Abstract

The nonlinear optical properties of thin ZnO film are studied using interferometric autocorrelation (IFRAC) microscopy. Ultrafast, below-bandgap excitation with 6-fs laser pulses at 800 nm focused to a spot size of 1 µm results in two emission bands in the blue and blue-green spectral region with distinctly different coherence properties. We show that an analysis of the wavelength-dependence of the interference fringes in the IFRAC signal allows for an unambiguous assignment of these bands as coherent second harmonic emission and incoherent, multiphoton-induced photoluminescence, respectively. More generally our analysis shows that IFRAC allows for a complete characterization of the coherence properties of the nonlinear optical emission from nanostructures in a single-beam experiment. Since this technique combines a very high temporal and spatial resolution we anticipate broad applications in nonlinear nano-optics.

© 2010 OSA

1. Introduction

When illuminating semiconducting or metallic solid state nanostructures with intense and broadband ultrashort optical pulses, a variety of nonlinear optical processes such as second or third harmonic generation (SHG, THG), multiphoton-induced luminescence (MPL), photoemission and others are induced. Quite often several of these phenomena occur simultaneously under the same experimental conditions, making it sometimes difficult to distinguish between them. Prominent examples having attracted considerable recent interest are the competition between SHG and multiphoton-induced visible photoluminescence in gold nanoparticles [1] or SHG, THG and MPL in wide bandgap semiconductors such as gallium nitride [2].

Particularly well-studied examples are ZnO films and nanostructures. The wide band gap energy of ZnO of 3.37 eV at room temperature and its large exciton binding energy of ~60meV makes it a highly interesting material for various optoelectronics applications [3,4]. Also, ZnO powders and nanorods present an interesting prototypical material for exploring random lasing [5,6]. Consequently, the nonlinear optical properties of a variety of different ZnO thin films [710] and nanostructures [1115] have been studied extensively. Quite generally, it is found that nonlinear optical efficiencies in ZnO nanostructures can be significantly larger than those of ZnO thin films but that the relative intensities of the different harmonic generation and photoluminescence contributions depend critically on the structural and morphological characteristics of the nanostructures as well as on the nature and concentration of defects in these samples [16].

Being able to clearly distinguish between optical harmonic generation (OHG) and luminescence processes is therefore crucial for a further optimization of their device performance. In general, this requires a complete characterization of the coherence properties of the light being re-emitted from the nanostructures. Whereas OHG is a fully phase-coherent resonant scattering process, phase coherence to the driving laser is lost in incoherent MPL emission. Even though the coherence properties of the emitted radiation have been studied in great detail for linear light scattering from, e.g., semiconductor quantum wells [1719], such analyses are scarce for nonlinear light scattering from nanostructures.

Here we show that interferometric frequency-resolved autocorrelation (IFRAC) spectroscopy, a technique recently introduced to characterize ultrashort laser pulses [20], can quantitatively discriminate between OHG and MPL from semiconducting nanostructures. By experimentally and theoretically analyzing IFRAC spectra from thin ZnO films, we show that IFRAC probes the most important difference between SHG and MPL, i.e., their phase correlation with the excitation pulse. Due to its high temporal (< 6 fs) and spatial (< 500 nm) resolution, we foresee a variety of applications of this technique in probing the optical nonlinearities of individual nanostructures.

2. Experimental setup

The experimental setup used in this work is schematically shown in Fig. 1(a) . Few-cycle laser pulses with an energy of 2.5 nJ and a duration of 6 fs are generated in a commercial Ti:sapphire oscillator (Femtolasers Rainbow) operating at a repetition rate of 82 MHz. The pulse dispersion is controlled by a pair of chirped mirrors with a group delay dispersion (GDD) of −45 fs2/bounce (Femtolasers GSM014). A pair of wedges (Femtolasers UA124, angle 2°48′, Suprasil 1) is used to fine-tune the dispersion. Appropriately pre-compensated pulses with a GDD of < −200fs2 enter a dispersion-balanced, unstabilized Michelson interferometer with low-dispersion broadband dielectric beamsplitters. In the interferometer, a collinearly propagating pair of pulses with variable time delay τ is generated. The pulse delay is controlled using a hardware-linearized single-axis piezo scanner (Physik Instrumente P-621.1CD PI-Hera). Fluctuations of τ due to mechanical vibrations of the interferometer and the finite precision of the piezo scanner are less than 30 as. The pulse pair is expanded to a beam size of 15 mm in an all-reflective Kepler telescope. The beam is then focused to its diffraction limit using an all-reflective, aluminum-coated 36x Cassegrain (Davin Optronics, 5004-000) microscope objective with a numerical aperture (NA) of 0.5. The spatial intensity profile of the focused spot is characterized by collecting the laser light through an aluminum coated near-field optical fiber (Veeco Instruments) with an aperture diameter of ~300nm, fabricated by focused-ion-beam milling. The tip is mounted on a hardware-linearized three-axis piezo stage (Physik Instrumente NanoCube) with a positioning accuracy of better than 10 nm. The intensity of the collected laser light is detected with a photomultiplier tube while scanning the tip through the focus. The spatial intensity distribution of the beam in the focus of the Cassegrain objective is shown in Fig. 1(b). The full width at half maximum of this distribution is 1.0 µm. The rather pronounced Airy fringes result from the obscuration of the central part of the beam by the inner mirror of the objective.

