Abstract

We theoretically study the cavity transmission spectra with three-level atoms coupled by a coherent external control field in the superstrong coupling regime (atoms-cavity coupling strength gN is near or larger than the cavity free-spectral range ∆FSR). When satisfying the superstrong coupling condition by increasing the number of the interaction atoms, more than one FSR cavity modes interact with atoms and each mode will split three peaks, which can be well explained by the linear dispersion enhancement of electromagnetically induced transparency medium due to the largely increased atomic density in the cavity.

© 2010 Optical Society of America

1. Introduction

Vacuum Rabi-splitting (or normal-mode splitting) is a feature in strongly coupled atom-cavity systems [1, 2, 3, 4]. In the traditional cavity-quantum electrodynamics (C-QED), high finesse microcavities are normally used to enhance the single-photon coupling strength g(=μ2ωc2h̄ε0VM), where ωc is the resonant frequency of the cavity, μ is the atomic dipole matrix element, VM is the cavity mode volume), so the strong-coupling condition of g > κ, γ can be satisfied even with a single atom [1, 2, 3, 4] (where κ is the cavity decay rate and γ is the atomic decay rate). Two normal-mode splitting peaks (i.e. Rabi sidebands) appear in the cavity transmission spectrum due to such strong atom-cavity interaction, with the frequency space between the two side peaks given by 2g. In this regime the quantum dynamics of a few microscopic quantum degrees of freedom dominates the behavior of the system and quantum fluctuations are typically large. In the other regime of involving an assemble of atoms, The atom-cavity coupling strength g can be enhanced to be gN, where N is the number of atoms in the cavity mode volume [5, 6]. Normal-mode splitting with the double-peak structure in assemble of two-level atoms has been demonstrated in atomic beams [7, 8], cold atomic cloud [9, 10] Bose-Einstein condensate [11, 12, 13], and Doppler-broadened two-level atoms in a hot atomic vapor cell [14]. These results had only been studied under the condition of gN ≪ ∆FSR, in which the mode splitting only occurs for one cavity resonant mode near the atomic resonance. ∆FSR = 2π × c/Lc is the free spectral range (FSR) of the empty optical cavity and c is the speed of light in vacuum. Studies of atom-cavity interactions have been extended to the system of an optical cavity with coherently prepared multilevel atoms. Three-peak structure in the transmission spectrum of a cavity containing a three-level atoms dressed by a strong external field were observed, which consists of two broad sidebands representing the vacuum Rabi splitting and a narrow central peak manifested by the dark-state resonance of the two-photon Raman transition [15, 16]. With the high-density, nonlinear regime of atom-cavity coupling for a gas of three-level atoms, the two side peaks in the transmission spectrum split into two pairs of peaks as the temperature increases and each pair of peaks will emerge into one peak due to nonlinearity as the cavity input power increased [17].

Interesting effects in atoms-cavity coupling system, such as cavity-mediated collective light scattering due to the self-organized atoms in the intracavity optical lattice and collective atomic motion, were observed in such system [18, 19, 20, 21]. The normal-mode splitting and collective mechanical effects have also been studied in such atoms-cavity system [9]. The coherent backscattering between the two propagating directions of a longitudinal mode has enhanced the coupling between the atoms in the optical lattice and the cavity fields, even when the fields are detuned far from the atomic resonance [18, 19, 20, 21]. The collective interactions between the atomic ensemble and light can realize the squeezed atomic ensemble for sub-shot-noise sensitivity, which is generated with a enhanced quantum nondemolition (QND) interaction between the atoms and an off-resonant probe beam in the cavity [22, 23]. The coherent coupling between a BEC and a cavity field, demonstrated experimentally, push the studies of quantum micromechanics using collective motion of a trapped ensemble of ultracold atoms as macroscopic resonator [24]. The giant dipole moments of intersubband transitions in quantum wells have been demonstrated for ultrastrong light-matter coupling (here, gN is large enough to amount to a significant fraction of the two-level transition frequency) [25].

