Abstract

The authors report on the fabrication of hybrid planar micro-resonators based on InGaAs microdisks with an evaporated organic material. Samples of InGaAs grown on InP(100) substrates are obtained by Chemical Beam Epitaxy, and microdisks of InGaAs with different diameters are fabricated by focused ion beam. The hybrid disks are obtained by the subsequent evaporation of 8-hydroxyquinoline aluminium doped with 4-Dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran on the InGaAs microdisks. The devices, characterized by micro- and confocal photoluminescence imaging and spectroscopy, exhibit emission around 650 nm, from the organic material for disks with different radius. Finally, simultaneous emission in the visible and at whispering gallery resonant modes in the 1350-1450 nm range are observed due to excitation transfer to InGaAs. These devices open the possibility to combine the flexibility of organics with the high gain of III-V compounds for wavelength down conversion and telecom applications.

© 2010 OSA

1. Introduction

Microresonators of different geometries and materials are studied due to their potential applications in optical-communications systems [13]. In particular, microdisks are shown to produce a high quality factor Q [4] which may consequently lead to low laser thresholds. Active-microdisk resonators offer a great advantage in obtaining stimulated emission in small volume [5] since they support whispering-gallery modes (WGMs), which are very confined resonances with maximum intensity near the disk edge [6]. High photonic lifetime can be achieved without complex systems for optical feedback. Moreover, the peculiar structure, with planar emission without the need of cleaved mirrors, enables easy integration with other optoelectronic devices. Two factors are fundamental for the performance of active microdisk resonators, namely the low roughness of the disk walls to reduce optical scattering losses [7] and the low surface recombination velocity to increase internal quantum efficiency. For these reasons, microdisks are very useful for photonic applications. On the other hand, since the discovery of stimulated emission, amplified spontaneous emission, and lasing in organic conjugated systems [8], many efforts have been directed towards the realization of single or multi-wavelength, solid-state organic-based laser devices for applications in diagnostics, displays, and data storage [9]. Compared with inorganic materials, organic low-molar mass molecules and polymers exhibit some important advantages in terms of fabrication process, often performed at ambient working temperatures, broad emission spectral range and possibility of color tunability, flexibility in terms of molecular design and synthesis, and low cost [10,11]. In the last decade, the field of conjugated molecules has soared with many applications [1214] including optically pumped lasers [15,16]. Conjugated polymers are also employed as active layers of vertical cavity surface-emitting lasers [17] and of microdisk lasers with 20-30 μm diameter, operating at 620-630 nm when pumped by UV [18]. Furthermore, organic laser sources are integrated on chips to couple light from an active material slab which is combined with a distributed feedback grating into a polymer strip waveguide [19]. As well known, a limitation of this technology to be useful in photonics applied to telecommunication is the emission wavelength, which is mainly in the visible range for organic systems. Emission in the near infrared is reported by combining conjugate polymers and inorganic nanocrystals [20]. Hybrid structures based on organic materials deposited on InGaAs disks can be valuable candidates to extend the applicability of light-emitting molecules to near-infrared applications, since the highly efficient InGaAs material can convert the organic emission in the visible range into emission in the c-band, near 1550 nm.

Here we report on hybrid micro-resonators with simultaneous visible and infra-red emission. We fabricate microdisks with different diameters from InGaAs material grown on InP(100) substrate by Chemical Beam Epitaxy (CBE). The InGaAs layer is compressively strained by ~0.4% with respect to InP. The organic system, 8-hydroxyquinoline aluminium (Alq3) doped with 4-Dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) is deposited on the microdisks by thermal evaporation. Two cases are analyzed. In the first case (i), a bulk layer of SiO2 is deposited on the InGaAs microdisk before depositing the Alq3:DCM in order to study the effects of the cavity size on the organic emission. A blue-shift in the emission is observed as the disk size is reduced. In the second case (ii), the Alq3:DCM is deposited directly on the InGaAs microdisks to investigate the light coupling between the organic layer and the InGaAs substrate. A simultaneous emission at 660 nm and 1350-1450 nm is observed, due to the excitation transfer to the InGaAs material.