 

Fig. 1 (a) Experimental setup for interferometric frequency resolved autocorrelation (IFRAC) microscopy. A phase-locked pair of two 6-fs-optical pulses centered at 800 nm derived from a mode-locked Ti:Sapphire oscillator operating at 80 MHz repetition rate is generated in a dispersion-balanced Michelson interferometer. Pulses with an energy of 1 nJ are focused to the diffraction limit of about 1 µm onto the sample using an all-reflective Cassegrain objective. The emission from the sample is collected in a reflection geometry, spectrally dispersed in a monochromator and detected with a cooled CCD detector as a function of the time delay τ between both pulses. (b) Spatial intensity profile in the focal plane recorded by scanning a near-field fiber tip through the focus. (c) Interferometric autocorrelation (IAC) trace of the focused laser pulses (solid line). A simulation of the IAC trace based on the measured laser spectrum (inset) is shown as a dashed line.

Download Full Size | PPT Slide | PDF

To record the time structure of the focused pulses, the tip is replaced with a 10 µm thick BBO crystal and interferometric autocorrelation (IAC) traces are recorded in the laser focus. In Fig. 1(c), a typical IAC trace of the laser pulses in the focus of the Cassegrain objective is shown. The spectrum of the incident laser pulses extending from 650 to 1050 nm is shown in the inset. A simulation of the IAC trace (Fig. 1(c), red dashed line) based on the measured pulse spectrum gives evidence that the focusing with the Cassegrain objective results in essentially bandwidth-limited pulses with a temporal duration of 6.0 fs (full width at half maximum of the pulse intensity) focused to a spot size of 1.0 µm.

Thin ZnO layers with a thickness of 430 nm are deposited on a sapphire substrate using a sputtering technique. The films are sputter-deposited for 50 min at a RF power of 200 W and an Ar flow rate of 16 sccm. A scanning electron microscope (SEM) image of the ZnO film recorded under a viewing angle of 30° in shown in the inset of Fig. 2 . The sputtering technique results in a slightly granular surface morphology with a typical grain size of about 50 nm, much smaller than the wavelength of light. For the optical measurements reported here, the ZnO thin film can therefore be considered as a spatially homogeneous layer. Photoluminescence spectra are recorded at room temperature by exciting the sample at 337 nm with a N2-laser. For the nonlinear optical measurements, the film is illuminated with 6-fs Ti:sapphire pulses focused through the Cassegrain objective. The emission from the ZnO sample is collected in reflection geometry, spectrally dispersed in a monochromator (SpectraPro-2500i, Acton) and detected with a deep-depletion liquid-nitrogen cooled CCD camera (Spec-10, Princeton Instruments). Interferometric frequency-resolved autocorrelation (IFRAC) traces are recorded by illuminating the film with a pair of phase-locked 6-fs laser pulses and monitoring the nonlinear emission spectrum as a function of the delay τ between these pulses.

 

Fig. 2 Room-temperature photoluminescence spectrum of the ZnO layer for one-photon, above-bandgap excitation at 337 nm. The spectrally narrow free-exciton emission around 392 nm and the defect-related blue-green emission band extending from 400 to 550 nm are clearly distinguished. Inset: Scanning electron microscope image of the sputtered 400-nm-thick ZnO film.

Download Full Size | PPT Slide | PDF

3. Experimental results

A room-temperature photoluminescence spectrum of the ZnO layer recorded for above bandgap excitation at 337 nm is displayed in Fig. 2. As known for such films [21], it shows a strong and spectrally narrow free-exciton emission centered at 392 nm and a spectrally broad, defect-related blue-green emission band extending from 400 to 550 nm. The origin of the blue-green emission has strongly been debated in the literature [21] and it is generally believed that this emission involves multiple defects and/or defect complexes.

Nonlinear optical spectra recorded for below-band gap excitation with 6-fs-laser pulses centered at around 800 nm are shown in Fig. 3(a) . Two prominent emission bands are found. The first one is centered at around 400 nm, slightly below the free-exciton resonance. The second emission band is centered around 500 nm. The intensity of both bands depends very differently on the laser intensity. The intensity I1 of the 400-nm-band (red circles in Fig. 3(b)) scales essentially as the second power of the laser power P, I1Pb1 with b1=1.85±0.1 (solid line in Fig. 3(b)). This suggests that this emission arises predominantly from resonantly enhanced second harmonic generation (SHG) from the ZnO film. The drop in SHG intensity at λ<380 nm is then attributed to the reabsorption of SH radiation in the ZnO film. This assignment is in agreement with recent studies using more narrowband, spectrally tunable below-bandgap excitation [9]. The intensity I2 of the blue-green emission band (red circles in Fig. 3(c)) depends much more strongly on the laser power, I2Pb2 with b2=3.5±0.3 (solid line in Fig. 3(c)). A similarly pronounced power dependence has been observed before [9] and has led the authors to conclude that this emission band can be assigned to a multiphoton-induced luminescence band. Since the spectral shape in Fig. 3 is independent on the excitation power we conclude that stimulated emission processes, well known in ZnO nanostructures, can be neglected under excitation conditions chosen in our experiments.

