Abstract

We demonstrate a passively mode-locked femtosecond laser based on the self-frequency-doubling crystal Yb:Ca4YO(BO3)3. The oscillator is pumped by a novel two-section distributed Bragg-reflector tapered diode-laser. Pulses as short as 46 fs and 42 fs at 1050 nm are achieved for the E//Z polarization without and with external compression, respectively. These are, to the best of our knowledge, the shortest pulses obtained from an oscillator based on Yb3+-doped bulk material.

© 2010 OSA

1. Introduction

Yb3+-doped materials have proved their suitability for building simple and robust diode-pumped solid-state ultrafast lasers in the 1 μm range. Among them, mode-locked laser operation based on several Yb3+-doped borate crystals was reported in the last years, which illustrates their high potential for short pulse generation. Pulse durations of 198 and 67 fs were obtained with diode-pumped Yb:YAl3(BO3)4 (Yb:YAB) and Yb:LaSc3(BO3)4 (Yb:LSB) lasers, respectively [1,2]. The oxoborates Yb:Ca4YO(BO3)3 (Yb:YCOB) and Yb:Ca4GdO(BO3)3 (Yb:GdCOB) produced pulses as short as 210 and 90 fs, respectively [3,4], while pulse durations of 69 fs were achieved with Yb:Sr3Y(BO3)3 (Yb:BOYS) [5]. In addition, of the above borate Yb-hosts, YAB, YCOB and GdCOB are non-centrosymmetric crystals. Self-frequency doubling (SFD) in the mode-locked regime was, however, demonstrated only for Yb:YAB [1] which is uniaxial and the o≡σ-polarization is used for the fundamental. In contrast, information on the polarization dependence in the oxoborates is missing but essential for the design of an optimum element for sub-100 fs SFD laser operation directly in the green.

Yb:YCOB is characterized by relatively broad emission spectra, one of the largest splittings of the ground state (2F7/2) manifold (>1000 cm−1), moderate thermal conductivity and one of the longest upper state (2F5/2) lifetimes (2.2 ms) observed for Yb-doped oxide crystals [69]. Recently, employing Yb:YCOB in the thin disk laser design produced output powers as high as 26 W in the continuous-wave (cw) regime, with a slope efficiency of 67% and a tuning from 997 to 1092 nm [9]. All polarization configurations in Yb:YCOB have been thoroughly compared with longitudinal pumping in the cw regime, achieving in the best cases maximum output power of 7.3 W and slope efficiency of 83% [10]. Initial studies of the polarization dependence in the mode-locked regime revealed that shortest pulses are obtained for polarization which does not correspond to maximum effective nonlinearity in SFD [11].

Here we report on a rigorous comparison of all the possible propagation directions and polarizations in the tunable cw and mode-locked regimes employing a novel DBR tapered diode laser as a pump source. We demonstrate the generation of pulses as short as 42 fs, the shortest to date among the Yb-doped bulk oscillators.

2. Experimental setup

High quality Yb:YCOB crystals were grown by the Czochralski method, with a Yb concentration of 20 at.% measured in the crystal. Three different samples were prepared from the same crystal boule, cut along the X, Y, and Z principal axes. All the crystals were uncoated and had a thickness of 3 mm with an aperture of 3.3 × 3.3 mm2.

The samples were mounted on a copper block without active cooling and positioned at Brewster angle in an astigmatically compensated Z-type cavity between two curved folding mirrors (radius of curvature: RC = −100 mm). In this resonator a 30-µm cavity waist at the position of the Yb:YCOB crystal was formed. The pump source was a two-section distributed Bragg-reflector tapered diode-laser (DBR-TDL). The DBR-TDL consists of a 2 mm long index guided straight ridge-waveguide section containing a 1 mm long 6th order surface Bragg grating and a 4 mm long gain guided tapered section with a full taper angle of 6°. The device exhibits single longitudinal mode emission at 976 nm with a spectral linewidth of less than 13 pm (FWHM). The DBR-TDL emits a nearly diffraction limited beam with a beam propagation factor of M2 1/e 2 = 1.1 containing 72% of the power in the central lobe [12]. The laser diode was focused onto the crystal by use of a 6.28-cm focal-length lens to achieve optimum mode-matching between the pump waist and the laser mode inside the cavity. A 4-mirror cavity without prisms and SESAM was used to investigate the spectral tunability in the cw regime.

