Abstract

We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

© 2010 OSA

1. Introduction

Graphene is a 2-dimensional carbon material which consists of a hexagonal array of carbon atoms. Graphene has recently been reported to be a promising material for use in nanoelectronics, sensors and optoelectronics due to its superior properties, which include its high thermal conductivity (~5000 W/m·K), fast carrier mobility (> 21,000 cm2/Vs at room temperature), high transparency (> 80%) and good mechanical stability [13]. Highly transparent graphene layers could be used as transparent conductive electrodes for solar cells and LEDs [46]. Indium tin oxide (ITO) is widely used as a transparent conductive layer in solar cells and LEDs. However, ITO is a very expensive material, unstable in acids or bases, and has poor transparency in the UV region. Weber et al. examined and compared the transmittance spectra of a graphene layer and ITO from 200nm to 800nm [7]. The transmittance of ITO in the UV region is much lower than that of graphene, indicating that a graphene layer would be an ideal replacement for ITO in UV LED applications. In this regard, graphene is an ideal alternative because of the extraordinary properties described above. Jo et al. fabricated GaN-based blue LEDs with patterned multi-layer graphene (MLG) as the transparent conducting graphene electrodes using a chemical vapor deposition (CVD) technique [4]. They showed the possibility of using graphene transparent conductive electrodes in LEDs although the method was very complex. The extremely high thermal conductivity of graphene is one of the key properties of this material for use in fabricating the transparent conductive electrodes of high brightness and high power LEDs. One of the critical issues in high power LEDs is the high operating temperature albeit in a highly localized area [8]. However, the localized peak temperature of high power LEDs can better distributed by using graphene-based transparent conductive electrodes due to its extremely high thermal conductivity.

Graphene layers have been fabricated using various methods including high temperature vacuum annealing of SiC, the simple mechanical exfoliation method (i.e. the scotch-tape method), CVD and the reduction of graphene oxide [913]. In this study, the scotch-tape method was used to deposit the graphene layers with a variety of thickness on UV GaN-based LEDs. Since the mechanical cleavage can supply high quality FLG layers with various thickness, the electroluminescence (EL) properties can be easily compared from thin to thick FLG layers. Higher efficiency UV LEDs are needed for several applications including use in water purification systems, white illumination and optical equipment [14,15].

2. Experimental details

The UV LED was deposited in a metal-organic chemical vapor deposition system. The growth initiated with a 100nm AlN layer grown at 1010°C and 50 Torr. Subsequently, the temperature and pressure was raised to 1025°C and 150 Torr. The remaining structure consisted of 2μm GaN:Si, a AlGaN/GaN/AlGaN 8nm/5nm/8nm single quantum well (SQW), and a 200nm GaN:Mg contact layer. The FLG layer was fabricated by the simple mechanical exfoliation of highly ordered pyrolytic graphite (HOPG: ZYA grade). The graphene layer was deposited on the GaN-based UV LED with GaN SQW. The thickness of graphene obtained by the scotch method was measured by micro-Raman spectroscopy. Raman spectra of the graphene layer were collected using a 514nm Ar-ion laser. The laser power at the sample was 0.5mW. The accumulation time was 60 seconds. The micro-Raman measurements were obtained using a backscattering geometry with a JY LabRam HR equiped with a liquid-nitrogen cooled CCD detector. The back contact (Ti/Au: 40nm/100nm) was deposited by e-beam evaporator since the SiC substrate was conducting. Then, the sample was annealed by RTA at 450°C for 40 seconds in N2 condition. The emission properties were obtained using both an optical microscope and EL spectra, which were measured using an optical fiber that was connected to an Ocean Optics 2000 + . The current-voltage (I-V) data from the LEDs were obtained using Agilent 4155C parameter analyzer.

3. Results and discussion

Figure 1 shows a schematic diagram of UV LEDs on a SiC substrate with transparent conductive graphene electrode. The optical images of the graphene contact on an UV LED before and after applying the forward bias were presented in Fig. 1. The conductive SiC substrate allowed a vertical conduction path through the UV LED with bias applied to the bottom metal and top graphene layer. Mechanical exfoliation of graphene is known to yield graphene with a range of thicknesses. It is well known that an optical microscopy image can quickly locate single or FLG as was done in Fig. 2(a) . The thicknesses of the graphene layers, shown in Fig. 2(a), was confirmed by micro-Raman measurements. The circular scratch at the center of graphene layer was a mark that was formed by probe tip when the bias was applied. The Raman spectra shown in Fig. 2(b) and 2(c) were measured at three different points. The thick layer was used as a pad for the probes. The two most dominant peaks in the Raman spectra of the graphene layers were the G peak at ~1580cm−1 and the G’ peak at ~2700cm−1 [16]. The thickness of the graphene layer can be determined by the feature of the G’ peak in the Raman spectra [16,17]. Figure 2(b) and 2(c) shows the Raman spectra of point 1, 2 and 3. The region at point 1 in Fig. 2(a) and the feature of the G’ peak at point 1 in Fig. 2(c) represent a typical HOPG. The region at point 2 and 3 were more transparent than that of point 1 in Fig. 2(a), where point 2 and 3 was determined to consist of 4 layer and 2 layers of graphene, respectively, by the feature in the G’ peak (Fig. 2(c)).