Recently, a new “superstrong coupling” regime of the cavity quantum electrodynamics (cavity-QED) was discussed: i.e. gN > ∆FSR with a microscopic number of atoms [26]. More recently, the “superstrong coupling” was investigated experimentally in an optical cavity and two-level atoms, i.e. gN is near or larger than ∆FSR with macroscopic numbers of atoms [27]. In such case, more than one cavity modes will “see” and interact with atoms. The normal-mode splitting can occur for more than one FSR cavity modes (therefore denoted as the multi-normal-mode splitting). In this paper we theoretically study a composite cavity and three-level atoms system in the superstrong coupling regime. When gN ≪ ∆FSR, only one cavity resonant mode near the atomic resonance occurs the mode splitting and become three peaks (we denote all three peaks as single normal-mode splitting in the composite cavity and three-level atoms system), just as shown in Ref. [15, 16]. When satisfying the superstrong coupling condition for gN > ∆FSR by increasing the number of the interaction atoms, more than one FSR cavity modes interact with atoms and each mode will split three peaks (we denote this phenomenon as multi-normal mode-splitting for an optical cavity with electromagnetically induced transparency medium). This phenomenon can be explained very well by using the linear absorption and dispersion theory of the cavity transmission, and by taking into account the sensitive dependence of the index of refraction of the intracavity EIT medium on the atomic density.

 

Fig. 1. A schematic diagram of a ring cavity containing the three-level atoms coupled by a coherent external control field. The optical cavity length, which is fixed on atomic transition frequency, is adjusted by piezoelectric transducer (PZT) mounted on the mirror M3. The frequency of the input laser (as probe light) is scanned to measure the transmission spectra.

Download Full Size | PPT Slide | PDF

2. Theoretical model and analysis

In the model of the coupled atoms-cavity system, the cavity is a ring cavity with length Lc, containing N identical three-level atoms coupled by a coherent external control field as shown in Fig.1. Since we don’t consider Doppler effect in this paper, our scheme is suitable for the ring or standing-wave cavity. The cavity mode couples the atomic transition |a〈 − |e〈. The classical control laser Ec drives the atomic transition |b〈 − |e〈. The cavity input and output mirrors have amplitude reflection (transmission) coefficients of r 1(t 1) and r 2(t 2), respectively, with ri2+ti2=1. The three-level atomic medium has a length La < Lc with N atoms in the cavity volume. The intensity transmission function of a probe laser for the coupled atoms-cavity system is given by [7]

Tc(ωL)=tc(Δ)2
=t12t22eαLa(1r1r2eαLa/2)2+4r1r2eαLa/2sin2(ϕ/2),

where

ϕ(ωL)=2π(ΔΔac)/ΔFSR+(n1)LaωL/c

is the round-trip phase shift experienced by the intracavity field going through the cavity. αLa is the single-pass intensity absorption of the atomic medium and n is the refractive index. ∆ = ωL - ωa and ∆ac = ωc - ωa are laser-atom and atom-cavity frequency detunings, respectively. For a cavity with the finesse F = πr 1 r 2/(1 - r 1 r 2), the cavity linewidth is given by κ = ∆FSR/F. The frequency -dependent intensity-absorption coefficient and the refractive index of the atomic medium are given by

α=2ωacIm[(1+χ)12]
n=Re[(1+χ)12],

respectively, where χ is the susceptibility of EIT medium.

For the three-level atoms which interact with the coherent control and probe lasers, the motion equations of the density matrix are given as [28, 29]

ρ˙be=(γbeiΔc)ρbe+iμbeEc*2(ρbbρee)+iμeaEp*2ρba
ρ˙ea=(γeaiΔp)ρea+iμeaEp2(ρeeρaa)+iμbeEc2ρba
ρ˙ba=[γbai(Δp+Δc)]ρbaiμbeEc*2ρea+iμeaEp2ρbe

where ρij is the density matrix element, γij and μij is the decay rate and electronic dipole, ∆p and ∆c are the detuning of the probe and coupling laser respectively. In this paper, we only consider ∆c = 0 and the amplitude of the coherent control laser is more larger than that of the probe laser (|(Ep |≪|Ec|). Hence most of the atoms leave in the ground state, so ρaa ≃ 1 and ρeeρbb = 0. If the system is an equilibrium state, we can get

ρeaiμeaEpγeaiΔp+Ωc2/4γbaiΔp,

where Ωc = μbeEc is the Rabi frequency of the coupling laser. Thus the complex susceptibility of the EIT medium is obtained from Eq. (6) [28, 29, 30]

χ=iμea2NDh̄ ε01γeaiΔp+Ωc2/4γbaiΔp
=i3πc3NDωa3γeaγeaiΔp+Ωc2/4γbaiΔp,

where ND is the number density of atoms in the cavity mode volume. Here, the angle sustained by the cavity mode is small, and the transverse decay rate can be very closely approximated by the atomic free-space decay rate γea = μ2ea ω3a/3πh̄ ε 0 c 3. When the condition |χ| ≪ 1 is satisfied, the absorption coefficient and the refractive index of the atomic ensemble can be expressed as

α=ωacIm[χ]
n=1+Re[χ]/2.