3. Spectral tunability in the continuous-wave regime

A two-plate birefringent filter was inserted at Brewster angle close to the plane rear mirror of the 4-mirror cavity for wavelength tuning. All polarization directions of Yb:YCOB were studied at 1% output coupler transmission and the incident pump power was kept constant at ~2 W. The best results were obtained using the Z-cut crystal (laser polarization: E//Y) and the Y-cut crystal (laser polarization: E//Z). For both configurations, broad tuning ranges (FWHM) of ~80 nm and ~100 nm, respectively, were obtained as shown in Fig. 1 . The spectral tunability was limited by the reflection characteristics of the dichroic pump mirror and the free spectral range of the Lyot filter. We obtained the same tuning ranges using a broadband HR mirror instead of the output coupler. These are one of the broadest tuning ranges in cw operation among Yb-doped bulk materials reported so far, exceeding slightly the 95 nm reported for Yb:YCOB in the thin disk laser configuration [9].

 

Fig. 1 Spectral tuning range of Yb:YCOB in the cw regime for polarizations along (Z) and (Y) principal axes using a Lyot filter (without prisms and SESAM in the cavity).

Download Full Size | PPT Slide | PDF

4. Mode-locked operation

Using a semiconductor saturable absorber (SESAM) [13] mode-locking was achieved for all the three polarization orientations of Yb:YCOB. The SESAM (BATOP GmbH]) with 2% modulation depth and a recovery time of <500 fs was also employed as end reflector on which the beam was focused by a curved mirror (M2, RC = −150mm). Two SF10 Brewster prisms with a tip-to-tip separation of ~38 cm were used for dispersion compensation in the other cavity arm containing the output coupler (OC). The cavity length corresponded to a repetition rate of ~96 MHz. The incident pump power was limited to 2.5 W to profit from the excellent beam quality of the pump diode. The single pass absorption of Yb:YCOB was ~95% for all the polarizations. At first we studied the Z-cut sample oriented for E//X polarization. The pulses generated at 1040 nm were almost bandwidth-limited with a duration of 109 fs (FWHM) assuming a sech2-pulse shape. The output power amounted to 100 mW for 1.3 W incident pump power and an OC with transmission T = 1%. Notably shorter pulses of 68 fs were obtained at 1038 nm for the E//Y polarization (same Z-cut sample) using the same OC. In that case the time-bandwidth product of 0.36 was also close to the Fourier-limit and the output power amounted to 58 mW. The output power increased to 426 mW at a longer pulse duration of 159 fs when an output coupler with T = 5% was used. This corresponds to an optical-to-optical efficiency of 20%.

With respect to the pulse duration, the best overall results were achieved applying the Y-cut Yb:YCOB sample for polarization E//Z. Pulses as short as 46 fs were obtained directly from the oscillator for T = 1%. The average output power amounted to 46 mW for an incident pump power of 1.1 W. The output spectrum was centered at 1050 nm and had a FWHM of 30 nm corresponding to a time-bandwidth product of 0.37. The intensity autocorrelation trace together with the corresponding fit and the spectrum are shown in Fig. 2(a) . The chirp could not be fully eliminated by the intracavity prism pair, as can be deduced from the time-bandwidth product which is larger than the Fourier limit for a sech2-pulse shape (0.315). To eliminate the residual chirp, additional external compression was performed by the use of a sequence of a chirped mirror (LAYERTEC GmbH) and a SF10 prism pair in a single-pass configuration (Fig. 3 ). After passing the external compressor, a pulse duration as short as 42 fs was achieved. With the preserved spectral bandwidth, the corresponding time-bandwidth product of 0.34 was closer to the Fourier limit (Fig. 2(b)). The external prism sequence further acts as a compensator for the spatially dispersed output of the oscillator. The demonstrated pulse durations are the shortest achieved for Yb lasers. The shortest pulses reported so far were obtained using Yb:CaGdAlO4 with a duration of 47 fs [14] but accompanied by a cw spectral component.