 

Fig. 1 (a) Schematic diagram of UV LED after deposition of FLG. Top figures are optical images of FLG (left) at zero bias under ambient lighting, (middle) under forward bias with ambient lighting and (right) under forward bias without ambient lighting.

Download Full Size | PPT Slide | PDF

 

Fig. 2 (a) Optical image of graphene with 2 and 4 layers, which was obtained by the mechanical exfoliation method. (b) Raman spectra of three points in the graphene layer of Fig. 2(a). Point 1 is the HOPG region, and point 2 and 3 correspond to regions containing 4 and 2 layers of graphene. (c) The G’ peak in the Raman spectra of graphene of point 1, 2 and 3.

Download Full Size | PPT Slide | PDF

Figures 3(a) and 3(b) are optical images from same graphene with and without bias. The graphene layer in Figs. 3(a) and 3(b) are same as the graphene layer in Fig. 2(a). In Fig. 3(b), UV light in the graphene layer was emitted at a light input power of 30mW. The brightness of the EL emission in graphene layers varied according to the differences in thickness of the graphene layers which affected the UV light transmittance. The brightness of the region consisting of 2 layers of graphene was much higher than that of the region consisting of 4 layers of graphene and HOPG. Figure 3(c) shows the EL spectra of UV LEDs with graphene-based electrodes. The position of the intense peak in the EL spectra was about 368nm. The EL intensity was relatively small due to the small emission area. Figure 3(d) shows the current-voltage (I-V) characteristic of the LEDs. The current was measured by applying a voltage to the thick layer in the graphene-based transparent conductive electrodes shown in Fig. 2(a). Typical diode characteristics are presented in the I-V data. The forward voltage at an injection current of 1mA was about 26.5V.

 

Fig. 3 Optical images before (a) and after (b) applying a voltage to graphene. UV light was successfully emitted through the graphene layer of Fig. 3(b). (c) The EL spectra through the graphene layer of Fig. 3(b) in UV LEDs. (d) The I-V characterization of the UV LEDs.

Download Full Size | PPT Slide | PDF

To the best of our knowledge, this is the first report of graphene layer for use as a transparent conductive electrode in GaN-based UV LEDs. This approach can remove efficiency limitations for UV LEDs. Specifically, graphene-based transparent conductive electrodes have ultrahigh thermal conductivity and better UV transmission compared to ITO or the standard Ni/Au metallization. Furthermore, ITO with the typical thickness of 100~200nm has low thermal conductivity (11~12 W/m·K). By sharp contrast, graphene layer which has very good thermal conductivity (~5000 W/m·K) even employs a very thin layer, e.g., 1~2nm. The common design for a Ni/Au metallization consists of a grid to improve current spreading in p-GaN, which has a relatively high resistivity. The tradeoff is that the Ni/Au layer absorbs a significant percentage of the light reaching the surface of the LED. A graphene-based contact can minimized or eliminate this photon blocking effect in addition to the increase in long-term stability and reliability owing to the improved heat distribution through the graphene contact.

4. Summary

Graphene containing 2 layers and 4 layers was successfully fabricated using the standard scotch method as transparent conductive layer to the p-contact layer in GaN UV-LED. The thickness of the graphene layer was measured by micro-Raman spectroscopy. Based on the optical images and EL spectra, we demonstrated that graphene is an effective transparent conductive electrode for UV LEDs.

Acknowledgments

The research at Korea University was supported by New & Renewable Energy R&D program (R0903962) under the Ministry of Knowledge Economy, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Minstry of Education, Science and Technology(2010-0008242) and BK21 program. Research at the US Naval Research Lab was supported by the Office of Naval Research.