This is the linear-dispersion theory with Eqs. (1) and (8) used to study the multi-normal-mode splitting of the transmission spectra in the coupled atoms-cavity system.

We consider a situation with three-level atoms (such as rubidium atoms) inside a macroscopic optical ring cavity of 35 cm long. In such system, γea = 2π × 6 MHz, γba = 2π × 10 kHz and ∆FSR = 2π × 856 MHz. The input mirror M 1 and output mirror M 2 of the ring cavity all have 2% transmittance, and M 3 is a high reflector. The mirrors M 1 and M 3 have the same radius of curvature with 50 mm and the M 2 is the plane mirror. The cavity transmission spectra are given by scanning the frequency of the input probe laser. We will only consider the case of ∆ac = 0 throughout this work (the optical cavity length was fixed to resonate the atomic transition |a〈 - |e〈).

First, we consider the case of Ωc = 0 (without the control light), which corresponds to the two-level atoms interacting with the cavity modes. For an empty cavity, the cavity transmission peaks are Lorenzian in shape and occur at ϕ(∆) = m2π, where m = 0,±1,±2, …, with equal mode spaces given by ∆FSR, as can be easily seen from Eq. (1). Each mode is the normal longitudinal mode of the empty cavity. With an intracavity (two-level) atomic medium, the cavity transmission structure is significantly modified. The detailed analysis was given in Ref. [27]. Here we present it simply in order to compare with the EIT medium. When the atomic density is higher, more cavity modes (such as m = +(−) 2 and m = +(−) 3, et al) will participate in the mode-splitting process, which form the multi-normal-mode splitting structure (m = +1 is split into m′ = +11 and m′ = +12; m = −1 into m′ = −11 and m′ = −12; m = +2 into m′ = +21 and m′ = +22; etc.) for two-level atom-cavity system, as shown in Fig. 2(d). Figures 2(e), 2(f), 2(g) and 2(h) (which are the re-plots of Figs. 2(a), 2(b), 2(c) and 2(d), respectively, with the FSR cavity mode number m as the horizontal axis) give a more clear insight into the positions and heights of the multi-normal-mode splitting peaks. Such plots are the typical avoided-crossing plots commonly used in cavity-QED. Note that the peaks of the multi-normal-mode splitting don’t occur exactly at the frequencies with ϕ(∆) = m2π due to the absorption, and slightly shifts away (outside) from the position of the function ϕ(∆) = m2π. The function of ϕ(∆)/2π = ∆/∆FSR +Re[χ(∆)]La/2λL is also plotted in Figs. 2(e), 2(f), 2(g) and 2(h) with ϕ(∆)/2π as the horizontal axis and ∆/∆FSR as the vertical axis. Thus from the Fig. 2, we know that the avoided-crossing curve corresponds to the dispersion of the two-level atoms, which is only transformed linearly. The central part of the avoided-crossing curve, compared with the transformed dispersive curve, is disappeared due to the strong absorption of the two-level atoms.

 

Fig. 2. (Color online). Theoretical calculations of the transmission spectra of the coupled atoms-cavity system with the two-level atoms with different atomic density. For comparison, the cavity transmission spectrum for the empty cavity (blue dashed) is plotted in (a)-(d). m = {…;-2;-1;0;+1;+2;…} label the FSR empty cavity modes and m′ = {…,{-21;-22};{-11;-12};{01;02};{+11;+12};{+21;2+2};…} the multi-normal-mode splitting peaks. (a) NDLa = 3.15×1015 m -2; (b)NDLa = 3.15×1016m-2); (c)NDLa = 7.85×1016 m -2; (d)NDLa = 1.77×1017m-2; (e), (f), (g) and (h) are the re-plots of the multi-normal-mode splitting peaks of (a),(b) (c) and (d) with blue elliptical points, respectively. The function ϕ(∆)/2π = ∆/∆FSR+Re[χ(∆)]La/2λL is also plotted in (e), (f), (g) and (h) with pink dot line.