 

Fig. 2 Autocorrelation traces and spectrum (inset) of the shortest pulses obtained from the mode-locked Yb:YCOB oscillator (a) and with additional external compression (b) (τ: pulse duration (FWHM), dots: data, solid line: fit assuming sech2-pulse shape).

Download Full Size | PPT Slide | PDF

 

Fig. 3 Experimental setup: M1, M2: curved HR mirrors; DM1: curved dichroic mirror; DM2: flat dichroic mirror; P1 - P4: SF10 prisms; GTI: GTI-mirror (−250 fs2 per bounce); FL: focusing lens; OC: output coupler.

Download Full Size | PPT Slide | PDF

Figure 4 shows the corresponding radio frequency spectrum of the fundamental beat note at 95.84 MHz recorded with a resolution bandwidth of 1 kHz and a 1 GHz wide-span measurement (inset) for the shortest pulse operation. The very high extinction down to 68 dBc and the absence of any spurious modulation prove a stable and clean cw mode-locked operation of the Yb:YCOB laser. This is important to note because of the relatively long lifetime of Yb:YCOB which facilitates Q-switching. In our experiment, although the laser was not reliably self-starting, only a slight perturbation was sufficient to initiate the mode-locked operation. Once initiated, the mode-locked operation was stable for several tens of minutes.

 

Fig. 4 Radio frequency-spectrum (fundamental beat note) of the mode-locked Yb:YCOB laser. Inset: 1 GHz wide-span. (RBW: resolution bandwidth).

Download Full Size | PPT Slide | PDF

We also tried to Kerr-lens mode-lock the Yb:YCOB laser, however, we were not so successful as with the Yb:LuScO3 laser where the same laser diode was used as pump source [15]. Nevertheless, we cannot rule out contribution from Kerr-lensing to the pulse forming mechanism because the beam quality of the pump diode was excellent and the laser was not reliably self-starting.

We also studied the X-cut and Y-cut samples oriented for all the possible laser polarizations. The results are summarized in Fig. 5 .

 

Fig. 5 Summary of the mode-locked Yb:YCOB laser results for all crystal orientations and different transmissions of the output coupler (T = 1%, 3% and 5%).

Download Full Size | PPT Slide | PDF

The spectral tunability in the mode-locked regime was also investigated at an incident pump power of 1.5 W and T = 1%. As in the case of the cw tuning experiments (Fig. 1) the E//Y and E//Z polarizations were favorable for broad tunability in the ultrashort pulse regime. Orienting the Z-cut crystal for polarization E//Y, tuning from 1037 to 1051 nm was achieved only by adjusting the intracavity prisms and the results are shown in Fig. 6(a) . When tuning the laser to longer center wavelengths, the corresponding pulse duration increased from 102 to 133 fs and the output power slightly dropped by 20% from 100 to 80 mW. For E//Z (Y-cut), tuning from 1028 to 1055 nm was achieved placing a slit between the second prism P2 and the output coupler. The pulse duration remained shorter than 300 fs for almost the entire tuning range of 27 nm [Fig. 6(b)].

 

Fig. 6 Spectral tunability of the Yb:YCOB laser in the mode-locked regime for polarizations (E)//(Y) (a) and (E)//(Z) (b).