 

Fig. 3 (a) Spectrally resolved nonlinear optical emission from a ZnO film. The sample is excited with 6-fs laser pulses pulses centered at 800 nm. The emission spectra are recorded as a function of the average laser power. Two emission bands, a blue emission around 400 nm and a blue-green emission around 500 nm are discerned. (b) Power dependence of the blue band, integrated between 360 and 460 nm (red circles) and allometric fit IPb1with b1=1.85±0.1 (black solid line). (c) Power dependence of the blue-green band, integrated between 470 and 520 nm (red circles) and allometric fit IPb2with b2=3.5±0.3 (black solid line).

Download Full Size | PPT Slide | PDF

To further characterize the two nonlinear optical emission bands, we induce this emission by a phase-locked pair of collinearly propagating 6-fs laser pulses and record the emission intensity IIF(τ,λd) as a function of the interpulse delay τ and the emission wavelength λd. Such interferometric frequency resolved autocorrelation (IFRAC) measurements have successfully been used to characterize ultrashort laser pulses [20, 22] and very recently also to probe the optical nonlinearity of a single metallic nanotip [23]. An IFRAC trace IIF(τ,λd) from the ZnO-layer recorded with pulses having an energy of 0.44 nJ (laser power 35 mW) is shown in Fig. 4(a) . Here, the time delay τ between the two pulses is varied between −30 fs and + 30 fs and the spectral emission is detected between 370 nm and 520 nm. As in Fig. 3, two distinct emission bands, the blue emission around 400 nm and the blue-green band around 500 nm are discerned. The IFRAC signals of both bands show distinctly different dynamics and, most importantly, very different interference fringe patterns. In the blue emission band, the modulation period, i.e., the time difference between two fringe maxima, in a narrow region around τ=0 is T=2λd/c=4π/ωd (ωd: detection frequency) and varies linearly with the detection wavelength. This is schematically illustrated by the dotted lines in Fig. 4(a). At λ=400 nm we find T=2.69±0.05 fs, in good agreement with the expected value of 2.67 fs. For larger τ, the fringe spacing reduces to half this value. The wavelength-dependence of the fringes is more clearly seen when looking at the magnitude of the Fourier transforms I˜IF(ωτ,λd)=IIF(τ,λd)exp(iωττ)dτ along the delay axis τ (Fig. 4(b)). This Fourier transform shows peaks around ωτ=0 (the DC component), ωτ=±ωd/2 (the fundamental sidebands) and ωτ=±ωd (the second order sidebands). It is important to note that in an off-resonant, coherent second harmonic experiment, the center frequencies of the fundamental and second order sidebands are proportional to the detection frequency [20].

 

Fig. 4 (a) Experimental IFRAC traces from a 400-nm-thick ZnO layer plotted on a logarithmic scale. Two distinct emission-bands, the blue emission around 400 nm and a blue-green emission around 500 nm are discerned. Detection-wavelength dependent interference fringes with a period T=2λd/c, λd: detection wavelength, c: speed of light, are observed in the wavelength range between 380 nm and 450 nm. This points to a coherent optical harmonic emission process. In the range between 460 nm and 520 nm, however, the interference fringes are independent of the detection-wavelength and modulation period of T=2.4 fs, indicating that the emission arises from an incoherent multiphoton-induced PL process. The different shape of the coherent and the incoherent emission is illustrated by dotted lines. (b) Spectral Fourier transformations of the IFRAC traces plotted on logarithmic intensity scale (c,d) IAC trace obtained by spectrally integrating the data in (a) from 380nm to 460nm and from 460nm to 520nm, respectively.

Download Full Size | PPT Slide | PDF

Very different fringe patterns are observed in the IFRAC signal of the blue-green emission band (Fig. 4(a)). Here, pronounced fringes are only seen in a narrow region around τ=0 due to the large (b2=3.5)nonlinear power dependence. Moreover, we observe, in the entire detection wavelength range between 460 and 520 nm, a fringe spacing T=2.40±0.05fs which is independent of the detection wavelength. The detection-wavelength-independence of the fringe spacing is confirmed by looking at the Fourier transform I˜IF(ωτ,λd). This signal is arguably much more complex than the corresponding signal in the blue emission band. In addition to the fundamental and second order sideband peaks it shows third order sideband peaks. Weak sidebands at the fourth and even fifth order (not shown) are also resolved when plotting I˜IF(ωτ,λd) on a logarithmic scale. Most notably, however, the center frequency ωτ of all sidebands is independent of the detection frequency. Regular interferometric autocorrelation (IAC) traces IIAC(τ)=IIF(τ,λd)dλdare deduced from the data in Fig. 4a by spectral integration over the wavelength range from 380 to 460 nm (blue-emission band) and 460 to 520 nm (blue-green emission band). The IAC traces are shown in Fig. 4(c) and (d), respectively. Notable in the IAC trace of the blue emission is the enhancement factor η=IIAC(τ=0)/limτIIAC(τ) of 6, which agrees well with η=22·1.85/2=6.5 expected for the observed nonlinear power dependence of 1.85. This IAC trace appears slightly broader than that recorded with a BBO crystal (Fig. 1(c)). The IAC trace of the blue-green emission (Fig. 4(d)) displays a much larger enhancement factor of η=50, close to the value of 64 resulting from the strong power dependence of the involved optical nonlinearity. Consequently, the IAC extends over essentially only three cycles of the light field in the time domain.

