Abstract

We propose and analyze three electrically-pumped nanowire single-photon source structures, which achieve output efficiencies of more than 80%. These structures are based on a quantum dot embedded in a photonic nanowire with carefully tailored ends and optimized contact electrodes. Contrary to conventional cavity-based sources, this non-resonant approach provides broadband spontaneous emission control and features an improved fabrication tolerance towards surface roughness and imperfections. Using an element-splitting approach, we analyze the various building blocks of the designs with respect to realistic variations of the experimental fabrication parameters.

© 2010 OSA

1. Introduction

The development of solid-state single-photon sources (SPSs) is a major challenge in the context of quantum communication, optical quantum information processing, and metrology [1]. Ideally, such a source must implement a stable single-photon emitter with a high radiative yield. For practical reasons, it is also highly desirable to trigger the single-photon emission by an electrical pulse. In this context, a semiconductor quantum dot (QD) is an attractive single-photon emitter, which has a nearly perfect radiative yield and a stable emission (no blinking or bleaching). Moreover, it benefits from the maturity of semiconductor technology and can be incorporated into the intrinsic region of a p-i-n structure, to realize a single-photon LED [27].

For all potential applications, the efficiency ε of the source, defined here as the probability to collect a photon into the first lens of the optical setup, is a key figure of merit. Unfortunately, for a QD embedded in a semiconductor material, the large refractive index of the semiconductor prevents an efficient photon extraction and limits ε to below a few percent. The collection of photons can be strongly improved by inserting the QD in a resonant optical microcavity and, up to very recently, this strategy has provided the most efficient SPS. Thanks to their spectrally-narrow emission lines at cryogenic temperatures, the spontaneous emission (SE) of QDs can be controlled through cavity quantum electrodynamical effects. The Purcell effect that arises when a QD is inserted in a resonant optical microcavity with a high-quality factor (Q) and low-volume dynamically funnels a fraction β of its SE into the cavity mode [812]. The photon then escapes through a specifically designed loss channel to be collected by external optics with a probability γ. In this simple picture, the photon outcoupling efficiency ε 0 is given by ε 0 = ηβγ, where η the radiative quantum efficiency of the QD exciton. The total source efficiency reads ε = ε 0 ξ, where ξ is the pumping efficiency (defined here as the probability to inject at least one electron-hole pair in the QD per command pulse). In the past few years, fabrication progress has led to an impressive improvement of the microcavity figures of merit [13] which in turn brought β close to 100% [14], while η is usually close to 100% for self-assembled QDs at low temperature. However, ε remains so far limited to about 44% [10,11,15] for optically pumped SPSs and 34% for electrically pumped devices [7].

In fact, the far-field emission pattern of high-Q cavities is very sensitive to fabrication imperfections [16]. Thus, defects scatter photons in random directions, which limits γ. The issue is even more serious for electrically pumped structures, which require doping and contact electrodes, potential sources of additional optical losses. Moreover, combining a high efficiency with pure single-photon emission is desirable for most SPS applications. Under non-resonant optical pumping [10,11] or electrical pumping [7], most of the cavity-based SPSs exhibit an autocorrelation function at zero time delay g(2)(τ = 0) well above 0, when the QD is saturated. The origin of the detrimental multiphoton pulses under strong pumping is not yet fully elucidated. It could be related to non-resonant cavity feeding [1720] or recapture of carriers if the injection of electrons and holes in the dot is not fast enough compared to the QD radiative decay. Finally, the exploitation of the Purcell effect is restricted to quasi-monochromatic emitters and is effective only over the narrow bandwidth of the cavity resonance.

In this context, the non-resonant SE control provided by a one-dimensional photonic system [2125] constitutes an appealing alternative to cavity designs. Recently, an optically pumped source design, relying on an InAs QD embedded in a GaAs photonic nanowire was proposed [26]. This geometry ensures a broadband and nearly perfect SE control for an emitter located on the wire axis; β exceeds 90% in a 200 nm wavelength range and features a reasonable tolerance towards off-axis positioning [27]. Moreover, an additional optimization of the far-field emission, using a SiO2-gold mirror and a smooth tapering of the upper extremity of the wire, led to a record-high measured efficiency of 72% [28]. The broadband SE control in photonic wires has also been recently used to demonstrate a 40% SPS efficiency at room temperature for a color center embedded in a diamond photonic nanowire [29].

In this work, we investigate the feasibility of high efficiency, electrically pumped, SPSs based on a quantum dot in the photonic nanowire geometry. Our focus is the photon extraction efficiency of the SPS, and we assume in the following that ξ = η = 1 and thus ε = ε 0 = βγ. Possible deviations from this ideal situation are discussed in section 6 of the paper. The InAs/GaAs material system, which is the most technologically mature and studied system, is chosen. The paper addresses in particular the associated issue of charge injection electrodes compatible with efficient photon extraction. We investigate three different structures, one inspired by Ref [26]. and two new designs that we believe more adapted to the realization of a practical, electrically pumped source.

The paper is organized as follows. In section 2 we describe the three electrically pumped structures that are analyzed in the paper. In section 3 we present the simplified model based on an element-splitting approach employed to determine the efficiency. We analyze the performance of the various elements of the structures in section 4. Initial experimental results, which confirm the technological feasibility of these designs, are presented in section 5. A discussion of the predicted efficiencies follows in section 6, and finally a conclusion and an outlook are given in section 7.

2. Nanowire SPS structures

In the following we study the GaAs nanowire with an embedded InAs QD emitting light at a wavelength of λ = 950 nm, and all subsequent computations are performed at this wavelength. We assume that the QD is positioned in the center of the nanowire and has an in-plane dipole orientation. The QD is approximated with a point dipole and we neglect the small perturbation induced by the refractive index profile of the finite size QD on the mode properties of the waveguide structures. We investigate the three electrically pumped SPS designs illustrated in Fig. 1 .

