Abstract

We present cw and mode-locked laser operations on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics. In continuous-wave laser operations, the average power of 2.9 W at the wavelength of 1051 nm and 2.8 W at the wavelength of 1031 nm with above 40% optical-to-optical efficiencies were achieved. In mode-locked laser operation, pulses as short as 69 fs with the average power of 820 mW was also obtained.

© 2010 OSA

1. Introduction

Yb3+-doped materials have been well known as promising gain media for highly efficient high power laser operations [1,2]. Thanks to the dramatic advances in laser diode technology over the past decade, the performances of Yb3+-doped solid-state lasers have also rapidly progressed. With a combination of thin disk laser concept, today continuous wave (cw) laser operation above kW-level of average output power and sub-ps mode-locked laser operation with nearly 100-W average output power have been reported [3,4]. Average power up to 400 W with sub-700 fs pulse duration was also obtained based on a Yb3+:Y3Al5O12 (Yb:YAG) amplifier system [5]. Due to the favorable thermal and mechanical properties, Yb:YAG has several advantages and is the most popular gain material for such high power solid-sate laser systems. On the other hand, concerning to the short pulse operation, due to the narrow gain bandwidth of the Yb:YAG, the available pulse duration is generally limited. Seeking for the gain material having favorable thermal property, strong mechanical toughness, and broad gain bandwidth has been very important subject to obtain high power ultrashort pulse lasers. Various kinds of Yb3+-doped crystalline materials and their mode-locked laser operations (e.g. garnets, tungstates, fluorides, vanadates, borates, oxyorthosilicates and sesquioxides) have been studied in the past decade [1,2,614], but ideal gain material has not been found yet. The ceramic materials are interesting candidate for such high power laser operations, due to their superior fracture toughness [1517]. We have reported ultrashort pulse laser operations based on Yb3+-doped ceramic materials and they have not shown any problem caused by their polycrystalline structure [1820]. Recently we have succeeded in fabrication of Yb3+-doped {YGd2}[Sc2](Al2Ga)O12 ceramic. It is the solid solution of scandium-containing aluminum and gallium garnet. It has a partially disordered garnet structure [21]. The disordered crystalline materials are particularly attractive for mode-locked laser operations, because they exhibit emission (gain) spectra based on the inhomogeneous broadening. {YxGd3-x}[Sc2](Al3-xGax)O12 (13x30) with Nd3+ doping has already been fabricated in single crystal and succeeded in generating as short as 260 fs pulses by additive-pulse nonlinear Michelson interferometer [22]. In case of the ceramic, Yb3+:Y3ScAl4O12 solid solution composed of Y3Al5O12 and Y3Sc2Al3O12 has been fabricated and pulses as short as 280 fs have been obtained based on SESAM mode-locking operation [6]. Ceramics are fabricated based on a solid-state reaction and sintering method, which enables fabrication of such solid solution materials with a great uniformity of the material composition.

In this letter we present cw and mode-locked laser operations based on the Yb3+:{YGd2}[Sc2](Al2Ga)O12 partially disordered crystalline ceramic.

2. Spectroscopy

The absorption and luminescence spectra of Yb3+:({YGd2}[Sc2](Al2Ga)O12 ceramics were measured by an ANDO AQ-6315A optical spectrum analyzer with a 0.5 nm spectral resolution. As can be seen in Fig. 1(a) , the absorption spectrum (CYb = 10 at.%, 2.2 mm thick ness) has a sharp zero phonon line at the wavelength of 970 nm and a broad line around 940 nm, which is suitable for a laser diode (LD) pumping. The measured luminescence spectrum is shown in Fig. 1(b). The emission peak occurs at the wavelength of 1030 nm with the FWHM of about 16 nm (CYb = 1.9 at.%, powder), which is nearly twice broader than that of Yb:YAG. We have also measured the lifetime of the powdered Yb3+:{YGd2}[Sc2](Al2Ga)O12 (CYb = 1.9 at.%) with a 30 µs pulsed pump source. The measured lifetime of the 2F5/2 state is about 1.05 ms.