2. Fabrication of microdisks

While the most of reported microdisk structures based on organic light-emitting materials are realized by means of standard photolithography [18,2123], we first fabricate inorganic pedestals to deposit Alq3:DCM afterwards. Samples of InGaAs are grown by CBE on InP(100) substrates using trimethylindium, triethylgallium, AsH3 and PH3 precursors. Initially, 200-nm-thick InP buffer is grown on an oriented InP(100) substrate at 520°C, followed by 1000-nm-thick InGaAs grown at 530°C. After CBE growth, disks of different diameters (38, 26 and 18 µm) are obtained. The processing steps consist essentially of an InGaAs selective wet-etching (H2SO4:H2O2:H2O) resulting in cylinders with vertical walls, followed by InP selective wet-etching (HCl: H3PO4) for the pedestal formation. Pedestal heights of 4-8 µm are achieved after 30-60s of InP selective wet-etching. Disks with diameters of 2, 4 and 8 µm are obtained by focused ion beam (FIB) at the edge of the samples.

Figures 1a and 1b show the lateral and top view of a microdisk with 18 and 26 µm of diameter, respectively. Notice that the walls of the disk are not vertical due to the InGaAs selective wet-etching that tends to stop at the (111)A planes. This certainly influences the InGaAs resonator, but does not significantly affect the organic material deposition. Improvement for the InGaAs profile can be achieved with dry etching before InP selective etching. Figures 1c and 1d show microposts with diameters of 4 µm, realized at the edge of the sample by a dual-beam FIB equipment with scanning electron microscopy capability. FIB milling is performed using a Ga+ beam current of 3 nA accelerated at 30 kV during 12 minutes. Due to the reduced size of the posts, InP selective wet-etching is not carried out on these samples.

 

Fig. 1 (a) 18 µm-diameter disk lateral view (b) 26 µm-diameter disk top view (c) 4 µm-diameter posts at the edge of the sample and (d) higher magnification of one of the posts of (c).

Download Full Size | PPT Slide | PDF

Two cases are investigated. In the first case, a bulk layer of SiO2 (800 nm) is deposited on the InGaAs microdisk before depositing the organic thin film. The SiO2 layer is deposited by a Temescal Supersource 2 electron-beam gun system, in an oxygen atmosphere (≅2.4 × 10−4 mbar) using 99.9% purity SiO2 disks (Leybold, Germany) as source materials. The chamber is at room temperature (about 20 °C) at the beginning of the deposition, reaching less than 60 °C at the end of the process. The organic thin film is then deposited on SiO2 layer by thermal evaporation using a PVD75 system from Kurt J. Lesker. A 300 nm thick layer of Alq3 doped with DCM (2% in ww) is evaporated at pressure of 4-5 × 10−7 mbar and a constant deposition rate of 1.5 Å/s, monitored by a quartz gold-coated crystal microbalance. In the second case, a 300 nm thick film of Alq3:DCM is directly deposited onto the InGaAs microdisk under the same evaporation conditions.

3. Results and discussion

PL micrographs of the samples are obtained by using a confocal microscope (FV1000, Olympus), exciting the samples with the 488 nm line of an Ar ion laser. PL spectroscopy measurements of the samples with the SiO2 layer are performed using the third harmonic of a Q-switched neodymium-doped yttrium aluminum garnet pulsed laser (Alphalas Gmbh, λ = 355nm) with a spotlight of about 20 µm, pulse duration of 0.6 ns and repetition rate of 100 Hz. The pulse energy is kept constant at 0.2 μJ. The disk emission is collected by an optical-fiber coupled to a monochromator (iHR320, Jobin Yvon), equipped with a Charge Coupled Device for detection (1024 × 256 pixel, Simphony, Jobin Yvon). The measurements are carried out at room temperature with a spectral resolution of 0.2 nm. As the SiO2 index refraction (1.46 at 630 nm) is lower than that of Alq3:DCM [16], there is a reduced coupling of the light emitted by the organic layer to the InGaAs disks.