 

Fig. 1 Design A (a) featuring a top conical tapering and designs B (b) and C (c) with inverted tapering and anti-reflection coatings. Design B features a planar ITO top contact while design C includes a gold ring contact and an air pocket.

Download Full Size | PPT Slide | PDF

All the designs are rotationally symmetric. The materials used are GaAs, Si3N4, polymer, gold and indium-tin-oxide (ITO). The polymer electrically isolates the contact sections and the GaAs nanowire is doped to create a p-i-n diode. The refractive indices of the materials employed in our simulations are given in Table 1 . An absorption loss of κ = 10 cm−1 in the inverted tapers of designs B and C due to free-carrier scattering from n-doping with a carrier concentration of ~1018 cm−3 [30] is included. The doping concentration may be increased locally near the contacts to ensure good electrical conductivity, however we do not expect local doping to have a major influence on the calculated losses in the tapers.

Tables Icon

Table 1. Material refractive indices.

An optically pumped nanowire single-photon source design featuring a nanowire, a conical taper and a bottom metal mirror was described in Ref [26], and the design A represents the most simplistic extension of this design to accommodate electrical pumping. It features a nanowire with a quantum dot in section I ensuring a high β [36], a bottom mirror in section II reflecting light emitted towards the substrate [37], a regular conical tapering in section III-A for controlling the far field radiation pattern [38] and a top contact region in section IV-A.

In Ref [26]. the metal in the bottom mirror in section II is silver and a thin SiO2 layer is sandwiched between the nanowire and the metal to improve the reflectivity [37]. For electrical pumping, we replace the electrically isolating SiO2 layer with a conducting ITO layer, and, to avoid the rapid oxidation of silver in air, we replace silver by a gold bottom layer which is used for the bottom electrical contact. For the top electrical contact in section IV-A we choose ITO instead of gold, as the fundamental mode of the nanowire extends into the cladding material and propagation through a gold cladding results in a large loss reducing efficiency.

While the design A is conceptually simple, the fabrication of the side top contact without damaging the conical taper poses an experimental challenge. For this reason we propose the designs B and C, where well-established technology [7,39] from micropillar SPSs is employed for the top contact.

The design B features the same nanowire and bottom metal mirror sections I and II, however the strategy for controlling the far field radiation pattern is based on the inverse taper of section III-B rather than a regular conical one. In this design, the fundamental mode is adiabatically expanded inside the taper, which also guides electrical current to the quantum dot. The contact section IV-B consists of an easily deposited uniform layer of ITO serving the dual purpose as a top contact and an anti-reflection coating.

Finally, we propose the design C, where a gold ring slightly overlapping the GaAs cylinder is employed for the top contact [7,39]. The gold contact also scatters the fundamental mode, but for small d and large Rtop, this scattering can be negligible. The design C also features an air pocket surrounding the QD nanowire section. This air pocket leads to an increased index contrast and thus a higher β. These effects are further analyzed and discussed below.

Combinations of the elements from the designs B and C, e.g. a top ITO planar contact with an air pocket, can also be imagined.

3. SPS efficiency in the element-splitting approach

To determine the SPS efficiency ε we should place the point dipole inside the full structure and compute the corresponding far field emission. Though this approach is rigorous, it does not give a clear physical insight into the physical mechanisms governing the efficiency. For this reason we instead employ a single-mode model based on an element-splitting approach. This simplified model, the validity of which was demonstrated in Ref [26], allows us to analyze and optimize the various elements separately.

The model includes two approximations. First we assume that light scattered out of the fundamental mode into higher-order modes is not coupled back to the fundamental mode and does not reach the collection optics. This is a good approximation for a high-efficiency SPS, where the coupling of the HE11 mode to higher-order modes is weak. Second, we assume that the SE rate into radiation modes, gRad, for the full structure is identical to that for the isolated nanowire element I. This assumption will be justified by the agreement of the results from the simplified model with those obtained using an exact computation, as shown later.

We consider the propagation of the fundamental HE11 mode in the full SPS structure, illustrated in Fig. 1 above. The coefficient r 11, describes the amplitude reflection cofficient of the bottom mirror, and γt and γc are intensity transmission coefficients of the HE11 mode in the corresponding taper and contact sections. The amplitude coefficients of the upward and downward propagating fundamental mode at the position of the QD are denoted cu and cd. The total efficiency ε is given by

ε=|cu|2γgTotal,
where γ = γt γc and gTotal is the total emission rate. For the QD in the infinitely long nanowire the amplitude coefficients are given by cu = cd = c0 ° sqrt(gHE11 / 2), where gHE11 is the SE rate into the fundamental mode. In the presence of the metal mirror we still have cd = c0, however the coefficient cu is modified to include the reflection of the downward propagating mode such that

cu=c0(1+|r11|eiϕ).

Here, φ is the total phase change for the downward propagating reflected mode, however we will assume that the QD is placed in an antinode of the optical field such that φ = 0. The total SE rate gTotal is given by

gTotal=|cu|2+(1|r11|2)|cd|2+gRad.

Insertion of Eqs. (2) and (3) in Eq. (1) and using β = gHE11 / (gHE11 + gRad) results in

ε=βγ(1+|r11|)22(1+β|r11|).

Equation (4) is a transparent expression for the total efficiency ε. The element-splitting approach thus allows us to analyze the four building blocks separately and directly study the influence of the characteristic parameters β, r 11, γt and γc on the SPS efficiency ε.

4. Element analysis

We discuss the performance of the various elements in the following subsections. These studies subsequently allow us to determine the total efficiency coefficient ε using our simplified model based on the element-splitting approach.

