Abstract

The 400-channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across C- and L-bands is proposed in this paper. For the high polarization dependence, the waveguides are designed for supporting the TE mode only. To reduce the spherical aberration of the concave grating, the values of the maximum half divergent angle of the light source and minimum effective half width of the fundamental mode of the ridge waveguide are determined. We use a design example to show the spectral characteristics of the proposed design. Simulation results show that the proposed design provides better spectral characteristics and smaller die size.

© 2010 Optical Society of America

1. Introduction

With the explosive growth of Internet, the copper coaxial cable can not meet the increasing demand for the bandwidth while the optical fiber can provide greater bandwidth. In a wavelength division multiplexing (WDM) system, each wavelength is treated as a separate channel and it is possible to increase the bandwidth by increasing the channel number rather than increasing the bit rate. When the channel spacing is less than 100 GHz (0.8 nm), the technology is well know as dense wavelength division multiplexing (DWDM) [1]. International Telecommunication Union Telecommunication (ITU-T) Standardization Sector recommends several bands for lower transmission losses in a silica-based single-mode fiber, including S-, C-, and L-bands [1–3]. The maximum channel number in these bands depends greatly on what kinds of the demultiplexers are used. In recent years, there has been considerable interest in developing integrated planar waveguide demultiplexers, such as arrayed waveguide gratings (AWGs) [2–6] and planar waveguide concave gratings [7–11], due to the advantages of low insertion loss, low crosstalk, high possibilities of mass production, and high spectral resolution. However, AWGs has inherent limits due to larger die size, lower free spectral range (FSR), and greater sensitivity to the environment. The purpose of this research us to design a planar waveguide demultiplexer employing a concave grating. This research may provide an alternative to a planar waveguide demultiplexer with the high channel number and narrow channel spacing in an optical communication system.

2. Design and Simulation

In this paper, we do the research on a planar waveguide concave grating demultiplexer which is designed on a silicon-on-insulator (SOI) wafer. The concave grating is based on the recursive definition of the centers of the facet positions, which was first proposed by McGreer in 1996 [7]. There are three types of the concave gratings in the literature including Rowland circle, Taylor expansion, and recursive definition types, respectively [12]. Simulation results showed that the recursive definition type suffers from less spherical aberration than the other two types. The schematic figure of the planar waveguide demultiplexer employing a concave grating is shown in Fig. 1. The single-mode SOI wafer consists of a 200-to-300-nm-thick top silicon layer, and a 1-μ m-thick buried oxide layer, and a 500-μ m-thick silicon substrate while the light is transmitted in the top silicon layer. Therefore, the top silicon layer is the core layer and the buried oxide layer is the cladding layer. The refractive indices of the silicon and oxide materials, considered in this paper, are 3.50 and 1.45, respectively, and the cross-sectional view of the ridge waveguide (input and output waveguides) is shown in Fig. 2. The width and thickness of the core layer for the ridge waveguide are denoted as wsi and tsi, respectively. Since the effective indices of the TE and TM modes are highly polarization-dependent, the waveguide structures are designed for supporting the TE mode only without the design of the polarization compensator [5, 8]. So the thicknesses tsi of the core layer for the ridge and slab waveguides are specifically designed for the low propagation loss of the TE mode but high propagation loss of the TM mode.

 

Fig. 1. Schematic figure of the planar waveguide demultiplexer employing a concave grating.

Download Full Size | PPT Slide | PDF

 

Fig. 2. Cross-sectional view of the ridge waveguide.

Download Full Size | PPT Slide | PDF

Fig. 3 shows the light diffracted and focused by the concave grating, where A is the grating pole, B is the boundary of the concave grating on one side, C is the center of the grating curvature, P is the position of the light source, Q is the position of the focal point, α is the incident angle of the light at the grating pole, β is the diffraction angle of the light at the grating pole, R is the effective radius of the grating curvature, r1,0 is the distance between A and P, and r2,0 is the distance between A and Q. For the triangles ACX and BPX, we can obtain

α+δγ=α+δα+δσ,

and

δα=δγδσ.