References and links

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]   [PubMed]  

2. X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009). [CrossRef]  

3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008). [CrossRef]   [PubMed]  

4. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010). [CrossRef]   [PubMed]  

5. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008). [CrossRef]  

6. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008). [CrossRef]  

7. C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010). [CrossRef]  

8. M. Fukuda, Optical Semiconductor Devices (Wiley, New York, 1999).

9. W. S. Hummers Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958). [CrossRef]  

10. G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007). [CrossRef]  

11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009). [CrossRef]  

12. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009). [CrossRef]   [PubMed]  

13. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005). [CrossRef]   [PubMed]  

14. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001). [CrossRef]  

15. J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005). [CrossRef]  

16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006). [CrossRef]   [PubMed]  

17. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  2. X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
    [CrossRef]
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [CrossRef] [PubMed]
  4. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
    [CrossRef] [PubMed]
  5. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [CrossRef]
  6. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
    [CrossRef]
  7. C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
    [CrossRef]
  8. M. Fukuda, Optical Semiconductor Devices (Wiley, New York, 1999).
  9. W. S. Hummers Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [CrossRef]
  10. G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
    [CrossRef]
  11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
    [CrossRef]
  12. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
    [CrossRef] [PubMed]
  13. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
    [CrossRef] [PubMed]
  14. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
    [CrossRef]
  15. J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
    [CrossRef]
  16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [CrossRef] [PubMed]
  17. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
    [CrossRef] [PubMed]

2010 (3)

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
[CrossRef] [PubMed]

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

2008 (3)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef]

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

2007 (1)

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[CrossRef] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

2001 (1)

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[CrossRef]

1958 (1)

W. S. Hummers Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[CrossRef]

Allen, M. J.

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
[CrossRef] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bao, Z.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

Becerril, H. A.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

Bilenko, Y.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Cabrini, S.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Chan, W. K.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Chang, A. S. P.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Chen, Y.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

Cho, C. Y.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Choe, M.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Choo, H.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Choyke, W. J.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Deng, J.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Devaty, R. P.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Dresselhaus, G.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

Dresselhaus, M. S.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Eisele, D. M.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Feensta, R. M.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Feng, X.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gaska, R.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gu, G.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Harteneck, B. D.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Hofmann, M.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

Hong, B. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Hong, W. K.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Hu, X.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Hummers Jr, W. S.

W. S. Hummers Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[CrossRef]

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jo, G.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Jorio, A.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

Kahng, Y. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Kane, M. G.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Kaner, R. B.

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
[CrossRef] [PubMed]

Katona, T. M.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Khan, M. A.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Kim, J. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Kim, P.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Kim, T. W.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Kobayashi, N.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[CrossRef]

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, S.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Lee, T.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Liang, X.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Liang, Y.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Liu, Z.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

Lunev, A.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Lyon, J. L.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Müllen, K.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Nie, S.

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

Nishida, T.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[CrossRef]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Offeman, R. E.

W. S. Hummers Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[CrossRef]

Olynick, D. L.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Park, S. J.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Park, W.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Peumans, P.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Rabe, J. P.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Saito, H.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[CrossRef]

Saito, R.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Shur, M. S.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

Stevenson, K. J.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Stormer, H. L.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Tan, Y. W.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

Tung, V. C.

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
[CrossRef] [PubMed]

Vanden Bout, D. A.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef]

Weber, C. M.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Williams, R.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Wu, J.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

Yang, Y.

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Zhang, Y.

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zhi, L.

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

G. Gu, S. Nie, R. M. Feensta, R. P. Devaty, W. J. Choyke, W. K. Chan, and M. G. Kane, “Field effect in epitaxial graphene on a silicon carbide substrate,” Appl. Phys. Lett. 90(25), 253507 (2007).
[CrossRef]

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[CrossRef]

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

W. S. Hummers Jr and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005).
[CrossRef]

Nano Lett. (5)

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[CrossRef]

X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009).
[CrossRef]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[CrossRef] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef]

Nanotechnology (1)

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol. 4(1), 25–29 (2009).
[CrossRef] [PubMed]

Nature (1)

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Small (1)

C. M. Weber, D. M. Eisele, J. P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Müllen, J. L. Lyon, R. Williams, D. A. Vanden Bout, and K. J. Stevenson, “Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region,” Small 6(2), 184–189 (2010).
[CrossRef]

Other (1)

M. Fukuda, Optical Semiconductor Devices (Wiley, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of UV LED after deposition of FLG. Top figures are optical images of FLG (left) at zero bias under ambient lighting, (middle) under forward bias with ambient lighting and (right) under forward bias without ambient lighting.

Fig. 2
Fig. 2

(a) Optical image of graphene with 2 and 4 layers, which was obtained by the mechanical exfoliation method. (b) Raman spectra of three points in the graphene layer of Fig. 2(a). Point 1 is the HOPG region, and point 2 and 3 correspond to regions containing 4 and 2 layers of graphene. (c) The G’ peak in the Raman spectra of graphene of point 1, 2 and 3.

Fig. 3
Fig. 3

Optical images before (a) and after (b) applying a voltage to graphene. UV light was successfully emitted through the graphene layer of Fig. 3(b). (c) The EL spectra through the graphene layer of Fig. 3(b) in UV LEDs. (d) The I-V characterization of the UV LEDs.

Metrics