The numerical simulations have been performed using the eigenmode expansion technique (EET) [40] with improved perfectly matched layers [41], and the tapering sections of elements IV and V are modelled using a staircase approximation [42].

The analysis of the various elements mainly consists of computing scattering coefficients for the eigenmodes, and the EET directly produces scattering matrices relating incoming and outgoing modes. Even though the staircase approximation is less elegant than the modeling of a tapered section performed in Ref [43], the extraction of scattering coefficients from the finite elements method or the finite-difference time-domain technique is not immediate, and the EET thus remains a natural choice for analyzing the separate building blocks.

Element I: QD section

The first element is the GaAs nanowire with an embedded QD surrounded by a cladding material illustrated in Fig. 2(a) . We here study the β factor, that is the power coupled to the fundamental mode relative to total power radiated by the QD. To this purpose we approximate the QD with an in-plane oriented dipole placed in the center. For a radially oriented emitter closer to the center than the sidewalls, values of β larger than 75% are expected [27], however a detailed study of the influence of the position of the QD in the nanowire is beyond this work. We now compute the SE power emission rate gHE11 into the fundamental mode as well as the rate gRad into radiation modes. The total SE rate is then given by gTotal = gHE11 + gRad, and in Fig. 2(b) we plot β = gHE11 / gTotal as function of Rnw for various cladding indices.

 

Fig. 2 Sketch of element I (a) and β as function of nanowire radius Rnw (b) for various cladding refractive indices nclad.

Download Full Size | PPT Slide | PDF

We observe in Fig. 2(b) that the maximum value of β depends on the index contrast. To understand this dependence we note that the high β value is the result of a screening effect, which dampens the field amplitude of radiation modes inside the nanowire. The magnitude of the effect is proportional to the index contrast between core and cladding. For the nanowire surrounded by air, we obtain a β value of 96.3% for a Rnw ~120 nm, while in the geometry with polymer cladding (nclad = 1.57) the index contrast is smaller and the maximum β value is reduced to 83.3% for Rnw ~110 nm. In the following we consider these two parameter sets for designs A and B and design C, respectively.

Regarding the height of element I, the only requirement to maintain SE control is φ = 0 in (2). With this condition met, the distance between the emitter and the adjacent elements should be minimized to reduce electrical and optical losses.

Element II: Metal mirror

Choosing the correct nanowire radius Rnw ensures a high β value, however half of the generated photons still propagate towards the substrate and to achieve high efficiency a bottom mirror with a high reflection coefficient of the fundamental HE11 mode is thus required. The reflectivities of a DBR and a metal mirror were analyzed in Ref [37]. for a low-diameter GaAs nanowire. It was shown that the small diameter results in strong diffraction effects in the DBR mirror leading to poor reflectivity. On the other hand the metal mirror provides good reflection in the entire diameter regime. A weakness of the metal mirror is the coupling to surface plasmon polaritons propagating in the transverse plane. This coupling results in a lowering of the reflectivity, but can be avoided by adding a thin intermediate dielectric layer between the nanowire and the metal. The effect of this layer is to perturb the condition for plasmon coupling while maintaining the high reflectivity coefficient of the GaAs-metal interface. The metal mirror is illustrated in Fig. 3(a) .

 

Fig. 3 Sketch of element II (a) and reflectivity R 11 = |r 11|2 of the HE11 mode (b) as function of ITO bottom contact thickness tITO for polymer and air claddings.

Download Full Size | PPT Slide | PDF

The optically pumped photonic nanowire demonstrated in [28] employed silica for the dielectric layer. However, for electrical pumping a conducting dielectric material is required, and a transparent conducting oxide such as ITO is a natural choice.

The reflection coefficient R 11 = |r 11|2 of the fundamental HE11 mode is shown in Fig. 3(b) as function of the thickness tITO of the bottom ITO layer. In the absence of the intermediate ITO layer, the reflectivity is only ~56 - 60% due to coupling to surface plasmon modes [37]. For large values of tITO, the value of R 11 drops due to diffraction and destructive Fabry-Perot effects. We observe maximum modal reflectivity coefficients of ~89.5% and ~91.6% for air and polymer claddings, respectively. These values are rather close to the plane-wave reflection coefficient of 94.7% for a GaAs-gold interface under normal incidence conditions.

As long as the thickness of the gold layer is sufficiently large to prevent tunnelling of light into the GaAs substrate, the exact thickness does not influence the reflectivity and should instead be chosen to ensure good electrical conductivity.

Element III-A: Top conical tapering

Even though most of the photons are propagating towards the top of the nanowire, a low divergence of the output beam is necessary to ensure a high collection efficiency of the detection optics. The far field emission profile is related to the Fourier transform of the mode profile, and for small nanowire radii the far field profile is wide leading to a low γ. In our earlier work [38] we proposed to improve γ by implementing the conical tapering sketched in Fig. 4(a) .

 

Fig. 4 Sketch of element IV-A (a) and total transmission and relative collection efficiency γt for 0.5 and 0.8 NA lenses (b) as function of opening angle α for a perfectly sharp tip. Relative collection efficiency γt for a 0.8 NA lens (c) as function of α for various values of Rtr. Rnw = 110 nm.

Download Full Size | PPT Slide | PDF

The tapering has two beneficial effects. First, it serves to adiabatically expand the fundamental mode such that the divergence of the output beam profile is reduced. Second, the mode is expanded into the air cladding and the reflection at the semiconductor-air interface is strongly reduced.