Similarly, we can obtain

δβ=δγδρ.

For the small arc angle δγ, the arc length AB can be approximated as the tangent length AB¯. When the arc angles δγ, δσ, and δρ are small, they can be expressed as

δα=ABR¯,
 

Fig. 3. Schematic figure of the light diffracted and focused by the concave grating.

Download Full Size | PPT Slide | PDF

δσ=AB¯cosαr1,0,
δρ=AB¯cosβr2,0.

The diffraction equation of the grating can be expressed as

neff·d(sinα+sinβ)=,

where neff is the effective index in the slab waveguide, d is the grating period along the grating chord, m is the diffraction order, and λ is the wavelength of the light. After we differentiate Eq. (7), we can obtain

cosαδα+cosβδβ=0.

Taking Eqs. (2) to (6) into Eq. (8), we can obtain

cosαRcos2αr1,0+cosβRcos2βr2,0=0,

which is the so-called focal equation of the concave grating [13]. To reduce the spherical aberration of the concave grating, the maximum arc angle δγmax must be determined so we define the deviation function f(δγ) of the approximation as [14]

f(δγ)=ABAB¯AB=R·δγ2R·sin(δγ2)R·δγ.

Simulation results show that for the value of f(δγ) lower than 0.1 % the arc angle δγ must be lower than 8.8° as shown in Fig. 4. For simplification, the maximum arc angle δγmax, the maximum half central angle of the grating curvature, is chosen as 8.0° and then maximum AB¯max can be obtained from Eq. (4) as

AB¯max=R·8.0°.

Taking Eq. (11) into Eq. (5), we can obtain the maximum arc angle δσmax, the maximum half divergent angle of the light source as [13]

δσmax=R·8.0°·cosαr1,0.
 

Fig. 4. Deviation function of the approximation.

Download Full Size | PPT Slide | PDF

We use a design example to show the spectral characteristics of the proposed design. Recommended by ITU-T, the C-band is defined in the range 1528 to 1561 nm and the L-band is defined in the range 1561 to 1610 nm [1–3]. For the design of the SOI-based planar waveguide concave grating demultiplexer across C- and L-bands, the center wavelength λ0 is chosen as 1570 nm. By using the effective-index method [15], Fig. 5 shows the propagation losses due to the leakages to the silicon substrate versus the thickness tsi of the core layer (top silicon layer) for both modes at a center wavelength of 1570 nm when the thickness of the cladding layer (buried oxide layer) is chosen as 1 μ m. It shows that when the thickness tsi of the core layer is lower than 220 nm, the propagation loss of the TM mode dramatically increases from about 9.0 dB/cm. So the thickness tsi is chosen as 220 nm for supporting the TE mode only as in [10, 16]. For the single-mode ridge waveguide, the width wsi of the core layer must be smaller than 500 nm [16]. So the width wsi is chosen as 500 nm as in [10, 16]. Then the effective half width w0 of the fundamental mode of the ridge waveguide along the x′-axis can be obtained from the Beam-PROP software (RSoft, Inc.) as 237 nm. The 500-nm-wide silicon photonic wire waveguides with a bending radius of few micrometers allow further reduce the die size [10, 16]. By using the effective-index method, the effective index neff,TE0 of the fundamental TE mode in the slab waveguide can be obtained as 2.85 with the negligible propagation loss.