Download Full Size | PPT Slide | PDF

Now we consider the three-level atoms, which are coupled by a coherent external control field, interacting with the cavity modes. The narrow transparency window appears in the absorption spectrum and is accompanied by a very steep variation of the dispersive profile for the EIT medium [31, 32, 33, 34]. When the atomic density is high enough to satisfy ∆FSRgNγa, κ, ϕ(∆) = 0 will have three real solutions due to the dispersion introduced by the three-level atoms. Thus we know that the center peak (m=0) in the cavity transmission is split into three peaks m2 = {01;02;03} (as shown in Fig. 3a) including two side peaks m′ = 01 and 02 located at ±gN, which is the standard normal-mode splitting, and a very narrow peak m′ = 03 at the center, which is originated from the very steep dispersion at center transparency window. The very narrow peak at center demonstrates that the steep normal dispersion can reduce the cavity linewidth [35]. Under this condition, the other cavity modes are also not affected by the atoms. When gN is near or larger than ∆FSR, not only the center cavity mode (m = 0) has mode splitting, other cavity modes (such as m = ±1) will interact with the atoms and have their own mode splitting peaks (i.e. ϕ(∆) = 2π and m′ = {+11;+12;+13} or ϕ(∆) = - 2π and m′ = {-11;-12;-13} will also have three real solutions labeled in the figure), as shown in Figs. 3(b) and 3(c). Their two splitting peaks i.e. m′ = +11 and +12 come originally from the splitting of the two-level atoms, however m′ = +13 from the very steep dispersion at center transparency window. The positions of their three splitting peaks present asymmetric structure as shown in Figs. 3(b) and 3(c). When the atomic density gets even higher, more cavity modes (such as m = +(-)2 and m = +(-)3, et al.) will participate in the mode-splitting process, which form the multi-normal-mode splitting structure for three-level atom-cavity system, as shown in Fig. 3(d). Figures 3(e), 3(f), 3(g) and 3(h) (which are the re-plots of Figs. 3(a), 3(b), 3(c) and 3(d), respectively) give a more clear insight into the positions and heights of the multi-normal-mode splitting peaks for three-level atoms. Figs. 3(e), 3(f), 3(g) and 3(h), including the curves of the function of ϕ(∆)/2π = ∆/∆FSR+Re[χ(∆)]La/2λL, present the relationship between the avoided-crossing curve and the dispersion of the three-level atoms.

 

Fig. 3. (Color online). Theoretical calculations of the transmission spectra of the coupled atoms-cavity system with the three-level atoms with different atomic density. The cavity transmission spectrum for the empty cavity (blue dashed) is plotted in (a)-(d). m = {…;-2;-1;0;+1;+2;…} label the FSR empty cavity modes and m′ = {…;{-21;-22;-23};{-11;-12;-13};{01;02;03};{+11; +12;+13};{+21;+22;+23};…} the multi-normal-mode splitting peaks. The Rabi frequency of the coupling laser is Ωc = 2π × 60 MHz. The other parameters are same as the Fig.2. (e), (f), (g) and (h) are the re-plots of the multi-normal-mode splitting peaks of (a),(b) (c) and (d) with blue elliptical points, respectively. The function ϕ(∆)/2π = ∆/∆FSR +Re[χ(∆)]La/2λL is also plotted in (e),(f),(g) and (h)with pink dot line.

Download Full Size | PPT Slide | PDF

3. Conclusion

In summary, we have studied theoretically the cavity transmission spectra in a system with three-level atoms under the “superstrong coupling” condition of gN larger or equal to ∆FSR. Each FSR cavity mode is split into three peaks in the composite cavity and three-level atoms system. In the atoms-cavity superstrong coupling region, mode-splitting with three peaks occurs in many FSR cavity modes due to the interactions with the intracavity atoms. This phenomenon can be qualitatively explained by using the linear absorption and dispersion theory of the cavity transmission. From this work, we may give clear explanation for the phenomenon in recent experimental work [17], which is the two side peaks in the transmission spectrum ”split-ting” into two pairs of peaks as the temperature increases. In fact, the splitting peaks come from the splitting of the different cavity modes as shown in Fig. 3(b). This work also stimulate theoretical and experimental investigations of the cavity with the different atomic medium (e.g. multi-level atoms) in the “superstrong coupling” region. For example, recently Li, et al. have experimentally studied EIT in a dense rubidium gas with the propagation of two optical fields in the presence of an added microwave field that is coupled to the hyperfine levels of Rb atoms, which are in a three-level Λ configuration [36]. The contributions to the transmission of the probe field are determined by the interface of the Λ-scheme EIT and the parametric process involving the microwave field, which give several ways to control the coherence and the transmission of the probe field. So we may investigate the influence on the multi-normal mode-splitting in the composite cavity and three-level atoms system with the additional microwave field.