The total transmission into free space as well as the relative collection efficiency γt for 0.5 and 0.8 numerical aperture (NA) lenses are illustrated as function of taper opening angle α in Fig. 4(b) for a perfectly sharp tip, characterized by a truncation radius Rtr = 0, see Fig. 4(a). Here, the total transmission and γt are both normalized to the power of the forward propagating guided mode at the interface of elements III and IV. For large opening angles, the transition through the tapering is not adiabatic and the relative collection efficiency γt is low. For an adiabatic transition a small opening angle is required, and we observe that γt → 1 as the opening angle α is decreased.

Obviously, a small α leads to a long tapering section and for this reason we also study the collection efficiency of a truncated taper. We have computed the collection efficiency γt as function of opening angle α for four truncation radii Rtr, and the results are shown in Fig. 4(c). We observe that for Rtr = 90 nm, γt is poor, however for a truncation radius Rtr of 75 nm the collection effiency is much improved and for 60 nm, γt is almost identical to that for the perfectly sharp tip. A truncation parameter of Rtr = 60 nm thus allows a reduction of the tapering height by a factor of two while maintaining the good collection efficiency.

Element III-B/C: Inverted tapering section

In all three designs a low divergence of the output beam is required to maintain a high collection efficiency. Whereas a conical taper is employed to adiabatically expand the mode into air in design A, designs B and C feature an inverted tapering which instead expands the mode inside the GaAs nanowire. The tapering sections are sketched in Figs. 5(a) and 5(d). The bottom radius Rnw is fixed at 110 and 120 nm for designs B and C respectively.

 

Fig. 5 Sketch of element III-B (a) and III-C (d). Transmission γt of the fundamental HE11 mode as function of sidewall angle θ for various values of Rtop for polymer cladding (b) and air cladding (e). Transmission γt as function of Rtop for h = 10 and 20 μm for polymer cladding (c) and air cladding (f).

Download Full Size | PPT Slide | PDF

We first study the transmission coefficient γt of the fundamental HE11 mode as function of sidewall angle θ for various values of Rtop for polymer and air claddings. The results are given in Figs. 5(b) and 5(e). Inspecting the figures, we observe two distinct domains. For a sidewall angle θ below ~5°, the transmission is near-adiabatic with values of γt above 95%, whereas an oscillatory behavior of the transmission for θ above ~5° is observed. For a fixed angle, the taper height h increases with Rtop and due to the free-carrier scattering loss the transmission generally deteriorates for increasing Rtop. We are mainly interested in the near-adiabatic regime for θ < 5°, where the value of γt is above ~95%. Generally, a decreasing sidewall angle results in an improved adiabatic transition and a increasing transmission, however for θ → 0 the taper height h becomes substantial and the free-carrier absorption loss then reduces the transmission. We observe that the optimum transmission is obtained for sidewall angles between ~2° and 5°.

In Figs. 5(c) and 5(e) we study the transmission as function of Rtop for two fixed taper heights h of 10 and 20 μm. For a small Rtop < 750 nm, the smaller taper height, h = 10 μm, leads to a smaller absorption loss and a slightly higher transmission than for h = 20 μm. On the other hand, for Rtop > 750 nm, the side wall angle of the taper becomes large enough to compromise the adiabaticity of the fundamental mode transition. For small values, the side wall angle θ is given by θ ≅ (Rtop - Rnw)/h and the larger taper height h = 20 μm results in a smaller side wall angle, a better preservation of adiabaticity and an improved transmission in the regime Rtop > 750 nm.

Element IV-A: Side ITO contact

The fourth element in design A is the side ITO contact placed on top of the polymer cladding shown in Fig. 6(a) below. The contact is used to provide electrical pumping of the QD, however its influence on the optical mode should be minimized. To examine this influence we have computed the transmission γc of the HE11 fundamental mode through the contact section as function of ITO layer thickness tITO and of nanowire radius Rnw. The results are presented in Fig. 6(b).

 

Fig. 6 Sketch of element III-A (a). Transmission γc of the fundamental HE11 mode through contact section as function of Rnw for various side contact thicknesses for an ITO contact (b) and a gold contact (c).

Download Full Size | PPT Slide | PDF

For small Rnw the mode is predominantly situated outside the nanowire. In the absence of the ITO layer the transmission coefficient γc drops towards the plane-wave value for the polymer-air interface as Rnw → 0, and the addition of the ITO contact further deteriorates this transmission. For large Rnw the confinement to the nanowire is strong. When Rnw increases, the influence of the cladding variation on the mode propagation decreases and the transmission approaches 100%. For Rnw = 110 nm we observe that γc is above 95% for all three ITO contact thicknesses considered. At this small radius the HE11 field profile has some overlap with the cladding but not enough to severely compromise the transmission. Also, the figure reveals that even a fairly thick ITO layer only reduces γc by ~2%. The exact thickness of the ITO contact is thus not a critical issue in fabrication. We note that for Rnw = 110 nm and tITO = 50 nm, the transmission γc is ~97.7%.

To justify our material choice of ITO for the side contact in element IV-A, we consider the transmission through the corresponding element with a side contact made of gold instead of ITO. The transmission for this gold contact is shown in Fig. 6(c). We observe that for Rnw = 110 nm, the transmission is below 50% for both contact thicknesses considered. This poor transmission is due to the HE11 mode extending into the gold cladding and experiencing strong absorption and scattering by the metal. Thus, the implementation of an ITO contact instead of a gold contact improves the total efficiency ε of the SPS by a factor of 2.