The scalar diffraction theory is valid when the grating period d is large as compared to the wavelength of the light, so d is chosen as 10 μ m. For the FSR larger than the bandwidth across the C- and L-bands, the diffraction order m is chosen as 18 and the FSR (= λ0/m) can be obtained as 87 nm as in [3]. For no overlaps of the positions of the input waveguide and all the output waveguides, the incident angle α of the input waveguide at the grating pole is chosen as 32.0°. When neff,TE0, d, α, m, and λ0 are determined, the diffraction angle β0 of the design output waveguide at the grating pole can be obtained from Eq. (7) as 27.5°. For the small die size with the acceptable crosstalk between adjacent channels, the distance r1,0 and r2,0 are chosen as 45 mm (r1,0 = r2,0 = 45 mm). When the grating pole is chosen at the origin of the coordinates, the coordinate positions, (a1, b1) and (a2, b2), of the ends of the input and center output waveguides can be obtained as (r1,0 · sinα, r1,0 · cosα) and (r2,0 · sinβ0, r2,0 · cosβ0), respectively, as shown in Fig. 6. For the design of the concave grating, the grating period d is constant along the grating chord. When the x-axis coordinate position xi of the center of the ith grating facet is chosen as xi = i·d, the y-axis coordinate position yi of the center of the ith grating facet can be obtained from the root of the constraint function [7]. When α, β0, r1,0, and r2,0 are determined, the effective radius R of the grating curvature can then be obtained from Eq. (9) as 51.87 mm. Then the maximum arc angle δσmax can be obtained from Eq. (12) as 7.8°. According to the theory of the guided wave [15], the half angle δσ of the Gaussian beam divergence at 1/e amplitude on the xy′-plane can be expressed as

δσ=λ0πneffw0.
 

Fig. 5. Propagation losses versus the thickness tsi of the core layer at a center wavelength of 1570 nm.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Schematic figure of the light propagating in the slab waveguide and then diffracted by the concave grating.

Download Full Size | PPT Slide | PDF

From Eqs. (12) and (13), the minimum effective half width w0,min can be obtained as 1.287 μ m. Therefore, we need a spot size converters to change the effective half width w0 from 237 nm to 1.287 μ m. For a 2-μ m-wide 40-nm-shallow-etched waveguide, the effective half width w0 of the fundamental mode along the x′- or x″-axis can be obtained from the BeamPROP software (RSoft, Inc.) as 1.287 μ m. The spot size converters can be achieved by a two-step etch process at the ends of the input and output waveguides as shown in Fig. 7. It can also reduce the transition losses between the ridge waveguide and slab waveguide [10].

 

Fig. 7. Cross-sectional views of the ridge waveguide and the spot size converter.

Download Full Size | PPT Slide | PDF

For a maximum arc angle δσmax of 7.8°, the total illuminated grating periods N can be obtained as 1446. Figure 8 shows the simulated TE-mode spectral responses of 400 channels with a channel spacing of 25 GHz (0.2 nm), which are obtained from the overlap integral of the image field at the end of the output waveguide and the fundamental mode field of the output waveguide [9, 11]. The simulated insertion losses of 400 channels, which include the propagation loss, undesired-order loss, and the excess loss, range from 6.20 to 6.75 dB. In our case, the propagation loss of the TE mode is negligible. The undesired-order loss of the center channel, which comes from the diffraction of the light into the undesired adjacent four orders, is 5.92 dB. The excess loss of the center channel, which comes from the amplitude mismatch between the image field at the end of the output waveguide and the fundamental mode field of the output waveguide, is 0.28 dB. The crosstalk between adjacent channels is defined as the maximum signal received from adjacent channels within -1-dB passband bandwidth. For the same center wavelength, diffraction order, channel spacing, and channel number, the worst crosstalk in our case is -30 dB, while that in [3] is -20 dB. And the die size of the proposed demultiplexer employing a concave grating is 41 × 32 mm2, while that of the demultiplexer employing an AWG in [3] is 124 × 64 mm2. So the proposed design provides an alternative to a planar waveguide demultiplexer with higher spectral resolution, lower crosstalk, and smaller die size compared with those in [3].

 

Fig. 8. Spectral responses of 400 channel with a channel spacing of 25 GHz (0.2 nm).