This research was supported in part by NSFC for Distinguished Young Scholars (Grant No. 10725416), National Basic Research Program of China (Grant No. 2006CB921101), NSFC Project for Excellent Research Team (Grant No. 60821004), and the TYMIT and TSTIT of Shanxi.

References and links

1. P. R. Berman, “Cavity Quantum Electrodynamics,” Advances in Atomic, Molecular, and Optical Physics, (Academic, New York) 1994.

2. A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004). [CrossRef]   [PubMed]  

3. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005). [CrossRef]   [PubMed]  

4. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007). [CrossRef]   [PubMed]  

5. M. Tavis and F. W. Cummings, “Exact solution for an N-molecule-radiation-field Hamiltonian,” Phys. Rev. 170, 379 (1968). [CrossRef]  

6. G. S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732 (1984). [CrossRef]  

7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990). [CrossRef]   [PubMed]  

8. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992). [CrossRef]   [PubMed]  

9. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006). [CrossRef]   [PubMed]  

10. A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006). [CrossRef]  

11. S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007). [CrossRef]  

12. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007). [CrossRef]   [PubMed]  

13. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007). [CrossRef]   [PubMed]  

14. J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008). [CrossRef]  

15. G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007). [CrossRef]  

16. H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008). [CrossRef]   [PubMed]  

17. H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009). [CrossRef]  

18. B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003). [CrossRef]   [PubMed]  

19. D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003). [CrossRef]   [PubMed]  

20. A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003). [CrossRef]   [PubMed]  

21. S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007). [CrossRef]   [PubMed]  

22. I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.

23. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, “Squeezing the collective spin of a dilute atomic ensemble by cavity feedback,” arXiv:quant-ph/0810.2582.

24. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008). [CrossRef]   [PubMed]  

25. G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009). [CrossRef]   [PubMed]  

26. D. Meiser and P. Meystre, “Superstrong coupling regime of cavity quantum electrodynamics,” Phys. Rev. A 74, 065801 (2006). [CrossRef]  

27. X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009). [CrossRef]  

28. M. O. Scully and M. S. Zubairy, “Quantum Optics” Cambridge University Press, Cambridge, England, 1997.

29. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995). [CrossRef]   [PubMed]  

30. R. W. Boyd, “Nonlinear Optics” Academic, San Diego, CA, 2003.

31. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 37 (1997). [CrossRef]  

32. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471 (1998). [CrossRef]  

33. M. D. Lukin, “ Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003). [CrossRef]  

34. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005). [CrossRef]  

35. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732 (2000). [CrossRef]  

36. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. R. Berman, “Cavity Quantum Electrodynamics,” Advances in Atomic, Molecular, and Optical Physics, (Academic, New York) 1994.
  2. A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
    [CrossRef] [PubMed]
  3. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
    [CrossRef] [PubMed]
  4. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
    [CrossRef] [PubMed]
  5. M. Tavis and F. W. Cummings, “Exact solution for an N-molecule-radiation-field Hamiltonian,” Phys. Rev. 170, 379 (1968).
    [CrossRef]
  6. G. S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732 (1984).
    [CrossRef]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
    [CrossRef] [PubMed]
  8. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992).
    [CrossRef] [PubMed]
  9. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
    [CrossRef] [PubMed]
  10. A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
    [CrossRef]
  11. S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
    [CrossRef]
  12. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
    [CrossRef] [PubMed]
  13. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
    [CrossRef] [PubMed]
  14. J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008).
    [CrossRef]
  15. G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
    [CrossRef]
  16. H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
    [CrossRef] [PubMed]
  17. H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009).
    [CrossRef]
  18. B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003).
    [CrossRef] [PubMed]
  19. D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
    [CrossRef] [PubMed]
  20. A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003).
    [CrossRef] [PubMed]
  21. S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
    [CrossRef] [PubMed]
  22. I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.
  23. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, “Squeezing the collective spin of a dilute atomic ensemble by cavity feedback,” arXiv:quant-ph/0810.2582.
  24. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
    [CrossRef] [PubMed]
  25. G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
    [CrossRef] [PubMed]
  26. D. Meiser and P. Meystre, “Superstrong coupling regime of cavity quantum electrodynamics,” Phys. Rev. A 74, 065801 (2006).
    [CrossRef]
  27. X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
    [CrossRef]
  28. M. O. Scully and M. S. Zubairy, “Quantum Optics” Cambridge University Press, Cambridge, England, 1997.
  29. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
    [CrossRef] [PubMed]
  30. R. W. Boyd, “Nonlinear Optics” Academic, San Diego, CA, 2003.
  31. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 37 (1997).
    [CrossRef]
  32. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471 (1998).
    [CrossRef]
  33. M. D. Lukin, “ Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
    [CrossRef]
  34. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  35. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732 (2000).
    [CrossRef]
  36. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
    [CrossRef]