4. Discussion

Apart from their different dynamics, the most notable difference between the interferometric frequency-resolved autocorrelation functions recorded in the blue and blue-green emission is the different detection wavelength dependence of the fringe spacing T. While T=2λd/c in the blue band, T is found to be independent of λ in the blue-green band. For a coherent, off-resonant second harmonic process, the wavelength scaling of T is readily explained. Here, the interferometric SH signals recorded when exciting the sample with a phase-locked pulse pair are IIAC(τ)=|(E(t)+E(tτ))2|2dt and IIF(τ,ωd)=|(E(t)+E(tτ))2exp(iωdt)dt|2. For excitation with a spectrally narrow-band laser pulse E=ε(t)exp(iωLt) one readily sees that T=4π/ωd. For excitation with spectrally broad-band few-cycle pulses the analysis is slightly more involved and has been given in [20]. Here, the fringes in the IFRAC signal at early delay times are governed by the fundamental sideband which oscillates as cos(ωdτ2) [20]. The fringe spacing is thus T=4π/ωd. At longer delay times, pronounced fringes with half the spacing are seen which reflect the second order sideband.

In case of an incoherent, spontaneous emission process (photoluminescence), the expected IFRAC signals are fundamentally different. Here the phase relation between the excitation laser and re-emitted electric field form the sample is lost and the emitted intensity is proportional to the incoherent carrier population ne in the light-emitting state. We emphasize that despite of the incoherent nature of the emission, coherences fringes can be observed in autocorrelation measurements. Such fringes necessarily result from interferences in the excitation process of the system. This is readily understood by considering a dipole-allowed one-photon transition of a simple two-level system impulsively excited with a short pulse ne|dE˜(ωr)|2/2. Here, d is the transition dipole moment and E˜(ωr) is the amplitude of the Fourier component of the laser electric field E(t) at the transition frequency ωr between the ground and excited state of the system. The equality holds if the duration of the laser pulse is much shorter than the dephasing time of the two-level system. When impulsively exciting the system with a pair of pulses, a large population ne is therefore created if the field components at ωr interfer contructively. The fringe spacing therefore is T=2π/ωr. It is thus defined only by the energetics of the optically excited system and independent of the detection frequeny. It is important to note that in case of an incoherent emission process the emission frequency ωd may differ from the transition frequency ωr since the optically excited state may be coupled to the emitting state by inelastic relaxation processes.

For multiphoton-excitation of a two-level system, the Rabi frequency Ωr(t)=dE(t)/ can be replaced by a generalized Rabi frequency Ωr(t)=αE(t)n/ [24]. Here, α is the transition matrix element for an n-photon transition between ground and excited state. The impulsively excited carrier density is ne|dEn˜(ωr)|2/2, where En˜(ωr) is the Fourier component of the n-th harmonic of the laser field at ωr. This results in a fringe-spacing T=2nπ/ωr, which is – again – independent of the detection wavelength.

We therefore conclude very generally that coherent and incoherent emission processes result in fundamentally different IFRAC signals. Coherent emission processes such as Rayleigh scattering or optical harmonic generation result in a fringe spacing which is proportional to the detection wavelength. Incoherent spontaneous emission processes, however, are characterized by a detection-wavelength independent fringe spacing. This spacing is governed by the energy of the optically excited state which may differ from that of the light-emitting state. IFRAC measurements can therefore distinguish between coherent and incoherent emission and provide a full characterization of the coherence properties of the re-emitted light.

This leads us to conclude that in the case of the ZnO films studied in this work, the IFRAC signal in the blue emission region in Fig. 4(a) results predominantly from coherent second harmonic generation in the ZnO film whereas the IFRAC signal in the blue-green region in Fig. 4(a) reflects multiphoton-absorption in the ZnO film followed by incoherent, spontaneous emission from below-bandgap defect states. The short fringe spacing of T=2.4 fs and the strong power dependence of the of the optical nonlinearity b2=3.5 indicates that, here, multiphoton-absorption creates carriers in the conduction band of ZnO which then relax into the light-emitting below-bandgap defect states.