Figure 2 shows confocal PL images of disks with 38, 26 and 8 µm of diameter (2R) with 300 nm-thick film of Alq3:DCM over their surfaces. The organic film is quite homogeneous and uniform. The underneath pedestals can be visualized due to the index refraction differences of the materials. Figure 3 shows instead the normalized PL spectral emission curves of Alq3:DCM deposited on SiO2 layers on the top of InGaAs disks. PL measurements on the disks show peaks at 664 nm, 651 nm, and 648 nm for diameters of 38 μm, 26 μm e 8μm, respectively. A blue-shift of the emission from the organic material is observed upon decreasing the disk diameter.

 

Fig. 2 Confocal PL micrographs of Alq3:DCM deposited on InGaAs disks of (a) 38 µm, (b) 26 µm, and (c) 8 µm-diameter.

Download Full Size | PPT Slide | PDF

 

Fig. 3 Normalized PL curves of Alq3:DCM deposited on microdisks with different diameters. The laser beam power is kept constant.

Download Full Size | PPT Slide | PDF

We observe that the blueshift increases as the laser spot approaches the disk diameter value of 26 μm. As the disk becomes smaller than the spot area very small change in the blueshift is observed. Therefore, pumping density must play an important rule in the blueshift. The absorbed pump energy density increases as the disk diameter decreases with a maximum when the laser spot maches the disk diameter. Higher absorbed pump energy density leads to higher population of the levels which in turn causes a larger blue-shift for the transitions. This effect is similar to band filing in semiconductors. As the disk diameter is further reduced, there is essentially no change in pump density and, therefore, negligible change in the blueshift.

Alq3 doped with DCM provides an excellent light-emitting and gain media [24], in which the maximum absorbance of the DCM is centered at 530 nm [25]. The organic layer thickness was designed to absorb almost all pumping light. We measure an absorption coefficient of 2 × 105 cm−1 for a 300 nm-thick Alq3:DCM film at the excitation wavelength of 533 nm (the organic film transmits 0.2% of the incident light). In this way, 300-nm-thick films of Alq3:DCM may avoid a significant direct excitation of the InGaAs layer. Thicker layers will result in non efficient pumping of the organic layer. Thinner layer obviously would allow direct pumping of the InGaAs disk. PL measurements of samples without SiO2 are performed by exciting sample by a diode laser at 533 nm and these measurements, shown in the Fig. 4 , are collected at room temperature, by means of two different spectrometers, i.e. a Ocean Optics, model (HR2000) with resolution of 1 nm in the visible region, together with an Optical-Spectrum Analyzer, model HP 70950B with resolution of 0.8 nm in the infrared. The laser spotlight used in this set-up is approximately 25 μm. Disks with diameter smaller than 25 μm could allow lateral pumping of the InGaAs material and provides no increase in pumping density. Disks of 26 and 38 μm diameters were measured. PL spectra, shown in Fig. 4b of the 38-μm-diameter disk shows a broad emission centered at 1430 nm with no sign of resonant modes. This is expected since there is a highly absorbing unpumped 6 μm wide ring near the edge of the disk where the WGM modes should be a maximum. Therefore, in the following, we restricted our study to the 26 μm disk.

 

Fig. 4 PL spectral emission curves of Alq3:DCM deposited on InGaAs disks (a) in the visible region for the 26 μm disk and (b) in the infrared region for the 26 and 38 μm disks. Both spectra are averaged 10 times. Inset in (b) shows the zoomed peak region of the spectrum for the 26 μm disk.