2009 (4)

H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009).
[CrossRef]

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

2008 (3)

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef] [PubMed]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
[CrossRef] [PubMed]

J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008).
[CrossRef]

2007 (6)

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
[CrossRef]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

2006 (3)

D. Meiser and P. Meystre, “Superstrong coupling regime of cavity quantum electrodynamics,” Phys. Rev. A 74, 065801 (2006).
[CrossRef]

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
[CrossRef] [PubMed]

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

2005 (2)

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

2004 (1)

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

2003 (4)

B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003).
[CrossRef] [PubMed]

D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
[CrossRef] [PubMed]

A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[CrossRef] [PubMed]

M. D. Lukin, “ Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
[CrossRef]

2000 (1)

1998 (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 37 (1997).
[CrossRef]

1995 (1)

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

1992 (1)

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

1990 (1)

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

1984 (1)

G. S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732 (1984).
[CrossRef]

1968 (1)

M. Tavis and F. W. Cummings, “Exact solution for an N-molecule-radiation-field Hamiltonian,” Phys. Rev. 170, 379 (1968).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732 (1984).
[CrossRef]

Anappara, A. A.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Berman, P. R.

P. R. Berman, “Cavity Quantum Electrodynamics,” Advances in Atomic, Molecular, and Optical Physics, (Academic, New York) 1994.

Biasiol, G.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Birnbaum, K. M.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

Black, A. T.

A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[CrossRef] [PubMed]

Boca, A.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

Boozer, A. D.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

Boudet, J.

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

Bourdel, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, “Nonlinear Optics” Academic, San Diego, CA, 2003.

Brennecke, F.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Burkett, W. H.

Bux, S.

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

Carmichael, H. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Chan, H. W.

A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[CrossRef] [PubMed]

Chen, H.

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

Ciuti, C.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Courteille, P. W.

D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
[CrossRef] [PubMed]

Courteille, Ph. W.

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

Cube, C. von

D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
[CrossRef] [PubMed]

Cummings, F. W.

M. Tavis and F. W. Cummings, “Exact solution for an N-molecule-radiation-field Hamiltonian,” Phys. Rev. 170, 379 (1968).
[CrossRef]

Donner, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Elsasser, Th.

B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003).
[CrossRef] [PubMed]

Esslinger, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Gauthier, D. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Gea-Banacloche, J.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009).
[CrossRef]

J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Goorskey, D. J.

Grothe, A.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Gunter, G.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Gupta, S.

S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 37 (1997).
[CrossRef]

Hees, J.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Hemmer, P. R.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Hemmerich, A.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
[CrossRef] [PubMed]

B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003).
[CrossRef] [PubMed]

Hernandez, G.

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

Huber, R.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Jin, S. Z.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Kasevich, M. A.

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.

Kimble, H. J.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

Klinner, J.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
[CrossRef] [PubMed]

Kohl, M.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Krenz, G.

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

Kruse, D.

D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
[CrossRef] [PubMed]

Kubanek, A.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Lee, J.

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.

Leitenstorfer, A.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Leroux, I. D.

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, “Squeezing the collective spin of a dilute atomic ensemble by cavity feedback,” arXiv:quant-ph/0810.2582.

Li, H.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Li, Y. Q.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Liberato, S. De

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Lindholdt, M.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
[CrossRef] [PubMed]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Long, R.

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

Lukin, M. D.

M. D. Lukin, “ Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471 (1998).
[CrossRef]

Maunz, P.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

McKeever, J.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

Meiser, D.

