Abstract

The extraordinary transmission through silver film perforated with rectangular hole array with different aspect ratio was investigated. It was found that when the aspect ratio exceeded 7, the propagating surface plasmon polaritons (SPPs) transformed to localized resonance mode. The role of the Wood’s anomaly on the shape of the transmission spectrum is investigated. By designing the rectangular hole arrays in a rectangular lattice, the Wood’s anomaly can be shifted far apart from the transmission peak, the real localized resonance peak wavelength was identified and fitted well with the theoretical calculation using a simplified transmission-line model.

©2009 Optical Society of America

1. Introduction

Extraordinary transmission of electromagnetic waves through a thin metal film perforated with periodic arrays of subwavelength circular holes was investigated in 1998 by Ebbesen et. al. [1]. This was explained by the coupling between photon and surface plasmon polaritons (SPPs), the SPPs are the fluctuations in the electron density at the interface between metal and dielectric materials excited by photon, and then the resonant surface wave reconverts to photon and enhances the transmission light. The influence of holes shape on extraordinary transmission including the polarization-dependent transmission intensity [2] and the shift of the spectral position of the resonances [3] have attracted lots of attention. In particular, a large enhancement in transmission intensity has been shown to appear when the polarization of the incident light is perpendicular to long edge of rectangular holes. In subsequent research, the strong enhanced transmission through rectangular hole arrays were investigated both in experiments [4] and theory [5, 6]. Klein et. al. [7] proved that the shape resonance originated from the contribution of individual hole by arranging the rectangular holes in random distribution. Mary et. al. [8] theoretically demonstrated that SPPs and localized resonance modes are all present in 2-D array of rectangular holes. Chen et. al. [9] found that the cross shaped hole arrays gave rise to larger transmission of light than those perforated with square or rectangular hole. The transmission peaks red-shifted when the aspect ratio of the cross increased, whereas the transmission dip representing the Wood’s anomalies stayed at the same wavelength. It is interesting to know how the Wood’s anomaly affects the peak wavelength of the transmission spectrum of the shape resonance.

In this paper, the rectangular hole arrays were arranged in a rectangular lattice to tailor the position of Wood’s anomaly away from the peak of localized resonance. The real peak position of the localized waveguide resonance λres was observed which is different from that appears at the fundament shape resonance λres ≈ 2L in free standing structure, where L is the hole length. The simplified transmission-line model was utilized to fit the experimental values.

2. Experiment

Fig. 1(a) and 1(b) show the top and side views of the square array of rectangular holes, respectively. The 100 nm silver thin film was deposited on the periodic photoresist rod array and lifted off to form a silver film perforated with periodic hole array on top of a doubly-polished n-type silicon wafer. The period of the array along x and y directions, ax and ay, are fixed at 15 μm. The rectangular holes have different aspect ratios (L/W), i.e., R=2, 4, 6, 7, 9, 11, and ∞ (1-D grating), the L is hole length and W is hole width. All the patterns were designed by fixed the hole area the same (18 μm2). For 1-D grating, the width of the hole is 1.2 μm. It is well known that both of the length and width in the rectangle could affect the peak transmission wavelength due to the coupling between surface plasmons on the long edges of hole [10]. Therefore, the coupling mechanism on the geometrical shape will be first investigated. Fig. 1(c) shows the experimental setup and the sample lies in the xy plane with light incident in z direction while the polarized light was along y direction. A Bruker IFS 66 v/s system was used to measure transmission spectra. The dispersion relations along Ky direction were measured by rotating samples around x axis 1° per step form 0° to 50°.

 figure: Fig. 1.

Fig. 1. The schematic diagrams showing the (a) top and (b) side view of the rectangular hole array in a square lattice. (c) The measurement setup and the sample lies in the xy plane with light incident in z direction.

Download Full Size | PPT Slide | PDF

3. Transmission results and discussions

For normal incident light, the free-space wavelength of surface plasmon polaritons (SPPs), λspp, in square lattice is given by [11]

λspp=a(i2+j2)½(εdεmεd+εm)½

For normal incident light, the free-space wavelength λWA that satisfies Wood- Rayleigh anomaly condition and results in a transmission minimum is given by

λWA=a(i2+j2)½(εd)½

where i and j are integers corresponding to the specific order of the SPP and WA mode, a (=15 μm) is the lattice constant, εd (=11.7 at 52 μm) and εm (= -9.2∝104 at 52 μm) are the dielectric constants of silicon and silver, respectively. According to Eq. (1) the (1, 0) Ag/Si SPP mode should exhibit a peak wavelength at 52 μm, whereas the Wood’s anomaly shows a minimum at 51.3 μm. Fig. 2 shows the zero-order transmission spectra of rectangular holes in square lattice array with different aspect ratios R = 2, 4, 6, 7, 9, 11, and ∞ (1-D) while the polarized light is along y direction.

 figure: Fig. 2.