 

Fig. 1 (a) Absorption spectrum (2F7/22F5/2 inter manifold transition) of Yb3+:{YGd2}[Sc2](Al2Ga)O12 (CYb=10 at.%, 2.2 mm thick plate) and (b) luminescence (2F5/22F7/2) spectrum of Yb3{YGd2}[Sc2](Al2Ga)O12 (CYb=1.9at.%, powder) are shown

Download Full Size | PPT Slide | PDF

3. Laser experiment

The developed experimental setup is shown in Fig. 2 . As the gain medium, an Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic (CYb = 10 at.%, 2.2 mm thick) was used. It was put in a copper holder and arranged at the Brewster angle. The pump sources were broad-stripe LD’s (emission area of 1 × 90 µm2, 9 W, 972 nm wavelength, Δλ ≈ 4 nm for a cw operation and emission area of 1 × 95 µm2, 12 W, 975 nm wavelength, Δλ ≈ 5 nm for a mode-locked operation). The pump beam was focused into the ceramic to 1/e 2 diameter of about 25 × 110 µm2 by four beam-shaping lenses. The folding mirrors (M1, M2, Layertec GmbH) have 100-mm radii of curvature (ROC) on both surfaces to eliminate a concave lens effect and are antireflection coated for the wavelength below 980 nm and high-reflection (99.9%) coated above 1020 nm wavelength. In the cw operation (dashed line in the Fig. 3 ), the calculated fundamental laser mode diameters inside the gain medium were about 48 × 48 µm2 (at the focusing point).

 

Fig. 2 Schematic diagram of the experimental setup of Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic laser. The solid and dashed lines indicate mode-locked and cw operation, respectively. The inset shows the pulse train in the mode-locked operation.

Download Full Size | PPT Slide | PDF

 

Fig. 3 Output power versus incident pump power in the Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic lasers. Continuous-wave operation at 1051 nm wavelength (circle points) and at 1031 nm (square points) as well as mode-locked operation (triangle points: before mode locking, inverse triangle points: after mode locking (86 fs)) are shown.

Download Full Size | PPT Slide | PDF

In case of the cw laser operation output couplers of 5% and 10% transmittances (OC 1) were used. With the 10% OC, an average power of 2.8 W at the wavelength of 1031 nm with a 42% optical-to-optical efficiency was obtained. With the 5% OC, an average power of 2.9 W at the wavelength of 1051 nm with a 44% efficiency was also obtained (Fig. 3). In both cases, the measured laser transverse profiles were multi-moded, which was caused by the large difference between the pump laser profile and cavity’s fundamental laser mode profile.

Due to the existence of the reabsorption loss around 1030 nm, the peak position of the total gain of the Yb3+:{YGd2}[Sc2](Al2Ga)O12 depends on the population inversion ratio of Yb3+ ions and therefore the dependence of the lasing wavelength on the output coupling efficiency was caused. The center wavelength of the pump source depends on its operating current (temperature) so that the absorption efficiency also changed with the incident pump power and therefore the output powers in Fig. 3 showed nonlinear slopes against the incident pump power. To achieve the mode-locked operation, a semiconductor saturable absorber mirror (SESAM, 0.5% saturable absorption depth with 500-fs recovery time, BATOP GmbH) and an SF10 prism pair with the tip-to-tip separation of 50 cm were inserted in the cavity. The laser beam was focused onto the SESAM by a concave mirror (M3, ROC = 400 mm). A 5% transmittance output coupler (OC 2) with a wedge of about 30 minutes was also used. Due to the insertion loss of the SESAM and prism pair, the lasing occurred at the wavelength of 1032 nm before the mode-locked operation started. To achieve short pulse duration, the cavity was carefully aligned. Pulses as short as 69 fs with the average power of 820 mW were obtained. The center wavelength and spectral bandwidth were 1042 nm and 22 nm (Fig. 4 ). The time bandwidth product was 0.42 and the repetition rate was 99 MHz. We have observed the large jumping of the output power from ~530 mW to ~820mW and large change of the laser mode diameters (Fig. 5 ) as the mode locked operation starts. The pulse duration could be tuned by modifying the alignment (insertion depth of the prisms, angle and distance between the folding mirrors (M1, M2), position of the gain medium and position of the focusing point of the pump beam), and the position of center wavelength shifted to longer wavelength side with the pulse shortening (Fig. 6 ).

 

Fig. 4 (a) Autocorrelation trace with sech2 fitting and (b) spectrum of 69 fs pulses at the 820 mW average power.

Download Full Size | PPT Slide | PDF

 

Fig. 5 Mode profiles of the laser beam outputs. (a) Before mode locking with the laser mode diameters of about 3100 × 2150 µm2 (tangential × sagittal) and (b) after the mode locking with the laser mode diameters of about 1900 × 1700 µm2.