For a more quantitative analysis of the data in Fig. 4(a), we have simulated these results within the framework of optical Bloch equations. As schematically illustrated in Fig. 5 , we model the ZnO film as an effective 4-level-system with a ground state |0 and three excited states |1-|3. We assume that state |1 is coupled to the ground state by two-photon absorption, whereas |2 couples to |0 by three-photon absorption. We also assume that carriers |2 can relax at a rate kr to the low-lying state |3 from where they can spontaneously emit light. The Hamiltonian of the isolated system is then given as H0=ωi|ii|, i=0...3, and that for light-matter interaction is HI=Ωr1(t)(|01|+|10|)+Ωr2(|02|+|20|), with generalized Rabi frequencies Ωr1(t)=αE(t)2/ and Ωr2(t)=βE(t)3/. Here α (β) denotes the matrix element for two-photon (three-photon) interaction between states |0 and |1 (|0 and |2). For simplicity, we assume real matrix elements. The time-evolution of the density matrix of the system is obtained by solving the Liouville-von Neumann equation tρ=i[H,ρ]+tρ|rel. The last term includes possible dephasing and relaxation processes. The equations of motion for the relevant polarizations then read

 

Fig. 5 Schematic illustration of a four-level system with displaying both harmonic emission and multi-photon-induced photoluminescence. We assume that the electronic system is excited by an ultrafast laser pulse with electric field E(t) coupling the ground state |0to an excited state |1by two-photon absorption and to an excited state |2 by three-photon absorption. Second harmonic radiation is emitted from |1 whereas carriers in |2 are assumed to relax non-radiatively at rate kr to a state |3 from which they return to the ground state by PL emission.

Download Full Size | PPT Slide | PDF

ρ˙01=ρ˙10¯=iΩr1(ρ11ρ00)i(ω1ω0)ρ011T21ρ01
ρ˙02=ρ˙10¯=iΩr2(ρ22ρ00)i(ω2ω0)ρ02(1T22+kr2)ρ02

Polarization dephasing times T21 and T22 are introduced phenomenologically. The population dynamics are deduced from

ρ˙00=2Ωr1Im(ρ01)2Ωr2Im(ρ02)+kemρ33
ρ˙11=2Ωr1Im(ρ01)
ρ˙22=2Ωr2Im(ρ02)krρ22
ρ˙33=krρ22kemρ33

Here kem1 denotes the radiative lifetime of state|3. The second harmonic field emitted from the sample is taken as ESH(t)=d1Re(ρ01(t)) with d1 being the one-photon transition dipole matrix element of states |0 and |1. The spontaneous emission intensity from level |3 is modeled as IPL(λ)ρ33(t0)PL(λ) with ρ33(t0) being the population in level |3 at a finite delay time t0 after the arrival of the laser pulse and PL(λ) being the emission spectrum in the blue-green region deduced from Figs. 3 and 4. The experimental data are modeled by taking a phase-locked pair of unchirped 6-fs-pulses as the input field E(t). The IFRAC traces are then simulated using IIF(τ,ωd)=|ESH(τ)exp(iωdt)dt|2+IPL(τ,ωd). Model simulations have been performed taking unchirped laser pulses with a Gaussian spectrum and with the spectrum seen in Fig. 1(c). Results of such simulations for optimized system parameters are shown in Fig. 6(a) . Obviously the salient features of the experiment, specifically the different wavelength dependence of the fringe spacings in the blue and blue-green emission band are rather well reproduced. To reach good agreement with experiment, a few assumptions about the properties of the four-level-system are necessary: (i) The energy of the SH-emitting state |1 should be chosen around 3.1 eV (400 nm), slightly below the ZnO bandgap, and a short, yet finite, dephasing time T21=7±2 fs should be assumed to match the IFRAC traces in the blue range. Good agreement is found when taking bandwidth-limited pulses with the spectrum shown in Fig. 1(c) and a dephasing time of 7 fs. (ii) A large energy of the three-photon active state |2 of 5.1 eV (240 nm), far above the ZnO bandgap, should be chosen to match the detection-wavelength independent fringe spacing of 2.4 fs in the blue-green emission band. The dephasing time T22 should not be longer than 3 fs to match the time dynamics of the experimentally-recorded IFRAC trace.

 

Fig. 6 (a) Simulation of an IFRAC trace for the model system illustrated in Fig. 5 after excitation with a 6-fs-laser pulse plotted on a logarithmic scale. In agreement with the experimental data in Fig. 4(a), the simulation shows emission-wavelength-dependent interference fringes in the region around 440 nm, reflecting coherent second harmonic emission. The wavelength-independent fringes around 500 nm reflect incoherent three-photon-induced photoluminescence. (b) Spectral Fourier transformations of the IFRAC traces plotted on logarithmic intensity scale. (c) IAC trace obtained by spectrally integrating the data in (a) from 380nm to 460nm. (d) IAC trace obtained by integrating the data in (a) from 460nm to 520nm.