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, we studied femtosecond mode-locked laser operation of Yb:YCOB analyzing all possible polarizations. As pump source served a novel distributed-Bragg-reflector tapered diode-laser. We demonstrated what we believe to be the first sub-50 fs Yb-doped oscillator without external compression and the shortest pulse duration of 42 fs ever reported for Yb-doped bulk lasers. The latter was achieved by additional external compression of the 46 fs output of the Yb:YCOB oscillator. 47 fs pulses have been reported only once before, with Yb:CaGdAlO4 [14], but also in that case external compression was required and even a cw component was present in the spectrum. The Yb:YCOB laser was tunable from 1028 to 1055 nm and from 1007 to 1109 nm in the passively mode-locked and the cw regime, respectively. From our rigorous comparison we conclude that Yb:YCOB is a promising gain medium which has the potential for simultaneous generation of sub-50 fs pulses in the near-infrared and sub-100 fs pulses in the green from the same oscillator.

Acknowledgements

A. Yoshida acknowledges financial support from Osaka University (Aid for short-term overseas research exchange students).

References and links

1. M. J. Lederer, M. Hildebrandt, V. Z. Kolev, B. Luther-Davies, B. Taylor, J. Dawes, P. Dekker, J. Piper, H. H. Tan, and C. Jagadish, “Passive mode locking of a self-frequency-doubling Yb:YAl(3) (BO(3))(4) laser,” Opt. Lett. 27(6), 436–438 (2002). [CrossRef]  

2. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc(3)(BO(3))(4) mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007). [CrossRef]   [PubMed]  

3. G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000). [CrossRef]  

4. F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002). [CrossRef]  

5. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002). [CrossRef]  

6. P.-H. Haumesser, R. Gaume, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002). [CrossRef]  

7. Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006). [CrossRef]  

8. Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006). [CrossRef]  

9. C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:YCa4O(BO3)3 in E//Z and E//X orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009). [CrossRef]  

10. J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008). [CrossRef]  

11. V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010). [CrossRef]  

12. C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008). [CrossRef]  

13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]  

14. Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006). [CrossRef]   [PubMed]  

15. A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. J. Lederer, M. Hildebrandt, V. Z. Kolev, B. Luther-Davies, B. Taylor, J. Dawes, P. Dekker, J. Piper, H. H. Tan, and C. Jagadish, “Passive mode locking of a self-frequency-doubling Yb:YAl(3) (BO(3))(4) laser,” Opt. Lett. 27(6), 436–438 (2002).
    [Crossref]
  2. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc(3)(BO(3))(4) mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007).
    [Crossref] [PubMed]
  3. G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
    [Crossref]
  4. F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
    [Crossref]
  5. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
    [Crossref]
  6. P.-H. Haumesser, R. Gaume, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
    [Crossref]
  7. Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
    [Crossref]
  8. Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
    [Crossref]
  9. C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:YCa4O(BO3)3 in E//Z and E//X orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009).
    [Crossref]
  10. J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
    [Crossref]
  11. V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
    [Crossref]
  12. C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
    [Crossref]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  14. Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
    [Crossref] [PubMed]
  15. A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
    [Crossref] [PubMed]

2010 (2)

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

2007 (1)

2006 (3)

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[Crossref] [PubMed]

2002 (4)

2000 (1)

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Aka, G.

C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:YCa4O(BO3)3 in E//Z and E//X orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009).
[Crossref]

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[Crossref]

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Alain, B.

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Aron, A.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Auge, A.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Balembois, F.

Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[Crossref] [PubMed]

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[Crossref]

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Bente, E.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Bernas, H.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Birkin, D. J. L.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Blume, G.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brenier, A.

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Brun, A.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Burns, D.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Chambaret, J. P.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Chenais, S.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Chénais, S.

Courjaud, A.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Dawes, J.

Dawson, M. D.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Dekker, P.

Didierjean, J.

Druon, F.

Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[Crossref] [PubMed]

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[Crossref]

Erbert, G.