Download Full Size | PPT Slide | PDF

3. Conclusion

In this paper, 400-channel 25-GHz spacing SOI-based planar waveguide demultiplexer employing a concave grating across C- and L-bands is proposed. For the high polarization dependence, the thickness and width of the ridge waveguide are specifically designed for supporting the TE mode only. To reduce the spherical aberration of the concave grating, we determine the values of the maximum half divergent angle of the light source and minimum effective half width of the fundamental mode of the ridge waveguide. The spot size converters are used at the end of the input and output waveguides to change the effective half width of the fundamental mode of the ridge waveguide. For a design example, simulation results show that the proposed design provides a worst crosstalk between adjacent channels of -30 dB and a remarkable die size of 41 × 32 mm2. The proposed design provides an alternative to a planar waveguide demultiplexer with higher spectral resolution, lower crosstalk, and smaller die size.

References and links

1. S. V. Kartalopoulos, Introduction to DWDM Technology (IEEE Press, New York, 2000).

2. K. Takada, M. Ade, T. Shibita, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter,” IEEE Photon. Technol. Lett. 14(5), 648–650 (2002). [CrossRef]  

3. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002). [CrossRef]  

4. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1227–1236 (1999). [CrossRef]  

5. D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires,” Opt. Lett. 31(13), 1988–1990 (2006). [CrossRef]   [PubMed]  

6. K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express 15(26), 18351–18356 (2007). [CrossRef]   [PubMed]  

7. K. A. McGreer, “Theory of concave gratings based on a recursive definition of facet positions,” Appl. Opt. 35(30), 5904–5910 (1996). [CrossRef]   [PubMed]  

8. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delâge, and M. Davies, “Integrated Polarization Compensator for WDM Waveguide Demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 321–322 (1999). [CrossRef]  

9. Z. Shi and S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1179–1185 (2002). [CrossRef]  

10. J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol. 25(5), 1269–1275 (2007). [CrossRef]  

11. C.-T. Lin, Y.-T. Huang, and J.-Y. Huang, “Quantitative analysis of a flat-top planar waveguide demultiplexer,” J. Lightwave Technol. 27(5), 552–558 (2009). [CrossRef]  

12. C.-T. Lin, Y.-T. Huang, J.-Y. Huang, and H.-H. Lin, “Integrated planar waveguide concave gratings for high density WDM systems,” in 2005 Optical Communications Systems and Networks (OCSN 2005), pp. 98–102 (Banff, Alberta, Canada, 2005).

13. M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).

14. C.-T. Lin, “A Study on Design and Fabrication of Micro Concave Grating,” Master’s thesis, Institute of Electro-physics, National Chiao Tung University, Hsinchu 30010, Taiwan (2002).

15. H. Kogelnik, “Theory of Optical Waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed., chap. 2 (Springer-Verlag, Berlin, Germany, 1990).

16. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. V. Kartalopoulos, Introduction to DWDM Technology (IEEE Press, New York, 2000).
  2. K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
    [CrossRef]
  3. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
    [CrossRef]
  4. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
    [CrossRef]
  5. D. Dai and S. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31(13), 1988-1990 (2006).
    [CrossRef] [PubMed]
  6. K. Maru and Y. Abe, "Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer," Opt. Express 15(26), 18351-18356 (2007).
    [CrossRef] [PubMed]
  7. K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35(30), 5904-5910 (1996).
    [CrossRef] [PubMed]
  8. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
    [CrossRef]
  9. Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
    [CrossRef]
  10. J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform," J. Lightwave Technol. 25(5), 1269-1275 (2007).
    [CrossRef]
  11. C.-T. Lin, Y.-T. Huang, and J.-Y. Huang, "Quantitative analysis of a flat-top planar waveguide demultiplexer," J. Lightwave Technol. 27(5), 552-558 (2009).
    [CrossRef]
  12. C.-T. Lin, Y.-T. Huang, J.-Y. Huang, and H.-H. Lin, "Integrated planar waveguide concave gratings for high density WDM systems," in 2005 Optical Communications Systems and Networks (OCSN 2005), pp. 98-102 (Banff, Alberta, Canada, 2005).
  13. M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).
  14. C.-T. Lin, "A Study on Design and Fabrication of Micro Concave Grating," Master’s thesis, Institute of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (2002).
  15. H. Kogelnik, "Theory of OpticalWaveguides," in Guided-Wave Optoelectronics, T. Tamir, ed., (Springer-Verlag, Berlin, Germany, 1990) Chap. 2.
  16. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
    [CrossRef]