Download Full Size | PPT Slide | PDF

With these assumptions the wavelength-dependence and the dynamics of the IFRAC traces are reasonably well reproduced. Also the dynamics of the spectrally-integrated IAC traces in Fig. 6(c,d) are similar to those in the experiment (Fig. 4(c,d)). The IFRAC signal in the blue range shows a fringe spacing T=4π/ωd. Clearly, the blue emission results almost entirely from coherent second harmonic emission. A closer comparison between the IFRAC simulations for coherent second harmonic emission (Fig. 6a) and the experimental data in the blue emission band (Fig. 4a) shows the following important features: (i) At sufficiently long delay times, all fringes have comparable signal intensities. These fringes persist even if the pulse delay τ is much larger than the dephasing time T21. They result from the interference of the second harmonic fields ESH generated by each of the two temporally well-separated pulses (s. Eq. (4) in Ref. 20). They persist until τ becomes larger than the inverse spectral resolution of the monochromator used for IFRAC detection. These fringes give rise to the spectrally narrow second order sideband in the Fourier spectra. (ii) At early times also second harmonic signals induced by the direct interference of the laser fields of the two pulses on the sample contribute. These signals results in a rather complex temporal and spectral IFRAC pattern arising from the interference between both pulses and the coherent polarizations induced in the nonlinear medium. They therefore persist only for delays similar to T21. Essentially, we find that “even” fringes at τ=4nπ/ωd,     n extend over the full range of detection wavelength range. The “odd” fringes at τ=(2n+1)2π/ωd,     n, however, have high intensity only for short detection wavelengths, ωdω1ω0, yet weak intensity for longer wavelengths. For the “even” harmonics, the fields at the fundamental laser frequency and at the second harmonic frequency are in phase, and constructive interference is seen for all detection wavelengths. For the “odd” harmonics, however, the interference pattern apparently depends on the phase of the second harmonic polarization ρ01 which exhibits a phase jump at ωd and hence gives rise to constructive interference for ωdω1ω0, yet destructive interference at longer wavelengths. A full analysis of these interference patterns is currently underway and will be given elsewhere.

In the region of the blue-green emission, the data in Fig. 6(a) show interference fringes with a spacing which is independent on the detection-wavelength. We take this a a clear signature that the blue-green emission arises predominantly from an incoherent photoluminescence process. A closer comparison between the Fourier-transformed IFRAC signals in Fig. 4(b) and 6(b) indicates, however, that the microscopic mechanisms resulting in the blue-green emission are certainly much more complicated than a three-photon-induced absorption into a higher-lying electronic state far above the bandgap. The strong power dependence of the nonlinear optical signal (b2=3.5) and the complex IFRAC-spectrum in Fig. 6(b) may probably be explained by an interference between different nonlinear optical processes. It is likely that this strong power dependence results from field-induced ionization processes, i.e., the generation of a dense electron-hole plasma in the ZnO film by below-band gap excitation. Its effect on the optical nonlinearities of ZnO nanostructures will be subject of further investigations.

5. Conclusions

In summary, we have studied the nonlinear optical properties of thin zinc oxide films using interferometric frequency-resolved autocorrelation (IFRAC) microscopy following impulsive excitation with 6-fs optical pulses focused to a spot size of 1 µm. Two emission bands with distinctly different coherence properties are observed in the blue and blue-green emission region. Both bands display very different wavelength dependencies of the interference patterns of their IFRAC signals. A new IFRAC analysis based on solutions of optical Bloch equations shows that this can directly be traced back to the different coherence properties of the two emission channels. This analysis allows us to unambiguously assign the blue band as resonantly enhanced coherent second harmonic emission close to the band gap of ZnO. The blue-green emission band, displaying detection-wavelength independent fringes, results from multiphoton-absorption-induced incoherent spontaneous emission from below bandgap defect states. Our results show that IFRAC microscopy is a new and elegant way to fully characterize the coherence properties of the optical emission from nanostructures. With its high time resolution of a few fs only, it can directly probe the dynamics of coherent optical polarizations in nanostructures in the time domain. Its high spatial resolution makes it interesting for studying the nonlinear optical properties of single nanostructure and/or for coherent nonlinear optical microscopy.

Acknowledgments

This research was supported by the Japan Science and Technology Agency (JST) and the Deutsche Forschungsgemeinschaft (DFG) under the strategic Japanese-German Cooperative program on "Nanoelectronics". Support by the DFG (SPP 1391) and by the Korea Foundation for International Cooperation of Science & Technology (Global Research Laboratory project, K20815000003) is acknowledged.

References and links

1. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003). [CrossRef]  

2. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005). [CrossRef]  

3. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006). [CrossRef]   [PubMed]  

4. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005). [CrossRef]  

5. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009). [CrossRef]  

6. C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007). [CrossRef]  

7. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003). [CrossRef]   [PubMed]  

8. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004). [CrossRef]  

9. D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006). [CrossRef]  

10. N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009). [CrossRef]  

11. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006). [CrossRef]  

12. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008). [CrossRef]  

13. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008). [CrossRef]  

14. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008). [CrossRef]  

15. Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009). [CrossRef]  

16. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000). [CrossRef]  

17. H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995). [CrossRef]   [PubMed]  

18. S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997). [CrossRef]  

19. M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997). [CrossRef]  

20. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617. [CrossRef]   [PubMed]  

21. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein). [CrossRef]  

22. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006). [CrossRef]  

23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010). [CrossRef]   [PubMed]  

24. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: Basic processes and Applications (Wiley, 1998).