Feise, D.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Fiebig, C.

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
[Crossref] [PubMed]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fricke, J.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Gaume, R.

Gaumé, R.

Georges, P.

Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[Crossref] [PubMed]

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[Crossref]

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Goldner, P.

Griebner, U.

Han, W.

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

Haumesser, P.-H.

Hildebrandt, M.

Hönninger, C.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Huber, G.

Jagadish, C.

Jia, G.

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

John, W.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kaspari, C.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kemp, A. J.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Klehr, A.

Kolev, V. Z.

Kopf, D.

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kränkel, C.

Leclin, G. L.

Lederer, M. J.

Li, J.

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Liu, J.

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

Loiseau, P.

Lu, X.

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Luther-Davies, B.

Matalla, M.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Mateos, X.

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mohr, S.

Mougel, F.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Paschke, K.

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
[Crossref] [PubMed]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Petermann, K.

Peters, R.

Petit, J.

Petrov, V.

A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration,” Opt. Lett. 35(4), 511–513 (2010).
[Crossref] [PubMed]

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc(3)(BO(3))(4) mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007).
[Crossref] [PubMed]

Piper, J.

Raybaut, P.

Rivier, S.

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc(3)(BO(3))(4) mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007).
[Crossref] [PubMed]

Salin, F.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Schmidt, A.

Sibbett, W.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Tan, H. H.

Taylor, B.

Tu, C.

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Valentine, G. J.

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

Viana, B.

Vivien, D.

P.-H. Haumesser, R. Gaume, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
[Crossref]

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Wang, J.

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wenzel, H.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Weyers, M.

Wu, B.

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

You, Z.

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Zaouter, Y.

Zavelani-Rossi, F.

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Zhang, H.

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

Zhu, Z.

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Zorn, M.

Appl. Phys. B (3)

Z. Zhu, J. Li, B. Alain, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal,” Appl. Phys. B 86(1), 71–75 (2006).
[Crossref]

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, “Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal: erratum,” Appl. Phys. B 86(1), 181 (2006).
[Crossref]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91(2), 329–332 (2008).
[Crossref]

Electron. Lett. (2)

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, “Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,” Electron. Lett. 36(19), 1621–1623 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

V. Petrov, X. Mateos, A. Schmidt, S. Rivier, U. Griebner, H. Zhang, J. Wang, J. Li, and J. Liu, “Passive mode-locking of acentric Yb-doped borate crystals,” Laser Phys. 20(5), 1085–1090 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, “High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime,” Opt. Mater. 19(1), 73–80 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral tuning range of Yb:YCOB in the cw regime for polarizations along (Z) and (Y) principal axes using a Lyot filter (without prisms and SESAM in the cavity).

Fig. 2
Fig. 2

Autocorrelation traces and spectrum (inset) of the shortest pulses obtained from the mode-locked Yb:YCOB oscillator (a) and with additional external compression (b) (τ: pulse duration (FWHM), dots: data, solid line: fit assuming sech2-pulse shape).

Fig. 3
Fig. 3

Experimental setup: M1, M2: curved HR mirrors; DM1: curved dichroic mirror; DM2: flat dichroic mirror; P1 - P4: SF10 prisms; GTI: GTI-mirror (−250 fs2 per bounce); FL: focusing lens; OC: output coupler.

Fig. 4
Fig. 4

Radio frequency-spectrum (fundamental beat note) of the mode-locked Yb:YCOB laser. Inset: 1 GHz wide-span. (RBW: resolution bandwidth).

Fig. 5
Fig. 5

Summary of the mode-locked Yb:YCOB laser results for all crystal orientations and different transmissions of the output coupler (T = 1%, 3% and 5%).

Fig. 6
Fig. 6

Spectral tunability of the Yb:YCOB laser in the mode-locked regime for polarizations (E)//(Y) (a) and (E)//(Z) (b).

Metrics