Element IV-B/C: Top ITO/gold contacts

In design B the top ITO contact serves two purposes, it allows for electrical pumping and it also serves as an anti-reflection (AR) coating to reduce the reflection from the semiconductor-air interface. The top contact element is sketched in Fig. 7(a) . The thickness of the ITO contact layer is fixed at the AR optimum of one-quarter optical wavelength in bulk ITO, and we have computed the total transmission and relative collection efficiency γc for 0.5 and 0.8 NA lenses as a function of nanowire top radius Rtop. The results are illustrated in Figs. 7(b) and 7(c) for polymer and air claddings. The total transmission and the collection efficiency γc are, as before, normalized to the power of the forward propagating mode at the interface between elements III and IV. We observe that for Rtop ~110 nm, the transmission is less than 30% for both lenses. This low transmission is caused by the narrow HE11 mode waist resulting in a wide far field emission profile.

 

Fig. 7 Sketch of element IV-B (a) and total transmission and relative collection efficiency γc for 0.5 and 0.8 NA lenses as function of Rtop for polymer (b) and air (c) claddings. Sketch of element IV-C (d) and relative collection efficiency γc for a 0.8 NA lens as function of Rtop for various values of d for polymer (e) and air (f) claddings.

Download Full Size | PPT Slide | PDF

To achieve a high collection efficiency, the HE11 mode waist should be extended and for this reason we introduce the inverted tapering section described above. The real part 1.75 of nITO is close to the ideal AR coating index of sqrt(3.54) ≅ 1.88, however as Rtop increases the total transmission approaches an upper bound of ~95% rather than 100% due to the weak material absorption of the ITO contact. As Rtop increases, the collection efficiency is improved, however we keep in mind that a large top nanowire radius requires a long inverted tapering section.

The top gold contact element IV-C for design C is illustrated in Fig. 7(d). A gold contact ring similar to that used to electrically pump micropillars in Refs [7,39]. provides electrical current and Si3N4 is used in the central part as an AR coating. Again, the thickness of the AR coating is chosen to be one-quarter optical wavelength in bulk Si3N4 material. The collection efficiency γc for this element is given in Figs. 7(e) and 7(f) as function of Rtop and the contact ring overlap parameter d for polymer and air claddings. We observe that for Rtop = 750 nm the efficiency γc is above 85% and approaches ~99% for Rtop approaching 1500 nm for all values of d considered. For the value Rtop = 1500 nm, the overlap of the HE11 mode with the contact ring is so small that the influence on the collection efficiency is negligible.

The refractive index of 1.99 of Si3N4 results in a maximum 1D plane-wave transmission coefficient of the AR coating of 99.7%. However an ideal AR coating with an index of ~1.88 and a transmission of 100% can be realized using silicon oxynitride SiON [35], which allows for an arbitrary composition-dependent refractive index between 1.45 and 2.

5. Fabrication issues

In the following, we briefly discuss the feasibility of fabricating the tapering sections III-A and III-B/C. These sections represent the most challenging part in the experimental realization of the proposed SPS designs, and we present initial fabrication results to demonstrate that the successful fabrication of the structures is indeed realistic.

The fabrication of an optically-pumped SPS featuring a top taper of the III-A type has been demonstrated in Ref [28]. The associated process begins with an e-beam lithography step followed by a reactive ion etching step (SF6 plasma) that define a conical Si3N4 hard-mask. This conical shape is then transferred into the GaAs layer, using another reactive ion etching step (SiCl4-Ar plasma). Finally, the sidewall angle transferred in GaAs is the initial angle of the Si3N4 mask divided by the GaAs-Si3N4 selectivity of the last etching step. This process has allowed reaching an opening angle α ~5°. A typical SEM picture is shown in Fig. 8(a) : note that due to the presence of a lateral passivation layer deposited during the etching, the exact shape of the high-refractive index GaAs core is not accessible on such a picture. In the future, further improvements of the process may lead to a decrease of the tapering angle, resulting in a higher γ.

 

Fig. 8 Scanning-electron micrographs of regular conical tapering (a) featuring an opening angle α ~5° and inverted tapering section (b) with a side wall angle θ ~3°.

Download Full Size | PPT Slide | PDF

Following a similar process with different etching parameters, it is also possible to fabricate type III-B/C tapers. The sidewall angle is then directly controlled by the etching parameters. Figure 8(b) shows that structures featuring a 10 µm height and a sidewall angle θ ~3° are already achievable. Such parameters are close to the ones discussed in this paper. Experimental work is on-going to further optimize the process and obtain a wider top facet and further details of the associated fabrication process is beyond the scope of this paper.

Regarding design C, the air pocket could be defined with the following process. After planarization of the sample with a polymer and deposition of the top ring contact and contact pad, the polymer is etched with a highly selective dry etching step (O2 plasma). The contact pad and the top facet of the wire will act as an etching mask, and a slight chemical component in the etching can be used to under-etch the polymer, to define an air pocket around the photonic wire.

6. Discussion of efficiency

With the various element coefficients β, r 11, γt and γc computed, we can now estimate the total efficiency of the proposed electrically-pumped SPS designs. The optimum parameters for the bottom part of the designs are fixed and summarized in Table 2 . However we have the liberty of choosing α, Rtr and tITO in design A and Rtop, h (or θ) and d in designs B and C. In the following we have chosen Rtr = 60 nm, tITO = 50 nm and d = 100 nm, and we study the total efficiency as function of the remaining free parameters. The QD is positioned 261 nm (269 nm) above the metal mirror in design B (design C) in an antinode of the field such that φ = 0.

Tables Icon

Table 2. Element coefficients.

The total SPS efficiency ε as function of opening angle α for design A for a 0.5 and a 0.8 NA lens and as function of Rtop for designs B and C for the taper heights h = 10 μm and h = 20 μm is given in Fig. 9 . The results of calculations using the element-splitting model as well as results from exact computations are shown.

 

Fig. 9 SPS efficiency ε for design A (a) as function of opening angle α for 0.5 and 0.8 NA lenses. SPS efficiency ε for designs B (b) and C (c) as function of Rtop for a 0.8 NA lens. Results from the simplified model and the exact computation are shown.