References

  • View by:
  • |
  • |
  • |

  1. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
    [Crossref]
  2. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
    [Crossref]
  3. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [Crossref] [PubMed]
  4. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [Crossref]
  5. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
    [Crossref]
  6. C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
    [Crossref]
  7. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
    [Crossref] [PubMed]
  8. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
    [Crossref]
  9. D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
    [Crossref]
  10. N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
    [Crossref]
  11. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
    [Crossref]
  12. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
    [Crossref]
  13. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
    [Crossref]
  14. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
    [Crossref]
  15. Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
    [Crossref]
  16. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
    [Crossref]
  17. H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
    [Crossref] [PubMed]
  18. S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
    [Crossref]
  19. M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
    [Crossref]
  20. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
    [Crossref] [PubMed]
  21. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
    [Crossref]
  22. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
    [Crossref]
  23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
    [Crossref] [PubMed]
  24. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: Basic processes and Applications (Wiley, 1998).

2010 (1)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

2009 (3)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
[Crossref]

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[Crossref]

2008 (3)

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

2007 (1)

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

2006 (4)

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

2005 (3)

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
[Crossref] [PubMed]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

2004 (2)

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

2003 (2)

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[Crossref]

2000 (1)

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

1997 (2)

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[Crossref]

1995 (1)

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[Crossref] [PubMed]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Avrutin, V.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Bar-Joseph, I.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[Crossref]

Bock, M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Bogani, F.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[Crossref]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[Crossref]

Ceccherini, S.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[Crossref]

Ceder, G.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Chan, W. K.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Che, C. M.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

Cheah, K. W.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Cheng, H.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Cho, S.-J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Choy, W. C. H.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Colocci, M.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[Crossref]

Comaschi, C.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

Coquillat, D.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

Dai, D. C.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

Damen, T. C.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[Crossref] [PubMed]

Das, S. K.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Deng, H.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Deveaud, B.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Djurisic, A. B.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[Crossref]

Djurišic, A. B.

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Dong, Z. W.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Fei?Lui, H.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Fisker, C.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[Crossref]

Griebner, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

Grunwald, R.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

Gundu Rao, T. K.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Gurioli, M.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[Crossref]

Haacke, S.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

Han, N. S.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
[Crossref]

Hsu, Y. F.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[Crossref]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Kärtner, F. X.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Kohan, A. F.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Kwong, C. Y.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Le Vassor d’Yerville, M.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

Lee, H. W.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lee, K. M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lee, S.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Leung, Y. H.

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Lienau, C.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Liu, K. J.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

Liu, S. W.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

Malvezzi, A. M.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

Min Park, S.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
[Crossref]

Morgan, D.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Morgner, U.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

Morkoç, H.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Mücke, O. D.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

Neumann, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[Crossref]

O’Neill, C.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Pedersen, K.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[Crossref]

Pedersen, T. G.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[Crossref]

Pfeiffer, L. N.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[Crossref] [PubMed]

Qian, S. X.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

Qiana, S. X.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Ricca, A.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

Ropers, C.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

Rotermund, F.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Roy, V. A. L.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Seeber, W.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

Shah, J.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[Crossref] [PubMed]

Shi, S. J.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

Shim, H. S.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
[Crossref]

Song, J. K.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
[Crossref]

Steinmeyer, G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
[Crossref] [PubMed]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

Stibenz, G.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
[Crossref] [PubMed]

Surya, C.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

Taylor, R. A.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Tian, R.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

Torres, J.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

Tritschler, T.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

Van de Walle, C. G.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Vecchi, G.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

Walmsley, I. A.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

Wang, H. L.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[Crossref] [PubMed]

Wang, J. C.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Warmuth, C.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

Wegener, M.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

Wong, K. S.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[Crossref]

Wyatt, A. S.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

Xiao, M.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

Xie, M. H.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

Xu, S. J.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Yan, Y. L.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

You, G. J.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Zhang, C. F.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Zhong, Y. C.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[Crossref]

Zhou, H. J.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

Zhu, R. Y.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Zimmermann, R.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

Adv. Funct. Mater. (1)

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[Crossref]

App, Phys. Lett. (1)

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[Crossref]

Appl. Phys. B (2)

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[Crossref]

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[Crossref]

Appl. Phys. Lett. (4)

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[Crossref]

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[Crossref]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[Crossref]

Bull. Korean Chem. Soc. (1)

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol.  30(10), 2199–2200 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[Crossref]

J. Appl. Phys. (1)

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Nano Lett. (1)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[Crossref] [PubMed]

Nature Photon. (1)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[Crossref]

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[Crossref]

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Phys. Rev. Lett. (4)

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[Crossref] [PubMed]

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[Crossref]

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[Crossref]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[Crossref] [PubMed]

Phys. Status Solidi (1)

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[Crossref]