Download Full Size | PPT Slide | PDF

Figure 4a shows the normalized PL emission curve of the organics deposited on a 26-µm-diameter InGaAs disk, with maximum emission at 660 nm. We use a laser beam power of 1.2 mW. We use a multimode fiber to collect the light emitted from the organic material in the visible region. Figure 4b shows the measurements carried out in the infrared region (1300-1500 nm) using a single-mode fiber to collect the InGaAs disks emission. Since the index refraction of InGaAs (3.91) is quite larger than that of Alq3:DCM (1.77) at 630 nm, we expect a significant coupling between the organic layer and the underneath InGaAs substrate. Such a coupling is the most probable reason of providing a spectral emission in the infrared region. The interaction between inorganics and organics within the fabricated heterostructure can be mediated by radiative or non-radiative energy transfer, or by both the mechanisms [26,27]. In particular, non-radiative energy transfer is utilized as strategy for the non-optical excitation in hybrid inorganic-organic composite systems, whose phenomenon has been predicted and observed in inorganic-organic heterostructures, constituted by inorganic quantum wells interacting with amorphous conjugated polymer films [2729], and in nanocomposites [3033]. Furthermore, one see clearly in the inset figure some emission peaks at 1361, 1369, 1379, 1399, 1408, 1417, 1424 and 1434 nm. Using Fast Fourier Transform (FFT) to analyze the spectrum of the inset figure, we find a 10.08 nm periodicity. Considering the effective index of refraction neff = 2.5 for InGaAs structure, the expected free spectral range for a 13 µm radius disk, is Δλ~λ 2/2πRneff ~10 nm. Therefore, we believe these peaks are indeed whispering gallery modes (WGMs) of the InGaAs disk.

Based on the absorption coefficient of the polymer we estimate that 1.7 μW of the incident light excites the InGaAs disk for the 1.2 mW pumping power. The measured integrated power irradiated by the InGaAs disk of 26 μm was 6.7 × 10−2 μW. Our single mode fiber collects radial emission from approximately 2 μm length of the disk perimeter. Therefore, we can estimate approximately 2.8 μW of radial emission. Therefore, even assuming only radial emission and 100% efficiency of the entire system, it is impossible to neglect radiative and/or non-radiative pumping from the organic layer. In terms of the ratio between non-radiative and radiative pumping, we believe that the last is more important. If non-radiative pumping was more important we should observe no considerable difference between the InGaAs emission from the disks with 26 μm and 38 μm diameters since carrier diffusion in the InGaAs layer would lead to more uniform pumping at the edge.

4. Conclusion

In conclusion, we obtain samples of InGaAs layers grown on InP(100) substrate by CBE. InGaAs microdisks with different diameters are fabricated by photolithography and FIB. Hybrid disks are obtained by the deposition of Alq3:DCM by evaporation on the InGaAs disks. Several whispering gallery resonant modes are observed in the 26-µm-diameter InGaAs disk spectrum emission curve, with average spacing of about 10 nm obtained by FFT analysis. The developed microdisk devices are fully compatible with state-of-the-art technologies for the production of organic light-emitting diodes and potentially provide effective lateral confinement for resonant lasing modes, being therefore promising for applications in highly-integrated, hybrid organic-inorganic optoelectronics.

Acknowledgments

The authors acknowledge the Brazilian research agencies CNPQ and FAPESP. The Brazilian authors acknowledge the CEPOF and INCT-FOTONICOM for their experimental and financial support.

References and links

1. N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996). [CrossRef]  

2. J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008). [CrossRef]  

3. U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994). [CrossRef]   [PubMed]  

4. Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993). [CrossRef]  

5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]  

6. L. Raleigh, “The Problem of the Whispering Gallery,” in Scientific Papers (Cambridge Univ. Press, 1912), Vol. 5, pp. 617–620. [PubMed]  

7. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007). [CrossRef]   [PubMed]  

8. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996). [CrossRef]  

9. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004). [CrossRef]  

10. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000). [CrossRef]  

11. F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003). [CrossRef]  

12. E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008). [CrossRef]   [PubMed]  

13. C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006). [CrossRef]  

14. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990). [CrossRef]  

15. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996). [CrossRef]  

16. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]  

17. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006). [CrossRef]  

18. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]  

19. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007). [CrossRef]  

20. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002). [CrossRef]   [PubMed]  

21. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995). [CrossRef]   [PubMed]  

22. S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998). [CrossRef]  

23. R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004). [CrossRef]  

24. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]  

25. S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998). [CrossRef]  

26. G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005). [CrossRef]  

27. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006). [CrossRef]  

28. D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999). [CrossRef]  

29. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008). [CrossRef]  

30. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010). [CrossRef]   [PubMed]  

31. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009). [CrossRef]   [PubMed]  

32. S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009). [CrossRef]  

33. A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996).
    [CrossRef]
  2. J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
    [CrossRef]
  3. U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
    [CrossRef] [PubMed]
  4. Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
    [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
    [CrossRef]
  6. L. Raleigh, “The Problem of the Whispering Gallery,” in Scientific Papers (Cambridge Univ. Press, 1912), Vol. 5, pp. 617–620.
    [PubMed]
  7. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007).
    [CrossRef] [PubMed]
  8. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
    [CrossRef]
  9. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
    [CrossRef]
  10. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000).
    [CrossRef]
  11. F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
    [CrossRef]
  12. E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
    [CrossRef] [PubMed]
  13. C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
    [CrossRef]
  14. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
    [CrossRef]
  15. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
    [CrossRef]
  16. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
    [CrossRef]
  17. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
    [CrossRef]
  18. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
    [CrossRef]
  19. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
    [CrossRef]
  20. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
    [CrossRef] [PubMed]
  21. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995).
    [CrossRef] [PubMed]
  22. S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
    [CrossRef]
  23. R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004).
    [CrossRef]
  24. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
    [CrossRef]
  25. S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
    [CrossRef]
  26. G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
    [CrossRef]
  27. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
    [CrossRef]
  28. D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
    [CrossRef]
  29. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
    [CrossRef]
  30. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
    [CrossRef] [PubMed]
  31. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
    [CrossRef] [PubMed]
  32. S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
    [CrossRef]
  33. A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
    [CrossRef]

2010 (1)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

2008 (4)

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
[CrossRef]

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
[CrossRef]

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

2007 (2)

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007).
[CrossRef] [PubMed]

2006 (3)

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

2005 (1)

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

2004 (2)

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004).
[CrossRef]

2003 (1)

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

2002 (1)

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000).
[CrossRef]

1999 (1)

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

1998 (2)

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

1997 (1)

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

1996 (3)

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996).
[CrossRef]

1995 (1)

1994 (1)

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Agranovich, V. M.

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Andersson, M. R.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Banin, U.

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Barea, L. A. M.

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
[CrossRef]

Basko, D.

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Bassani, F.

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Becker, E.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Bellutti, P.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Berleb, S.

Bond, T. C.

Bonfiglio, A.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Brütting, W.

Bulovic, V.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Burrows, P. E.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Camposeo, A.

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

Chanyawadee, S.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

Charlton, M. D. B.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

Chinn, D.

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Cicoira, F.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Cingolani, R.

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
[CrossRef]

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

Cosseddu, P.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Dawson, M. D.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

De Marco, C.

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

Del Carro, P.

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Díaz-García, M. A.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Dobbertin, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Dodabalapur, A.

Doppelt, P.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Feldmann, J.

Forrest, S. R.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Frateschi, N. C.

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996).
[CrossRef]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Frolov, S. V.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Fujii, A.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Gombert, A.

Gourdon, A.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Griffin, C.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

Gu, E.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

Harley, R. T.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

Heebner, J. E.

Heeger, A. J.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Heinrich, M. P.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

Heliotis, G.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

Henini, M.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

Henzi, P.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

Hidayat, R.

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Hide, F.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Hinze, P.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Hirohata, M.

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Holmes, A. B.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Huang, H. W.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

Itskos, G.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Jahnke, F.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
[CrossRef] [PubMed]

Jeon, C. W.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

Jiang, P.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Johannes, H.-H.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Jordan, R. H.