Download Full Size | PPT Slide | PDF

Inspecting Fig. 9(a) we observe that for the experimentally realistic opening angle of α = 3°, the total efficiency ε for design A is ~82% for the 0.8 NA lens. Good agreement between the results obtaining using the simplified model and those from a full computation is observed, validating the element-splitting approach. A small oscillatory deviation for the 0.8 NA curves is observed, which we attribute to an increasing reflection of the HE11 mode reaching the element III-A as the opening angle α is increased. This reflection is not taken into account in the simplified model.

For design B, Fig. 9(b) shows that the efficiency ε increases with Rtop towards a maximum value of ~81% obtained for a top nanowire radius Rtop of ~800 nm for the 0.8 NA lens. At this radius, the collection efficiency γt for the element IV-B is no longer improved by increasing Rtop and the total efficiency ε clamps.

A similar behavior is observed in Fig. 9(c) where the efficiency ε for design C increases towards 89% as obtained for Rtop ~900 nm. Figure 7(f) reveals that the collection efficiency γc for the element IV-C is slightly improved for Rtop approaching 1500 nm, however for Rtop > 750 nm the taper transmission coefficient γt starts to drop. There is thus a trade-off, between a large Rtop to provide a high collection efficiency and a small Rtop to maintain a high transmission through the inverted taper. For our choice of parameters the optimum value is ~900 nm for h = 20 μm.

In both Figs. 9(b) and 9(c) we observe a slight deviation for Rtop > 750 nm for the h = 10 μm curves computed using the simplified and the exact models. For design C, the efficiency obtained by the exact model actually increases beyond 89% as Rtop approaches 1500 nm, whereas ε for the simplified model clearly decreases, reflecting the drop in transmission observed in Fig. 5(f) for Rtop approaching 1500 nm. This discrepancy can be understood by considering the breakdown of the adiabatic transition of the HE11 mode as it propagates through the inverted taper. For a fixed taper height h, the side wall θ increases with Rtop and for Rtop > 1000 nm there is significant coupling to higher order modes HE1 m (m > 1). In the simplified model this coupling is treated as a loss, however even though these higher order modes generally have a more divergent far field emission profile, a significant part of the light from these modes can be picked up by the 0.8 NA lens. In this multi-mode picture, the break-down of adiabaticity means that the power initially carried by the HE11 mode is distributed over various HE1 m modes at the top part of the taper, and for sufficiently large values of Rtop all this power is still coupled to the lens. Depending on the application, this distribution of power among several HE1 m modes may, or may not, be acceptable. E.g. if subsequent coupling to a single-mode fiber is required, the power in the higher order modes will be lost and the efficiency ε will be correctly predicted by the simplified single-mode model presented here.

We have chosen parameter values based on initial fabrication tests and it is not yet completely clear which values for the parameters α, Rtrunc, tITO, h, Rtop and θ can be achieved in the fabrication of the complete structures. However, we can estimate the upper bounds of the efficiency under the assumption that arbitrary geometric parameters are possible. All three designs are limited by their β factor and the reflection coefficient R11 of the bottom mirror. Furthermore, the designs are limited by the transmission through their respective contact elements. This results in an upper bound of 86.7% for the design A. Neglecting absorption loss in the inverted taper due to free carrier scattering, the corresponding bounds are 84.3% and 95.5% for designs B and C respectively.

The design C benefits from the high β value of 96.3% due to the large GaAs-air index contrast and a transmission of 99.7% in the plane-wave limit through the Si3N4 AR coating. The main bottlenecks for the total efficiency for design C are thus absorption losses in the inverted taper and the reflectivity coefficient of 89.5% of the metal mirror. The absorption losses may be reduced by carefully optimizing the doping profile of the inverted taper. The reflectivity of the metal mirror is limited by the plane-wave reflection coefficient of 94.7% for the GaAs-gold interface. Even though this coefficient can be slightly increased by replacing gold with silver, a DBR mirror is most likely necessary to obtain 100% reflectivity. A regular DBR mirror performs poorly at small nanowire diameters [26], however the mode-matched DBR structure presented in [44] could be considered. This element represents a substantial design complication and a thorough analysis is outside the scope of this paper.

Finally, we discuss the possibility of non-ideal carrier-capture efficiency, that could in turn contribute to the upper limit on ε. In Ref [7], values of ξ between 20% and 72% were reported for micro-cavity devices. These low values were attributed to non-radiative recombination at the sidewalls and associated carrier losses. This effect can in principle be compensated by the injection of a stronger current. However, in the micro-cavity case, this solution is not ideal due to the marked degradation of the g(2) as the pumping current increases. The photonic nanowire SPS has demonstrated a nearly perfect g(2) at saturation of the X transition, under non-resonant optical pumping [28]. Thus, it is likely that a stronger current up to X saturation is possible in an electrically pumped device, without the burden of detrimental multi-photon pulses. Another solution proposed in [7], which is not specific to photonic nanowires is the passivation of the sidewalls. This helps to decrease non-radiative recombination at weak currents, as demonstrated successfully in the context of electrically pumped lasers based on nanocavities [45].

7. Conclusion and outlook

We have proposed and analyzed three electrically-pumped SPS structures. The designs are based on a GaAs nanowire with an embedded QD and on ITO and gold contacts. The operating principle ensuring a high β relies on a geometrical screening of radiation modes rather than the Purcell effect. This choice avoids the high sensitivity to geometry imperfections, which limits the efficiency of traditional high-Q cavity-based SPS designs.