D. Meiser and P. Meystre, “Superstrong coupling regime of cavity quantum electrodynamics,” Phys. Rev. A 74, 065801 (2006).
[CrossRef]

Meystre, P.

D. Meiser and P. Meystre, “Superstrong coupling regime of cavity quantum electrodynamics,” Phys. Rev. A 74, 065801 (2006).
[CrossRef]

Miller, R.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

Moore, K. L.

S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
[CrossRef]

Morin, S. E.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Mossberg, T. W.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Murch, K. W.

S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
[CrossRef]

Murr, K.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Nagorny, B.

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
[CrossRef] [PubMed]

B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003).
[CrossRef] [PubMed]

Pinkse, P. W. H.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

Puppe, T.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Rempe, G.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

Ritter, S.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Rostovtsev, Y. V.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Sautenkov, V. A.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Schleier-Smith, M. H.

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, “Squeezing the collective spin of a dilute atomic ensemble by cavity feedback,” arXiv:quant-ph/0810.2582.

Schuster, I.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

Scully, M. O.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

M. O. Scully and M. S. Zubairy, “Quantum Optics” Cambridge University Press, Cambridge, England, 1997.

Slama, S.

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

Sorba, L.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Stamper-Kurn, D. M.

S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
[CrossRef]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Syassen, N.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

Tavis, M.

M. Tavis and F. W. Cummings, “Exact solution for an N-molecule-radiation-field Hamiltonian,” Phys. Rev. 170, 379 (1968).
[CrossRef]

Teper, I.

I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.

Thompson, R. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

Tredicucci, A.

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Tuchman, A. K.

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

Vrijesen, G.

I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.

Vrijsen, G.

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

Vuletic, V.

A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[CrossRef] [PubMed]

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, “Squeezing the collective spin of a dilute atomic ensemble by cavity feedback,” arXiv:quant-ph/0810.2582.

Wang, H.

Wang, P.

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

Welch, G. R.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Wu, H.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009).
[CrossRef]

J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef] [PubMed]

Wu, Q.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Xiao, M.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009).
[CrossRef]

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef] [PubMed]

J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008).
[CrossRef]

H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732 (2000).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Xiong, D.

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

Yu, X.

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

Zhang, J.

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

Zhu, Y.

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Zimmermann, C.

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
[CrossRef] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, “Quantum Optics” Cambridge University Press, Cambridge, England, 1997.

J. Mod. Opt. (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471 (1998).
[CrossRef]

Nature (3)

G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178 (2009).
[CrossRef] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

M. Tavis and F. W. Cummings, “Exact solution for an N-molecule-radiation-field Hamiltonian,” Phys. Rev. 170, 379 (1968).
[CrossRef]

Phys. Rev. A (8)

A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, “Normal-mode splitting with large collective cooperativity,” Phys. Rev. A 74, 053821 (2006).
[CrossRef]

J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008).
[CrossRef]

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity,” Phys. Rev. A 80, 033806 (2009).
[CrossRef]

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

D. Meiser and P. Meystre, “Superstrong coupling regime of cavity quantum electrodynamics,” Phys. Rev. A 74, 065801 (2006).
[CrossRef]

X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, “Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime,” Phys. Rev. A 79, 061803 (2009).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (13)

B. Nagorny, Th. Elsasser, and A. Hemmerich, “Collective atomic motion in an optical lattice formed inside a high finesse cavity,” Phys. Rev. Lett. 91, 153003 (2003).
[CrossRef] [PubMed]

D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, “Observation of lasing mediated by collective atomic recoil,” Phys. Rev. Lett. 91, 183601 (2003).
[CrossRef] [PubMed]

A. T. Black, H. W. Chan, and V. Vuletic, “Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[CrossRef] [PubMed]

S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, “Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity,” Phys. Rev. Lett. 98, 053603 (2007).
[CrossRef] [PubMed]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef] [PubMed]

S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007).
[CrossRef]

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett. 93, 233603 (2004).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef] [PubMed]

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

G. S. Agarwal, “Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1732 (1984).
[CrossRef]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, “Normal mode splitting and mechanical effects of an optical lattice in a ring cavity,” Phys. Rev. Lett. 96, 023002 (2006).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 37 (1997).
[CrossRef]

Rev. Mod. Phys. (2)

M. D. Lukin, “ Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Science (1)

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235 (2008).
[CrossRef] [PubMed]

Other (5)

P. R. Berman, “Cavity Quantum Electrodynamics,” Advances in Atomic, Molecular, and Optical Physics, (Academic, New York) 1994.