Fig. 2. Zero-order transmission spectra of rectangular hole array in a square lattice with aspect ratios R = 2, 4, 6, 7, 9, 11, and ∞ (1-D grating). All the lattice constants are 15 μm

Download Full Size | PPT Slide | PDF

It is clear that the transmission peaks shift from 52 μm to longer wavelength (76 μm) as the aspect ratio of the rectangular holes increase from 2 to 11, and to much longer wavelength (27360 μm) as R → ∞ (1-D grating). This phenomenon had been observed before [3, 7]. One of the reasons for red shift is due to the shift of the cut-off wavelength of rectangular waveguide to longer wavelength, but because the metal thickness is thin, the Fabry-Perot resonant mode may not be able to exist in this short waveguide [12–15]. It is also noticed that the wavelength of transition minima are almost the same for all samples which are attributed to the Wood’s anomalies [14].

The dispersion relations of rectangular hole arrays along Ky direction with different aspect ratios, i.e., R = 4, 7, 9, and ∞ (1-D) are shown in Figs. 3(a)–(d), respectively. The top views of the samples were shown in the inset of the figures. In Fig. 3(a), aspect ratio R = 4, the transmission maxima and minima are represented by the yellow and blue curves, respectively. It can be seen that the yellow curve is accompanied by the slightly higher energy blue curve representing the (0, -1) WA mode. A slightly flat dispersion curve was observed near low Ky values, and then the curve follows and mixes with the (0, -1) Ag/Si SPP mode at high incident angles, showing that a localized mode coexists with the SPP mode [4]. When the aspect ratio is increased to 7, the yellow curve becomes flat indicating a localized resonance mode. This confirms the previous reports [5, 16] that the transparency can only be realized through the shape resonance. To see the fine details, the transmission spectra of samples with aspect ratio of 6 and 7 with different incident angle (from 0° to 50°) are shown in Fig. 4(a) and 4(b), respectively. It can be seen definitely in Fig. 4(b) for R = 7 that the long wavelength tail of the transmission peak keeps the same profile when measured at different incident angles as compared to that shown in Fig. 4(a) for R=6. This is because the localized resonance dominates the transmission through the structure for R = 7 sample, deriving from the competition between propagating SPPs and the cut-off wavelength of the rectangular waveguide [8]. A Wood’s anomaly cannot shift resonances. It can make a transmission peak seem to be at a different position than the resonant position. For the sample with R = ∞ (1-D grating), only transmission minimum (Wood’s anomalies) was observed, the transmission maximum which is related to the cut-off wavelength of the waveguide and determined by the length of the long edge of the rectangle moves all the way to long wavelength outside the detection range due to the infinite long edge of the 1-D grating.

 figure: Fig. 3.

Fig. 3. The dispersion relations and transmission intensity of rectangular hole array as a function of photon energy and ky. The aspect ratios of rectangular holes are (a) 4, (b) 7, (c) 9 and (d) ∞ (1-D grating). All the lattice constants are 15 μm .

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Zero-order transmission spectra of rectangular hole array in a square lattice with different incident angles. The lattice constants are 15 μm , and the aspect ratios R of rectangular holes are (a) 6 and (b) 7, respectively.

Download Full Size | PPT Slide | PDF

To see the effect of Wood’s anomalies and cut-off condition on the spectral shape of the transmission spectra, the rectangular hole arrays in a rectangular lattice were designed and fabricated. The purpose was to tailor the position of Wood’s anomalies [17] away from the peak position of shape resonance. In Fig. 5, the transmission spectra for the specific rectangular holes with aspect ratio of 9, i.e., the length is 12.7 μm and the width is 1.4 μm, were arranged in a rectangular lattice with a fixed period of 15 μm along x axis and different periods from 3 to 18 μm along y axis. As the period along y axis ay is decreased from 18 μm, the transmission peak gradually shifts to shorter wavelength until the period reaches 6 μm, the peak is then fixed at 52.5 μm. This is because Wood’s anomaly moves further to shorter wavelength, away from the shape resonance, its influence on the shape of the transmission peaks diminishs. The transmission peaks appear at the fundamental shape resonance λres ≈ 2L as observed in the free-standing structure [16], but in our sample this value should be multiplied by the effective refractive index neff since the metallic periodic structure is sandwiched between the Si substrate and air.

