2008).
[Crossref] [PubMed]

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

Ng, J.

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[Crossref] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Nicolet, A.

Pendry, J. B.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Qiu, C. W.

Qiu, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[Crossref]

Qu, S.

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Ran, L.

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Ruan, Z.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

Ruan, Z. C.

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

Smith, R.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Sun, X.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Wang, J.

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Werner, D. H.

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloak,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,” Appl. Phys. Lett. 92(11), 113502 (2008).
[Crossref]

Wu, B. I.

C. W. Qiu, L. Hu, B. Zhang, B. I. Wu, S. G. Johnson, and J. D. Joannopoulos, “Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings,” Opt. Express 17(16), 13467–13478 (2009).
[Crossref] [PubMed]

B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
[Crossref] [PubMed]

Wu, B.-I.

H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

Xiao, J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Xu, X. F.

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

Xu, Z.

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Yan, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[Crossref]

Yang, T.

Yang, X. M.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Yao, K.

Yao, P.

P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008).
[Crossref]

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Zhang, B.

Zhang, B. L.

B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
[Crossref] [PubMed]

H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

Zhang, J.

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Zhang, P.

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

Zhang, Z. Q.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Zhao, J.

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

Zhou, X.

X. Zhou and G. K. Hu, “Acoustic wave transparency for a multilayered sphere with acoustic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046606 (2007).
[Crossref] [PubMed]

Zhou, X. M.

J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009).
[Crossref]

Zolla, F.

Appl. Phys. Lett. (12)

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[Crossref]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloak,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions,” Appl. Phys. Lett. 92(11), 113502 (2008).
[Crossref]

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[Crossref]

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

J. Hu, X. M. Zhou, and G. K. Hu, “Nonsingular two dimensional cloak of arbitrary shape,” Appl. Phys. Lett. 95(1), 011107 (2009).
[Crossref]

X. F. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009).
[Crossref]

P. Yao, Z. Liang, and X. Jiang, “Limitations of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92(3), 031111 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

D.-H. Kwon, “Virtual circular array using material-embedded linear source distributions,” Appl. Phys. Lett. 95(17), 173503 (2009).
[Crossref]

Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

N. J. Phys. (1)

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “reshaping the perfect electrical conductor cylinder arbitrarily,” N. J. Phys. 10(11), 113016 (2008).
[Crossref]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterial,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (1)

H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77(1), 013825 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

X. Zhou and G. K. Hu, “Acoustic wave transparency for a multilayered sphere with acoustic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046606 (2007).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

H. S. Chen, B.-I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 113903 (2007).

B. L. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100(6), 063904 (2008).
[Crossref] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[Crossref]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (Color online). Computational domain of the elliptical superscatterer and superabsorber. The inner ellipse is a PEC (or an absorber core) with boundary of R1(θ) and minor semi-axis of a. The middle shell is an elliptical negative refractive material shell with outer boundary of R2(θ) and minor semi-axis of b. If the inner ellipsoid coating with the elliptical negative refractive shell, its cross section is the same as a large ellipsoid with boundary of R3(θ) and minor semi-axis of c.
Fig. 2
Fig. 2 (Color online) Electric field distribution of PEC (left column) and our designed device (right column) with system parameters (a) c = 0.3m, k = 1, (a’)a = 0.1m, b = 0.2m, k = 1, (b)c = 0.15m, k = 2, (b’)a = 0.05m, b = 0.1m, k = 2, (c) c = 0.15m, k = 2, (c’)a = 0.05m, b = 0.1m, k = 2.The unit is meter.
Fig. 3
Fig. 3 (Color online) Permittivity and permeability tensor parameters for the superscatterer (a) μxx. (b) μxy = μyx. (c) μyy. (d) εzz = (μzz). The unit is meter.
Fig. 4
Fig. 4 (Color online) Electric field distribution of normal absorber(left column) and superabsorber(right column) with system parameters (a) c = 0.4m, k = 1, (a’)c = 0.1m, b = 0.2m, k = 1, (b)c = 0.2m, k = 2, (b’)a = 0.05m, b = 0.1m, k = 2, (c) c = 0.2m, k = 2, (c’)a = 0.05m, b = 0.1m, k = 2. The unit is meter
Fig. 5
Fig. 5 (Color online) Permittivity and permeability tensor parameters for the superabsorber (a) μxx. (b) μxy = μyx. (c) μyy. (d) εzz = (μzz). The unit is meter.
Fig. 6
Fig. 6 (Color online) Superabsorber parameters of μrr, μθθ and μ on the outer boundary (R2(θ)) of the shell versus θ'.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

f ( ρ ) = R 3 ( θ ) R 2 ( θ ) R 2 ( θ ) R 1 ( θ ) ( R ( θ ) 2 ρ ) + R 2 ( θ ) ,
R 1 ( θ ) < ρ < R 2 ( θ )
θ ' = θ ,
z ' = z ,
R 1 ( θ ) = a sin 2 θ + cos 2 θ / k 2 R 2 ( θ ) = b sin 2 θ + cos 2 θ / k 2 , R 3 ( θ ) = c sin 2 θ + cos 2 θ / k 2
ε ¯ ¯ ε = μ ¯ ¯ μ = [ f [ 1 + ( 1 f f θ ) 2 ] ρ f ρ 1 f f θ 0 1 f f θ ρ f f ρ 0 0 0 f ρ f ρ ] ,
ε ¯ ¯ ε = μ ¯ ¯ μ = μ r r μ r θ 0 μ θ r μ θ θ 0 0 0 μ z z = [ f 0 [ 1 + 1 f 0 2 ( f 2 ) 2 ] ρ f 1 1 f 0 f 2 0 1 f 0 f 2 ρ f 0 f 1 0 0 0 f 0 ρ f 1 ] ,
[ μ x x μ x y μ y x μ y y ] = [ cos θ ' sin θ ' sin θ ' cos θ ' ] [ μ r r μ r θ μ θ r μ θ θ ] [ cos θ ' sin θ ' sin θ ' cos θ ' ]
μ x x = ( f 0 ρ f 1 + f 2 2 ρ f 0 f 1 ) cos 2 θ + ρ f 1 f 0 sin 2 θ + 2 f 2 f 0 sin θ cos θ , μ x y = μ y x = ( f 0 ρ f 1 + f 2 2 ρ f 0 f 1 ρ f 1 f 0 ) sin θ cos θ f 2 f 0 ( cos 2 θ sin 2 θ ) , μ y y = ρ f 1 f 0 cos 2 θ + ( f 0 ρ f 1 + f 2 2 ρ f 0 f 1 ) sin 2 θ 2 f 2 f 0 sin θ cos θ , μ z z = ε z z = f 0 f 1 ρ .
f ( ρ ) = R 2 ( θ ) 2 ρ ,
R 1 ( θ ) < ρ < R 2 ( θ )
θ ' = θ ,
z ' = z ,
μ x x = ( f 0 ρ f 1 + f 2 2 ρ f 0 f 1 ) cos 2 θ + ρ f 1 f 0 sin 2 θ + 2 f 2 f 0 sin θ cos θ , μ x y = μ y x = ( f 0 ρ f 1 + f 2 2 ρ f 0 f 1 ρ f 1 f 0 ) sin θ cos θ f 2 f 0 ( cos 2 θ sin 2 θ ) , μ y y = ρ f 1 f 0 cos 2 θ + ( f 0 ρ f 1 + f 2 2 ρ f 0 f 1 ) sin 2 θ 2 f 2 f 0 sin θ cos θ , μ z z = ε z z = f 0 f 1 ρ ,

Metrics