2009 (1)

2007 (2)

2006 (1)

2005 (1)

2002 (3)

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
[CrossRef]

1999 (2)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

1996 (1)

Abe, Y.

Ade, M.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Brouckaert, J.

Campenhout, J. V.

Dai, D.

Dumon, P.

Erickson, L.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

Goh, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

He, J.-J.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

He, S.

D. Dai and S. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31(13), 1988-1990 (2006).
[CrossRef] [PubMed]

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

Hibino, Y.

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
[CrossRef]

Huang, J.-Y.

Huang, Y.-T.

Kaneko, A.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Koteles, E. S.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

Lamontagne, B.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

Lin, C.-T.

Luyssaert, B.

Maru, K.

McGreer, K. A.

Ogawa, I.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Okamoto, K.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Shi, Z.

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

Shibita, T.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Taillaert, D.

Takada, K.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Tanaka, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Thourhout, D. V.

Wiaux, V.

Yamada, H.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron (3)

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
[CrossRef]

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (5)

S. V. Kartalopoulos, Introduction to DWDM Technology (IEEE Press, New York, 2000).

C.-T. Lin, Y.-T. Huang, J.-Y. Huang, and H.-H. Lin, "Integrated planar waveguide concave gratings for high density WDM systems," in 2005 Optical Communications Systems and Networks (OCSN 2005), pp. 98-102 (Banff, Alberta, Canada, 2005).

M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).

C.-T. Lin, "A Study on Design and Fabrication of Micro Concave Grating," Master’s thesis, Institute of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (2002).

H. Kogelnik, "Theory of OpticalWaveguides," in Guided-Wave Optoelectronics, T. Tamir, ed., (Springer-Verlag, Berlin, Germany, 1990) Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic figure of the planar waveguide demultiplexer employing a concave grating.

Fig. 2.
Fig. 2.

Cross-sectional view of the ridge waveguide.

Fig. 3.
Fig. 3.

Schematic figure of the light diffracted and focused by the concave grating.

Fig. 4.
Fig. 4.

Deviation function of the approximation.

Fig. 5.
Fig. 5.

Propagation losses versus the thickness tsi of the core layer at a center wavelength of 1570 nm.

Fig. 6.
Fig. 6.

Schematic figure of the light propagating in the slab waveguide and then diffracted by the concave grating.

Fig. 7.
Fig. 7.

Cross-sectional views of the ridge waveguide and the spot size converter.

Fig. 8.
Fig. 8.

Spectral responses of 400 channel with a channel spacing of 25 GHz (0.2 nm).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α + δ γ = α + δ α + δ σ ,
δ α = δ γ δ σ .
δ β = δ γ δ ρ .
δ α = AB R ¯ ,
δ σ = AB ¯ cos α r 1,0 ,
δ ρ = AB ¯ cos β r 2,0 .
n eff · d ( sin α + sin β ) = ,
cos α δ α + cos β δ β = 0 .
cos α R cos 2 α r 1,0 + cos β R cos 2 β r 2,0 = 0 ,
f ( δγ ) = AB AB ¯ AB = R · δγ 2 R · sin ( δγ 2 ) R · δγ .
AB ¯ max = R · 8.0 ° .
δ σ max = R · 8.0 ° · cos α r 1,0 .
δσ = λ 0 π n eff w 0 .

Metrics