Figure 6 shows the transmission spectra of the rectangular hole arrays with the aspect ratio of 9 on doubly-polished Si and Ge substrates. There are two different periods along y axis ay, i.e., 4 and 6 μm, and a fixed period of ax = 15 μm along x axis. Regardless of the ay, the spectra show that the transmission peaks only correlates with the wafer type, the peak shifts from 52.5 μm to the longer wavelength of 61 μm when the Si substrate was replaced by Ge substrate. To estimate the peak wavelength, a transmission-line model that describes the effective index variation with different substrates was applied [18–19]. For a capactive strip grating, the electric field direction is perpendicular to the long edge of rectangular hole, the equivalent circuit is a capacitor with capacitance (n 2 1 + n 2 2)/2 times of the same grating in free standing structure, and its reactance Xc is given by

 figure: Fig. 5.

Fig. 5. The transmission spectra of the rectangular hole array with aspect ratio of 9, i.e., the length is 12.7 μm and the width is 1.4 μm , in a rectangular lattice with the fixed period of 15 μm along x axis and the different periods from 3 to 18 μm m along y axis.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. The transmission spectra of the rectangular hole arrays on Si or Ge substrate with aspect ratio of 9 in a rectangular lattice. The periods are 15 μm along x axis for all four samples, the periods along y axis ay are either 4 or 6 μm .

Download Full Size | PPT Slide | PDF

XcZs=2n12+n22(4ω0lncscπag)1(ωω0ω0ω)

Where n1 and n2 are the refraction indexes of the two adjacent media, i.e. air and Si (Ge) substrate, a is one half of the space between two adjacent holes, and g is the period of the periodic structure. The ω0 is the resonant frequency of the periodic metal arrays sandwiched between two dielectric medium with n1 and n2 refraction indexes, respectively. ω0 is related to the resonant frequency of the same metallic arrays in free standing structure ω 0 by

ω'0=ω02n12+n22

When the periodic metal structure deposited on Si or Ge substrate, the refraction index n1 of air is unity, the refraction index of substrates n2 (Si) and n2 (Ge) are 3.35 and 4 at the peak wavelengths, respectively. From Eq. (4), the cut-off resonance wavelength (λres2neffL=2(n12+n22)2L) will be modified by effective refraction index of 2.47 (Si) and 2.92 (Ge). The real aperture of the rectangular hole with aspect ratio of 9 has a length of 11.5 μm and width of 1.3 μm. The theoretical resonance peaks were estimated to be 56.8 μm and 67.2 μm for Si and Ge substrates, respectively. The measured values, i.e., 52.5 μm for Si substrate and 61 μm for Ge substrate, are slightly smaller than the theoretical value.

4. Conclusions

In conclusion, the extraordinary transmission through the periodic metal arrays perforated with subwavelength rectangular holes was investigated. When the aspect ratio of rectangular holes exceeds 7, the propagating SPP modes transform to the localized resonant modes that was attributed to the cut-off wavelength of the rectangular waveguide beyond the wavelength of SPP mode. It was found that the Wood’s anomalies play an important role in shaping the spectral profile of the transmission peak. When the Wood’s anomalies are moved far apart form the shape resonance by using rectangular lattice, the real peak position of the localized resonance mode appears and stays at the same wavelength irrespective of the period of the lattice. The peak position of the localized or shape resonance was demonstrated to be relevant to the substrate type and can be explained by a transmission-line model.

Acknowledgment

This research was carried out with the financial support of the National Science Council of the Republic of China under the Contract No. NSC 96-2221-E-002-242

References and links

1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]  

2. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004). [CrossRef]   [PubMed]  

3. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]  

4. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005). [CrossRef]  

5. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]   [PubMed]  

6. Z. Ruan and M. Qiu, “Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]   [PubMed]  

7. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006). [CrossRef]  

8. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007). [CrossRef]  

9. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007). [CrossRef]  

10. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2006). [CrossRef]  

11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]  

12. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001). [CrossRef]  

13. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]  

14. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef]   [PubMed]  

15. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006). [CrossRef]  

16. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007). [CrossRef]   [PubMed]  

17. J. M. McMahon, J. Henzie, T W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007). [CrossRef]   [PubMed]  

18. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24, 217–220 (1985). [CrossRef]   [PubMed]  

19. R. Ulrich, “Far-Infrared Properties of Metallic Mesh and Its Complementary Structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]  

References

  • View by:

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
    [Crossref] [PubMed]
  3. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [Crossref]
  4. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
    [Crossref]
  5. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [Crossref] [PubMed]
  6. Z. Ruan and M. Qiu, “Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [Crossref] [PubMed]
  7. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
    [Crossref]
  8. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
    [Crossref]
  9. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
    [Crossref]
  10. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2006).
    [Crossref]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [Crossref]
  12. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
    [Crossref]
  13. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005).
    [Crossref]
  14. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [Crossref] [PubMed]
  15. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
    [Crossref]
  16. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
    [Crossref] [PubMed]
  17. J. M. McMahon, J. Henzie, T W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007).
    [Crossref] [PubMed]
  18. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24, 217–220 (1985).
    [Crossref] [PubMed]
  19. R. Ulrich, “Far-Infrared Properties of Metallic Mesh and Its Complementary Structure,” Infrared Phys. 7, 37–55 (1967).
    [Crossref]

2007 (4)

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

J. M. McMahon, J. Henzie, T W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007).
[Crossref] [PubMed]

2006 (5)

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Z. Ruan and M. Qiu, “Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2006).
[Crossref]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

2005 (2)

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[Crossref]

2002 (1)

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

2001 (1)

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[Crossref]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

1985 (1)

1967 (1)

R. Ulrich, “Far-Infrared Properties of Metallic Mesh and Its Complementary Structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

Brolo, A. G.

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2006).
[Crossref]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Cao, Q.

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

Chang, Y. T.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

Chen, C. Y.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

Chuang, T. H.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[Crossref]

Compton, R. C.

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[Crossref]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Enoch, S.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Gordon, R.

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2006).
[Crossref]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Gray, S. K.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Henzie, J.

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Jeoung, S. C.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

Kang, D. H.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Khim, K. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

Koerkamp, K. J. Klein

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Kuipers, L.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Lee, J. W.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

Lee, S. C.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Lienau, C.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

McMahon, J. M.

Molen, K. L. van der

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Odom, T W.

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[Crossref]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[Crossref]

Qiu, M.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Z. Ruan and M. Qiu, “Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

Ruan, Z.

Z. Ruan and M. Qiu, “Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Schatz, G. C.

Segerink, F. B.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Seo, M. A.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[Crossref]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tsai, M. W.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-Infrared Properties of Metallic Mesh and Its Complementary Structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

van Hulst, N. F.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Whitbourn, L. B.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006).
[Crossref]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-Infrared Properties of Metallic Mesh and Its Complementary Structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[Crossref]

Opt. Express (2)

Phys. Rev. B (4)

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Phys. Rev. Lett. (7)

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Z. Ruan and M. Qiu, “Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2006).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures, ” Phys. Rev. Lett. 95, 263902 (2005).
[Crossref]

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The schematic diagrams showing the (a) top and (b) side view of the rectangular hole array in a square lattice. (c) The measurement setup and the sample lies in the xy plane with light incident in z direction.
Fig. 2.
Fig. 2. Zero-order transmission spectra of rectangular hole array in a square lattice with aspect ratios R = 2, 4, 6, 7, 9, 11, and ∞ (1-D grating). All the lattice constants are 15 μm
Fig. 3.
Fig. 3. The dispersion relations and transmission intensity of rectangular hole array as a function of photon energy and ky. The aspect ratios of rectangular holes are (a) 4, (b) 7, (c) 9 and (d) ∞ (1-D grating). All the lattice constants are 15 μm .
Fig. 4
Fig. 4 Zero-order transmission spectra of rectangular hole array in a square lattice with different incident angles. The lattice constants are 15 μm , and the aspect ratios R of rectangular holes are (a) 6 and (b) 7, respectively.
Fig. 5.
Fig. 5. The transmission spectra of the rectangular hole array with aspect ratio of 9, i.e., the length is 12.7 μm and the width is 1.4 μm , in a rectangular lattice with the fixed period of 15 μm along x axis and the different periods from 3 to 18 μm m along y axis.
Fig. 6.
Fig. 6. The transmission spectra of the rectangular hole arrays on Si or Ge substrate with aspect ratio of 9 in a rectangular lattice. The periods are 15 μm along x axis for all four samples, the periods along y axis ay are either 4 or 6 μm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ spp = a ( i 2 + j 2 ) ½ ( ε d ε m ε d + ε m ) ½
λ WA = a ( i 2 + j 2 ) ½ ( ε d ) ½
X c Z s = 2 n 1 2 + n 2 2 ( 4 ω 0 ln csc πa g ) 1 ( ω ω 0 ω 0 ω )
ω ' 0 = ω 0 2 n 1 2 + n 2 2

Metrics