Small (1)

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Other (1)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: Basic processes and Applications (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for interferometric frequency resolved autocorrelation (IFRAC) microscopy. A phase-locked pair of two 6-fs-optical pulses centered at 800 nm derived from a mode-locked Ti:Sapphire oscillator operating at 80 MHz repetition rate is generated in a dispersion-balanced Michelson interferometer. Pulses with an energy of 1 nJ are focused to the diffraction limit of about 1 µm onto the sample using an all-reflective Cassegrain objective. The emission from the sample is collected in a reflection geometry, spectrally dispersed in a monochromator and detected with a cooled CCD detector as a function of the time delay τ between both pulses. (b) Spatial intensity profile in the focal plane recorded by scanning a near-field fiber tip through the focus. (c) Interferometric autocorrelation (IAC) trace of the focused laser pulses (solid line). A simulation of the IAC trace based on the measured laser spectrum (inset) is shown as a dashed line.

Fig. 2
Fig. 2

Room-temperature photoluminescence spectrum of the ZnO layer for one-photon, above-bandgap excitation at 337 nm. The spectrally narrow free-exciton emission around 392 nm and the defect-related blue-green emission band extending from 400 to 550 nm are clearly distinguished. Inset: Scanning electron microscope image of the sputtered 400-nm-thick ZnO film.

Fig. 3
Fig. 3

(a) Spectrally resolved nonlinear optical emission from a ZnO film. The sample is excited with 6-fs laser pulses pulses centered at 800 nm. The emission spectra are recorded as a function of the average laser power. Two emission bands, a blue emission around 400 nm and a blue-green emission around 500 nm are discerned. (b) Power dependence of the blue band, integrated between 360 and 460 nm (red circles) and allometric fit I P b 1 with b 1 = 1.85 ± 0.1 (black solid line). (c) Power dependence of the blue-green band, integrated between 470 and 520 nm (red circles) and allometric fit I P b 2 with b 2 = 3.5 ± 0.3 (black solid line).

Fig. 4
Fig. 4

(a) Experimental IFRAC traces from a 400-nm-thick ZnO layer plotted on a logarithmic scale. Two distinct emission-bands, the blue emission around 400 nm and a blue-green emission around 500 nm are discerned. Detection-wavelength dependent interference fringes with a period T = 2 λ d / c , λ d : detection wavelength, c: speed of light, are observed in the wavelength range between 380 nm and 450 nm. This points to a coherent optical harmonic emission process. In the range between 460 nm and 520 nm, however, the interference fringes are independent of the detection-wavelength and modulation period of T = 2.4 fs, indicating that the emission arises from an incoherent multiphoton-induced PL process. The different shape of the coherent and the incoherent emission is illustrated by dotted lines. (b) Spectral Fourier transformations of the IFRAC traces plotted on logarithmic intensity scale (c,d) IAC trace obtained by spectrally integrating the data in (a) from 380nm to 460nm and from 460nm to 520nm, respectively.

Fig. 5
Fig. 5

Schematic illustration of a four-level system with displaying both harmonic emission and multi-photon-induced photoluminescence. We assume that the electronic system is excited by an ultrafast laser pulse with electric field E(t) coupling the ground state | 0 to an excited state | 1 by two-photon absorption and to an excited state | 2 by three-photon absorption. Second harmonic radiation is emitted from | 1 whereas carriers in | 2 are assumed to relax non-radiatively at rate k r to a state | 3 from which they return to the ground state by PL emission.

Fig. 6
Fig. 6

(a) Simulation of an IFRAC trace for the model system illustrated in Fig. 5 after excitation with a 6-fs-laser pulse plotted on a logarithmic scale. In agreement with the experimental data in Fig. 4(a), the simulation shows emission-wavelength-dependent interference fringes in the region around 440 nm, reflecting coherent second harmonic emission. The wavelength-independent fringes around 500 nm reflect incoherent three-photon-induced photoluminescence. (b) Spectral Fourier transformations of the IFRAC traces plotted on logarithmic intensity scale. (c) IAC trace obtained by spectrally integrating the data in (a) from 380nm to 460nm. (d) IAC trace obtained by integrating the data in (a) from 460nm to 520nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ 01 = ρ ˙ 10 ¯ = i Ω r 1 ( ρ 11 ρ 00 ) i ( ω 1 ω 0 ) ρ 01 1 T 2 1 ρ 01
ρ ˙ 02 = ρ ˙ 10 ¯ = i Ω r 2 ( ρ 22 ρ 00 ) i ( ω 2 ω 0 ) ρ 02 ( 1 T 2 2 + k r 2 ) ρ 02
ρ ˙ 00 = 2 Ω r 1 Im ( ρ 01 ) 2 Ω r 2 Im ( ρ 02 ) + k e m ρ 33
ρ ˙ 11 = 2 Ω r 1 Im ( ρ 01 )
ρ ˙ 22 = 2 Ω r 2 Im ( ρ 02 ) k r ρ 22
ρ ˙ 33 = k r ρ 22 k e m ρ 33

Metrics