Download Full Size | PPT Slide | PDF

 

Fig. 6 Spectra of mode-locked lasing pulses with several pulse durations. The center wavelength shifted with pulse shortening (spectral broadening).

Download Full Size | PPT Slide | PDF

4. Discussion and conclusion

In the cw laser operation, optical-to-optical efficiency of 44% was achieved with the Z-shaped cavity, which was used for the purpose of mode-locked operation. By using a simple cavity (as like a cavity consist of flat-concave mirrors [23]), higher efficiency would be available. In case of the mode-locked operation, the short pulse operation (generally shorter than 200 fs) was achieved only with the large change of the laser mode diameters. Without it, we suffered transition to a multi-pulsed operation [24] and the pulse duration was limited to be above 200 fs. We suppose that the large jumping of output power and change of the laser mode diameter were caused by a large Kerr-lens effect and the present short pulse operations were sustained by Kerr-lens mode locking as is in our previous reports [1820]. The available wavelength range in the shorter side was limited by the HR coating of mirrors M1, M2 and the reabsorption loss of the gain material. Therefore the wavelength shift to the longer wavelength side can occur as the spectrum broadens. The spectral bandwidth of the 69 fs pulses (22 nm) became about 1.4 times broader than the gain bandwidth of Yb3+:{YGd2}[Sc2](Al2Ga)O12 (16 nm) and its center wavelength of 1042 nm is 12 nm longer than the peak gain position of the Yb3+:{YGd2}[Sc2](Al2Ga)O12 (1030 nm), and therefore the gain does not have a completely flat shape across the 69 fs pulse spectrum. The sech2 shape of the pulse spectra, however, was sustained in the operation. It is probably due to a large nonlinear spectral shaping effect with a fast and large modulation depth of the Kerr-lens effect in soliton-like mode locking.

In conclusion, we have achieved cw and mode-locked laser operations based on Yb3+:{YGd2}[Sc2](Al2Ga)O12 partially disordered ceramic. In cw laser operations, the average power of 2.9 W at the wavelength of 1051 nm and 2.8 W at the wavelength of 1031 nm with above 40% optical-to-optical efficiencies were obtained. . In the mode-locked laser operation, pulses as short as 69 fs with the average power of 820 mW was also obtained. We believe Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic can be used in much higher average power femtosecond laser operations.

Acknowledgement

This research was partly supported by Grant-in-Aid for Scientific Research and the Photon Frontier Network Program of Ministry of Education, Culture, Sports, Science and Technology

References and links

1. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000). [CrossRef]  

2. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007). [CrossRef]  

3. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE JSTQE 13, 598–609 (2007).

4. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004). [CrossRef]   [PubMed]  

5. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12230. [CrossRef]   [PubMed]  

6. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004). [CrossRef]  

7. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]  

8. F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009). [CrossRef]   [PubMed]  

9. A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

10. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539. [CrossRef]   [PubMed]  

11. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006). [CrossRef]   [PubMed]  

12. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007). [CrossRef]   [PubMed]  

13. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004). [CrossRef]   [PubMed]  

14. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006). [CrossRef]  

15. A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]  

16. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008). [CrossRef]  

17. O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.

18. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353. [CrossRef]   [PubMed]  

19. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007). [CrossRef]   [PubMed]  

20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef]   [PubMed]  

21. A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009). [CrossRef]  

22. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G. B. Loutts, E. W. Zharikov, and I. A. Shcherbakov, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10(8), 1436–1442 (1993). [CrossRef]  

23. K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004). [CrossRef]  

24. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [CrossRef]
  2. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
    [CrossRef]
  3. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE JSTQE 13, 598–609 (2007).
  4. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
    [CrossRef] [PubMed]
  5. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12230 .
    [CrossRef] [PubMed]
  6. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
    [CrossRef]
  7. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
    [CrossRef]
  8. F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009).
    [CrossRef] [PubMed]
  9. A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).
  10. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 .
    [CrossRef] [PubMed]
  11. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
    [CrossRef] [PubMed]
  12. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
    [CrossRef] [PubMed]
  13. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
    [CrossRef] [PubMed]
  14. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
    [CrossRef]
  15. A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [CrossRef]
  16. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
    [CrossRef]
  17. O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.
  18. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
    [CrossRef] [PubMed]
  19. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
    [CrossRef] [PubMed]
  20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  21. A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
    [CrossRef]
  22. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G. B. Loutts, E. W. Zharikov, and I. A. Shcherbakov, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10(8), 1436–1442 (1993).
    [CrossRef]
  23. K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
    [CrossRef]
  24. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999).
    [CrossRef]

2009 (4)

2008 (2)

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (2)

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

2005 (1)

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

2004 (4)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

1999 (1)

1993 (1)

Ackermann, L.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Akchurin, M.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Akhmediev, N. N.