The various elements of the designs have been analyzed and the influence of geometrical parameters on the efficiency has been quantified. For realistic geometrical parameters we predict the total efficiencies of the designs A, B and C to be 82%, 81% and 89% respectively. These values are well above reported values for state-of-the-art electrically-pumped SPS’s based on cavity effects. For all the designs, the tapering sections are critical elements, and we have demonstrated the feasibility of experimental fabrication of both the top conical and the inverted tapering. We have discussed possible strategies for further increasing the total efficiency towards 100%.

Finally, some advanced applications of SPS (such as quantum computing using single photon Qbits) require single photon indistinguishability, which is possible only if the emitter’s dephasing time is limited by the SE time. Although SE enhancement using the Purcell effect is, generally speaking, favorable to reach this regime, we note that the emission for indistinguishable photons has already been demonstrated for electrically driven QD devices in the absence of measurable Purcell effect [46,47]. Also, “fast” emitters such as QDs in the giant-oscillator strength regime [48] or donor impurities [49] are good candidates for the generation of indistinguishable photons without the help of cavity effects. Embedding such emitters in photonic wires appears therefore as a promising route toward efficient and practical sources of indistinguishable single photons.

Acknowledgments

We acknowledge support from the Danish Research Council for Technology and Production (Contract No. 09-062945) and from the European Commission through the IST Project “QPhoton” (Contract No. IST-29283).

References and Links

1. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]  

2. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002). [CrossRef]  

3. T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008). [CrossRef]  

4. T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008). [CrossRef]  

5. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006). [CrossRef]  

6. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010). [CrossRef]   [PubMed]  

7. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010). [CrossRef]  

8. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]  

9. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001). [CrossRef]  

10. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef]   [PubMed]  

11. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007). [CrossRef]  

12. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef]   [PubMed]  

13. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef]   [PubMed]  

14. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007). [CrossRef]   [PubMed]  

15. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002). [CrossRef]  

16. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002). [CrossRef]  

17. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008). [CrossRef]  

18. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009). [CrossRef]  

19. A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009). [CrossRef]  

20. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009). [CrossRef]  

21. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995). [CrossRef]   [PubMed]  

22. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007). [CrossRef]   [PubMed]  

23. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008). [CrossRef]   [PubMed]  

24. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009). [CrossRef]   [PubMed]  

25. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007). [CrossRef]  

26. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009). [CrossRef]   [PubMed]  

27. A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006). [CrossRef]  

28. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010). [CrossRef]  

29. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010). [CrossRef]   [PubMed]  

30. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975). [CrossRef]  

31. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000). [CrossRef]  

32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef]   [PubMed]  

33. C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996). [CrossRef]  

34. T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007). [CrossRef]  

35. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982). [CrossRef]   [PubMed]  

36. Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

37. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008). [CrossRef]   [PubMed]  

38. N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008). [CrossRef]   [PubMed]  

39. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008). [CrossRef]  

40. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001). [CrossRef]  

41. N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008). [CrossRef]  

42. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007). [CrossRef]  

43. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17(2), 1144–1158 (2009). [CrossRef]   [PubMed]  

44. Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009). [CrossRef]   [PubMed]  

45. D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007). [CrossRef]  

46. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008). [CrossRef]   [PubMed]  

47. A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009). [CrossRef]  

48. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef]   [PubMed]  

49. K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [CrossRef]
  2. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
    [CrossRef]
  3. T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
    [CrossRef]
  4. T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
    [CrossRef]
  5. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
    [CrossRef]
  6. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
    [CrossRef] [PubMed]
  7. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
    [CrossRef]
  8. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [CrossRef]
  9. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
    [CrossRef]
  10. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  11. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
    [CrossRef]
  12. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
    [CrossRef] [PubMed]
  13. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  14. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
    [CrossRef] [PubMed]
  15. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
    [CrossRef]
  16. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
    [CrossRef]
  17. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
    [CrossRef]
  18. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
    [CrossRef]
  19. A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
    [CrossRef]
  20. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
    [CrossRef]
  21. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
    [CrossRef] [PubMed]
  22. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
    [CrossRef] [PubMed]
  23. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
    [CrossRef] [PubMed]
  24. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
    [CrossRef] [PubMed]
  25. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
    [CrossRef]
  26. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
    [CrossRef] [PubMed]
  27. A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
    [CrossRef]
  28. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
    [CrossRef]
  29. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
    [CrossRef] [PubMed]
  30. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
    [CrossRef]
  31. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
    [CrossRef]
  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  33. C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
    [CrossRef]
  34. T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
    [CrossRef]
  35. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]
  36. Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).
  37. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
    [CrossRef] [PubMed]
  38. N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
    [CrossRef] [PubMed]
  39. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
    [CrossRef]
  40. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
    [CrossRef]
  41. N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
    [CrossRef]
  42. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
    [CrossRef]
  43. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17(2), 1144–1158 (2009).
    [CrossRef] [PubMed]
  44. Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
    [CrossRef] [PubMed]
  45. D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
    [CrossRef]
  46. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
    [CrossRef] [PubMed]
  47. A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
    [CrossRef]
  48. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  49. K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
    [CrossRef] [PubMed]

2010

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

2009

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17(2), 1144–1158 (2009).
[CrossRef] [PubMed]

Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

2008

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

2007

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

2006

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

2004

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2003

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

2001

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

2000

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

1998

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

1996

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

1995

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

1983

1982

1975

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Abram, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Alexander, R. W.

Altug, H.

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Arakawa, Y.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Atkinson, P.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

Auffèves, A.

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Azéma, A.

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Bååk, T.

Babinec, T. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Badolato, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Baets, R.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

Bakarov, A. K.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Bakunov, M. I.

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bennett, A. J.

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Beveratos, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Bichler, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Bienstman, P.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

Bimberg, D.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Björk, G.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Böckler, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Böhm, J.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Briggs, R. M.