Kallman, J. S.

Kan, S. H.

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Katz, H. E.

Kazes, M.

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Koch, S. W.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
[CrossRef] [PubMed]

Kowalsky, W.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Kozlov, V.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Kröger, M.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Kuwata-Gonokami, M.

La Rocca, G. C.

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Laegsgaard, E.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Lagoudakis, P. G.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

Lemmer, U.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
[CrossRef]

Levi, A. F. J.

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Lidzey, D. G.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

Lin, C.-H.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Mantoux, A.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

Masuda, T.

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

McGehee, M. D.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000).
[CrossRef]

Medvedev, V.

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Mele, E.

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

Mialichi, J. R.

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
[CrossRef]

Mohideen, U.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
[CrossRef] [PubMed]

Mozer, S.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

Muccini, M.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Mückl, A. G.

Murray, R.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Naitoh, Y.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Neves, A. A. R.

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
[CrossRef]

Ozawa, S.

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Pei, Q.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Persano, L.

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

Pisignano, D.

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004).
[CrossRef]

Punke, M.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

Rabe, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Rabus, D. G.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

Riechel, S.

Riedl, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Rogach, A. L.

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

Rosei, F.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Santato, C.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Schilling, M. L.

Schneider, D.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Schunack, M.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Schwartz, B. J.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Shen, Z.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

Shkunov, M.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

Slusher, R.

Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[CrossRef]

Slusher, R. E.

M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995).
[CrossRef] [PubMed]

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
[CrossRef] [PubMed]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Stavrinou, P. N.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

Stensgaard, I.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Stroisch, M.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

Susha, A. S.

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

Talapin, D. V.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

Taraguchi, M.

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Taylor, D.

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

Tessler, N.

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Thompson, M. E.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004).
[CrossRef]

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

von Zuben, A. A.

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
[CrossRef]

Wang, J.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Watson, I. M.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Weimann, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

Wittwer, V.

Yamamoto, Y.

Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[CrossRef]

Yoshino, K.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

Zamboni, R.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008).
[CrossRef]

Adv. Mater. (4)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010).
[CrossRef] [PubMed]

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998).
[CrossRef]

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Appl. Phys. Lett. (7)

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[CrossRef]

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005).
[CrossRef]

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009).
[CrossRef]

ECS Trans. (1)

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008).
[CrossRef]

Eur. Phys. J. B (1)

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007).
[CrossRef]

J. Appl. Phys. (1)

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996).
[CrossRef]

Mater. Lett. (1)

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998).
[CrossRef]

Nanotechnology (1)

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008).
[CrossRef] [PubMed]

Nature (3)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994).
[CrossRef] [PubMed]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

Phys. Today (1)

Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[CrossRef]

Prog. Surf. Sci. (1)

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003).
[CrossRef]

Science (2)

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Other (1)

L. Raleigh, “The Problem of the Whispering Gallery,” in Scientific Papers (Cambridge Univ. Press, 1912), Vol. 5, pp. 617–620.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) 18 µm-diameter disk lateral view (b) 26 µm-diameter disk top view (c) 4 µm-diameter posts at the edge of the sample and (d) higher magnification of one of the posts of (c).

Fig. 2
Fig. 2

Confocal PL micrographs of Alq3:DCM deposited on InGaAs disks of (a) 38 µm, (b) 26 µm, and (c) 8 µm-diameter.

Fig. 3
Fig. 3

Normalized PL curves of Alq3:DCM deposited on microdisks with different diameters. The laser beam power is kept constant.

Fig. 4
Fig. 4

PL spectral emission curves of Alq3:DCM deposited on InGaAs disks (a) in the visible region for the 26 μm disk and (b) in the infrared region for the 26 and 38 μm disks. Both spectra are averaged 10 times. Inset in (b) shows the zoomed peak region of the spectrum for the 26 μm disk.

Metrics