Abstract

We design, fabricate, and test photonic crystal heterostructure cavity lasers in the InP material system. A heterostructure cavity is formed by interfacing two different photonic crystals such that a dispersion maximum of the inner lattice lies within the band gap of the surrounding lattice. Feedback to slow light modes of the central region results in a lower threshold and single mode operation. The use of a kagome lattice as the inner defect area increases the semiconductor volume as well as the modal overlap with the gain material. We use a simulation technique to verify experimentally observed single mode operation as well as to quantify the effects of the heterostructure cavity formation.

© 2009 Optical Society of America

Connection Failure

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
    [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
    [CrossRef]
  3. Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
    [CrossRef]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI
    [CrossRef] [PubMed]
  5. K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
    [CrossRef]
  6. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
    [CrossRef]
  7. C. Monat, C. Seassal, X. Letartre. P Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert. E. Jalaguier, S. Pocas, and B. Aspar, "InP based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5103 (2002).
    [CrossRef]
  8. H. Y. Ryu, M. Notomi, Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209-1-9 (2003).
    [CrossRef]
  9. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12,5356-5361 (2004), http://www.opticsinfobase.org/oe/abstract.
    [CrossRef] [PubMed]
  10. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
    [CrossRef]
  11. F. Bordas, M. J. Steel, C. Seassal, and A. Rahamani, "Confinement of band-edge modes in a photonic crystal slab," Opt. Express 15,10890-10902 (2007), http://www.opticsinfobase.org/oe/abstract.
    [CrossRef] [PubMed]
  12. H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
    [CrossRef]
  13. A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008).
    [CrossRef]
  14. Y. J. Li and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag. 54, 3000-3009 (2006).
    [CrossRef]
  15. Y. J. Li and J. M. Jin, "Fast full-wave analysis of large-scale three-dimensional photonic crystal devices," J. Opt. Soc. Am. B 24, 2406-2415 (2007).
    [CrossRef]

2008 (1)

A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008).
[CrossRef]

2007 (3)

2006 (1)

Y. J. Li and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag. 54, 3000-3009 (2006).
[CrossRef]

2005 (3)

2004 (1)

2003 (1)

Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

2002 (3)

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre. P Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert. E. Jalaguier, S. Pocas, and B. Aspar, "InP based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5103 (2002).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI
[CrossRef] [PubMed]

Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Asanao, T.

Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Asano, T.

Baba, T.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
[CrossRef]

Bordas, F.

Choquette, K. D.

A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

De La Rue, R. M.

H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
[CrossRef]

Giannopoulos, A. V.

A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008).
[CrossRef]

Hashimoto, J.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
[CrossRef]

Hattori, H. T.

H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
[CrossRef]

Huh, J.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

Hwang, J. K.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

Ide, T.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
[CrossRef]

Jagadish, C.

H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
[CrossRef]

Jin, J. M.

Y. J. Li and J. M. Jin, "Fast full-wave analysis of large-scale three-dimensional photonic crystal devices," J. Opt. Soc. Am. B 24, 2406-2415 (2007).
[CrossRef]

Y. J. Li and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag. 54, 3000-3009 (2006).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Kim, S. B.

Kim, S. H.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12,5356-5361 (2004), http://www.opticsinfobase.org/oe/abstract.
[CrossRef] [PubMed]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

Kim, S. K.

Kwon, S. H.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12,5356-5361 (2004), http://www.opticsinfobase.org/oe/abstract.
[CrossRef] [PubMed]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12,5356-5361 (2004), http://www.opticsinfobase.org/oe/abstract.
[CrossRef] [PubMed]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

H. Y. Ryu, M. Notomi, Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209-1-9 (2003).
[CrossRef]

Lee, Y. J.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Letartre, X.

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre. P Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert. E. Jalaguier, S. Pocas, and B. Aspar, "InP based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5103 (2002).
[CrossRef]

Li, Y. J.

Y. J. Li and J. M. Jin, "Fast full-wave analysis of large-scale three-dimensional photonic crystal devices," J. Opt. Soc. Am. B 24, 2406-2415 (2007).
[CrossRef]

Y. J. Li and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag. 54, 3000-3009 (2006).
[CrossRef]

Long, C.

A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008).
[CrossRef]

McKerracher, I.

H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
[CrossRef]

Monat, C.

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre. P Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert. E. Jalaguier, S. Pocas, and B. Aspar, "InP based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5103 (2002).
[CrossRef]

Noda, S.

Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Notomi, M.

H. Y. Ryu, M. Notomi, Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209-1-9 (2003).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

Rahamani, A.

Ryu, H. Y.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

H. Y. Ryu, M. Notomi, Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209-1-9 (2003).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

Song, B. S.

Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Steel, M. J.

Tan, H. H.

H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
[CrossRef]

Viktorovitch, P.

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Zheng, W. H.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre. P Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert. E. Jalaguier, S. Pocas, and B. Aspar, "InP based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5103 (2002).
[CrossRef]

Electron. Lett. (2)

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005).
[CrossRef]

A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

Y. J. Li and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag. 54, 3000-3009 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (London) (1)

Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Opt. Express (3)

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Other (1)

H. Y. Ryu, M. Notomi, Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209-1-9 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Scanning electron micrograph of a photonic crystal heterostructure cavity laser.

Fig. 2.
Fig. 2.

The percent semiconductor material for a kagome (solid) and hexagonal (dashed) lattices. The percent more semiconductor material is also shown (dotted).

Fig. 3.
Fig. 3.

Photonic band diagrams of a hexagonal(left) and kagome(right) 2D membrane photonic crystal. The grey regions correspond to modes not confined with the membrane. The band gap of the hexagonal lattice (horizontal lines) overlaps the dispersion maximum at the K-point of the kagome lattice.

Fig. 4.
Fig. 4.

Collected laser output power as a function of instantaneous pump power at 980 nm.

Fig. 5.
Fig. 5.

Lasing spectrum of the photonic crystal heterostructure cavity laser. The inset show the spectrum on a linear scale just below threshold.

Fig. 6.
Fig. 6.

Calculated stored energy spectrum of a photonic crystal heterostructure cavity laser using the FETI-DPEM.

Fig. 7.
Fig. 7.

The calculated modal profiles of the modes at (a) 1552 nm, (b) 1560 nm, and (c) 1573 nm. (d),(e),(f) small scale variation of (a), (b), and (c), respectively

Fig. 8.
Fig. 8.

Resonant wavelength (squares) and quality factor (triangles) of the shortest wavelength mode as a function of the number of kagome inner periods.

Fig. 9.
Fig. 9.

Comparison between the lasing spectrum(a) and light input vs. light output (b) of a photonic crystal heterostructure and a kagome band edge band edge laser. The kagome band edge band edge laser has a longer lasing wavelength and a higher threshold.

Fig. 10.
Fig. 10.

Stored Energy vs. wavelength for a kagome band edge cavity calculated by the FETI-DPEM.

Fig. 11.
Fig. 11.

Fourier space representation of the heterostructure mode at 1552 nm (a) and kagome band edge mode at 1590 nm (b).

Metrics