Brongersma, M. L.

Burger, S.

Casey, H. C.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Cooper, K.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Coutal, C.

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Debusmann, R.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Englund, D.

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Farrer, I.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Finley, J.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Forchel, A.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Friedler, I.

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Gérard, J. M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Grenouillet, L.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Hahner, R.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Haisler, V. A.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Hanemann, T.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Hauke, N.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Hausmann, B. J. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Haußelt, J.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Heindel, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Hemmer, P. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Hennessy, K. J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Hetterich, M.

Hirose, S.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Ho, S. T.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Höfling, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hohenester, U.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Honnef, K.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Hopfer, F.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Hu, E. L.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Hughes, S.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

Hugonin, J. P.

Imamoglu, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Jonsson, P.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Jun, Y. C.

Kalagin, A. K.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Kalt, H.

Kamp, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Kaniber, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Karl, M.

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kettner, B.

Khan, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Kida, T.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Kistner, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Ladd, T. D.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Laucht, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Lecamp, G.

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Lischka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Lochmann, A.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Löffler, A.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Loncar, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
[CrossRef] [PubMed]

Long, L. L.

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

Manin, L.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Maslov, A. V.

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Maze, J. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Miyazawa, T.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Mohtashami, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Moreau, E.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Mørk, J.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Nakaoka, T.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Neumann, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Nicoll, C. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Nielsen, T. R.

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Ning, C. Z.

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Nowicki-Bringuier, Y.-R.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Okumura, S.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Ordal, M. A.

Patel, R. B.

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Pawlis, A.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Poizat, J. P.

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Portolan, S.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Ritchie, D. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Ritzhaupt-Kleissl, E.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Robert, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Robert-Philip, I.

Roustan, J.-C.

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Salter, C. L.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Sanaka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

Savona, V.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Schmidt, F.

Schneider, C.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Schulz, O.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Seliger, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Sell, D. D.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Shields, A. J.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Stevenson, R. M.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Stock, E.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Suhr, T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Sünner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Takatsu, M.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Takemoto, K.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Tarel, G.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Thierry-Mieg, V.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Toropov, A. I.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Tromborg, B.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Usuki, T.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Volz, T.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Vuckovic, J.

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Ward, C. A.

Wasey, J. A. E.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Wecht, K. W.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Winger, M.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Worthing, P. T.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Yamamoto, Y.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Yokoyama, N.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Zhang, Y.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
[CrossRef] [PubMed]

Zwiller, V.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Ann. Phys. (France)

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Appl. Opt.

Appl. Phys. Lett.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Electron. Lett.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Eur. Phys. J. D

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

J. Appl. Phys.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Macromol. Mater. Eng.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Nat. Nanotechnol.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Nat. Photonics

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Nat. Phys.

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

Nature

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

Phys. Rev. A

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Phys. Rev. B

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

Phys. Rev. Lett.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Physica E

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

Science

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Thin Solid Films

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Design A (a) featuring a top conical tapering and designs B (b) and C (c) with inverted tapering and anti-reflection coatings. Design B features a planar ITO top contact while design C includes a gold ring contact and an air pocket.

Fig. 2
Fig. 2

Sketch of element I (a) and β as function of nanowire radius Rnw (b) for various cladding refractive indices nclad .

Fig. 3
Fig. 3

Sketch of element II (a) and reflectivity R 11 = |r 11|2 of the HE11 mode (b) as function of ITO bottom contact thickness tITO for polymer and air claddings.

Fig. 4
Fig. 4

Sketch of element IV-A (a) and total transmission and relative collection efficiency γt for 0.5 and 0.8 NA lenses (b) as function of opening angle α for a perfectly sharp tip. Relative collection efficiency γt for a 0.8 NA lens (c) as function of α for various values of Rtr . Rnw = 110 nm.

Fig. 5
Fig. 5

Sketch of element III-B (a) and III-C (d). Transmission γt of the fundamental HE11 mode as function of sidewall angle θ for various values of Rtop for polymer cladding (b) and air cladding (e). Transmission γt as function of Rtop for h = 10 and 20 μm for polymer cladding (c) and air cladding (f).

Fig. 6
Fig. 6

Sketch of element III-A (a). Transmission γc of the fundamental HE11 mode through contact section as function of Rnw for various side contact thicknesses for an ITO contact (b) and a gold contact (c).

Fig. 7
Fig. 7

Sketch of element IV-B (a) and total transmission and relative collection efficiency γc for 0.5 and 0.8 NA lenses as function of Rtop for polymer (b) and air (c) claddings. Sketch of element IV-C (d) and relative collection efficiency γc for a 0.8 NA lens as function of Rtop for various values of d for polymer (e) and air (f) claddings.

Fig. 8
Fig. 8

Scanning-electron micrographs of regular conical tapering (a) featuring an opening angle α ~5° and inverted tapering section (b) with a side wall angle θ ~3°.

Fig. 9
Fig. 9

SPS efficiency ε for design A (a) as function of opening angle α for 0.5 and 0.8 NA lenses. SPS efficiency ε for designs B (b) and C (c) as function of Rtop for a 0.8 NA lens. Results from the simplified model and the exact computation are shown.

Tables (2)

Tables Icon

Table 1 Material refractive indices.

Tables Icon

Table 2 Element coefficients.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε = | c u | 2 γ g T o t a l ,
c u = c 0 ( 1 + | r 11 | e i ϕ ) .
g T o t a l = | c u | 2 + ( 1 | r 11 | 2 ) | c d | 2 + g R a d .
ε = β γ ( 1 + | r 11 | ) 2 2 ( 1 + β | r 11 | ) .

Metrics