R. W. Boyd, “Nonlinear Optics” Academic, San Diego, CA, 2003.

M. O. Scully and M. S. Zubairy, “Quantum Optics” Cambridge University Press, Cambridge, England, 1997.

I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, “Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state,” arXiv:quant-ph/0807.4762.

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, “Squeezing the collective spin of a dilute atomic ensemble by cavity feedback,” arXiv:quant-ph/0810.2582.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A schematic diagram of a ring cavity containing the three-level atoms coupled by a coherent external control field. The optical cavity length, which is fixed on atomic transition frequency, is adjusted by piezoelectric transducer (PZT) mounted on the mirror M3. The frequency of the input laser (as probe light) is scanned to measure the transmission spectra.

Fig. 2.
Fig. 2.

(Color online). Theoretical calculations of the transmission spectra of the coupled atoms-cavity system with the two-level atoms with different atomic density. For comparison, the cavity transmission spectrum for the empty cavity (blue dashed) is plotted in (a)-(d). m = {…;-2;-1;0;+1;+2;…} label the FSR empty cavity modes and m′ = {…,{-21;-22};{-11;-12};{01;02};{+11;+12};{+21;2+2};…} the multi-normal-mode splitting peaks. (a) NDLa = 3.15×1015 m -2; (b)NDLa = 3.15×1016m-2); (c)NDLa = 7.85×1016 m -2; (d)NDLa = 1.77×1017m-2; (e), (f), (g) and (h) are the re-plots of the multi-normal-mode splitting peaks of (a),(b) (c) and (d) with blue elliptical points, respectively. The function ϕ(∆)/2π = ∆/∆ FSR +Re[χ(∆)]La /2λL is also plotted in (e), (f), (g) and (h) with pink dot line.

Fig. 3.
Fig. 3.

(Color online). Theoretical calculations of the transmission spectra of the coupled atoms-cavity system with the three-level atoms with different atomic density. The cavity transmission spectrum for the empty cavity (blue dashed) is plotted in (a)-(d). m = {…;-2;-1;0;+1;+2;…} label the FSR empty cavity modes and m′ = {…;{-21;-22;-23};{-11;-12;-13};{01;02;03};{+11; +12;+13};{+21;+22;+23};…} the multi-normal-mode splitting peaks. The Rabi frequency of the coupling laser is Ω c = 2π × 60 MHz. The other parameters are same as the Fig.2. (e), (f), (g) and (h) are the re-plots of the multi-normal-mode splitting peaks of (a),(b) (c) and (d) with blue elliptical points, respectively. The function ϕ(∆)/2π = ∆/∆ FSR +Re[χ(∆)]La /2λL is also plotted in (e),(f),(g) and (h)with pink dot line.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T c ( ω L ) = t c ( Δ ) 2
= t 1 2 t 2 2 e α L a ( 1 r 1 r 2 e α L a / 2 ) 2 + 4 r 1 r 2 e α L a / 2 sin 2 ( ϕ / 2 ) ,
ϕ ( ω L ) = 2 π ( Δ Δ ac ) / Δ FSR + ( n 1 ) L a ω L / c
α = 2 ω a c Im [ ( 1 + χ ) 1 2 ]
n = Re [ ( 1 + χ ) 1 2 ] ,
ρ ˙ be = ( γ be i Δ c ) ρ be + i μ be E c * 2 ( ρ bb ρ ee ) + i μ ea E p * 2 ρ ba
ρ ˙ ea = ( γ ea i Δ p ) ρ ea + i μ ea E p 2 ( ρ ee ρ aa ) + i μ be E c 2 ρ ba
ρ ˙ ba = [ γ ba i ( Δ p + Δ c ) ] ρ ba i μ be E c * 2 ρ ea + i μ ea E p 2 ρ be
ρ ea i μ ea E p γ ea i Δ p + Ω c 2 / 4 γ ba i Δ p ,
χ = i μ ea 2 N D h ̄ ε 0 1 γ ea i Δ p + Ω c 2 / 4 γ ba i Δ p
= i 3 π c 3 N D ω a 3 γ ea γ ea i Δ p + Ω c 2 / 4 γ ba i Δ p ,
α = ω a c Im [ χ ]
n = 1 + Re [ χ ] / 2 .

Metrics