Arisholm, G.

Bagaev, S. N.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Baina, F.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Becker, P.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Benayad, A.

Bisson, J. F.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Bohatý, L.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Boudeile, J.

Browna, C. T. A.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Brunner, F.

Camy, P.

Cascales, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Cormier, E.

Dong, J.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Doualan, J. L.

Druon, F.

Dupré, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Erbert, G.

Esteban-Betegón, F.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Gainutdinov, R.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Georges, P.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE JSTQE 13, 598–609 (2007).

Goldner, P.

Griebner, U.

Hanna, M.

Hoffmann, H. D.

Hosokawa, S.

Huber, G.

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 .
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Ikesue, A.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Innerhofer, E.

Ito, H.

Jacquemet, M.

Jagadish, C.

Kaminskii, A. A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Keller, U.

Kisel, V. E.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Kitamura, K.

Klehr, A.

Klopp, P.

Kränkel, C.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Kuleshovb, N. V.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Kurimura, S.

Lagatsky, A. A.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Lederer, M. J.

Liu, H.

Liu, J.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Loutts, G. B.

Lu, J.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Luther-Davies, B.

Mans, T.

Marchese, S. V.

Ménard, V.

Moncorgé, R.

Mourou, G.

Nees, J.

Noriyuki, M.

Ober, M. H.

Papadopoulos, D. N.

Paschotta, R.

Pelenc, D.

Petermann, K.

Peters, R.

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 .
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Peters, V.

Petit, J.

Petrov, V.

Poprawe, R.

Rhee, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Rico, M.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Rivier, S.

Rotarius, G.

Russbueldt, P.

Rytz, D.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Schmidt, A.

Schmidt, A. J.

Serrano, M. D.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Shcherbakov, I. A.

Shirakawa, A.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Sibbetta, W.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Sorokin, E.

Sorokina, I.

Soto-Crespo, J. M.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE JSTQE 13, 598–609 (2007).

Südmeyer, T.

Taira, T.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Takurakawa, M.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Tan, H. H.

Thibault, F.

Tokurakawa, M.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Usami, T.

Viana, B.

Weitenberg, J.

Weyers, M.

Wintner, E.

Yagi, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Yanagitani, T.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Zagumennyi, A. I.

Zaldo, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Zaouter, Y.

Zharikov, E. W.

Zorn, M.

Appl. Phys. Lett. (2)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

IEEE JSTQE (1)

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE JSTQE 13, 598–609 (2007).

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[CrossRef]

Laser Phys. Lett. (2)

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[CrossRef]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (1)

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Proc. SPIE (1)

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Other (1)

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Absorption spectrum (2F7/22F5/2 inter manifold transition) of Yb3+:{YGd2}[Sc2](Al2Ga)O12 (CYb=10 at.%, 2.2 mm thick plate) and (b) luminescence (2F5/22F7/2) spectrum of Yb3{YGd2}[Sc2](Al2Ga)O12 (CYb=1.9at.%, powder) are shown

Fig. 2
Fig. 2

Schematic diagram of the experimental setup of Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic laser. The solid and dashed lines indicate mode-locked and cw operation, respectively. The inset shows the pulse train in the mode-locked operation.

Fig. 3
Fig. 3

Output power versus incident pump power in the Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic lasers. Continuous-wave operation at 1051 nm wavelength (circle points) and at 1031 nm (square points) as well as mode-locked operation (triangle points: before mode locking, inverse triangle points: after mode locking (86 fs)) are shown.

Fig. 4
Fig. 4

(a) Autocorrelation trace with sech2 fitting and (b) spectrum of 69 fs pulses at the 820 mW average power.

Fig. 5
Fig. 5

Mode profiles of the laser beam outputs. (a) Before mode locking with the laser mode diameters of about 3100 × 2150 µm2 (tangential × sagittal) and (b) after the mode locking with the laser mode diameters of about 1900 × 1700 µm2.

Fig. 6
Fig. 6

Spectra of mode-locked lasing pulses with several pulse durations. The center wavelength shifted with pulse shortening (spectral broadening).

Metrics