Abstract

We measure third-harmonic generation (THG) from arrays of sub-wavelength metal apertures in transmission using fundamental input at 800 nm. Samples with different aperture spacings, sizes, and shapes are used. Strong angular dependence of THG is observed, with maxima located at incidence angles corresponding to extraordinary optical transmission (EOT) for the fundamental. We demonstrate an anomalous scaling of TH intensity with aperture size, where at different EOT peaks, the TH may either increase or decrease with aperture size. The aperture shape is also shown to have a strong effect on TH output.

©2009 Optical Society of America

1. Introduction

Extraordinary optical transmission (EOT) through metal films modulated with a 2-D array of sub-wavelength apertures [1] was reported in 1998. It is now well established that upon the condition of EOT, intensity buildup within the apertures can occur [2, 3], motivating the study of nonlinear processes. Indeed, resonant enhancement of second-harmonic generation (SHG) by a factor of 104 has been demonstrated for a single sub-wavelength aperture surrounded by periodic annular corrugation [4]. SHG has also been studied in arrays of sub-wavelength apertures of various shapes, using disordered [5, 6, 7] and periodic [6, 8, 10, 11] arrangements. The effect of the symmetry of the aperture has been shown [6], in that, at normal incidence, apertures with inversion symmetry produce much weaker SH than non-centrosymmetric apertures, while at off-normal incidence, SH can be produced with centrosymmetric apertures [6, 11, 7].

So far, nonlinear optical studies have been directed towards χ (2) effects, although multi-photon luminescence has been observed [10]. Closely related are nonlinear optical studies using bow-tie antennae, where strong field enhancement is obtained within the feedgap [12]. Recently, high-harmonic generation was demonstrated utilizing the strong field enhancement within the gaps of bow-tie antennae [13]. Our focus is on third-harmonic generation (THG) in transmission from sub-wavelengthmetallic apertures arrayed in gold films, where the effects of aperture spacing, size, and shape on conversion are demonstrated.

2. Experimental methods

Arrangements of sub-wavelength apertures were produced in 100 nm thick gold films using electron beam lithography (EBL). Briefly, a 5 nm chromium or TiO2 adhesion layer was sputter deposited onto the quartz substrate, followed by 100 nm of gold and 20 nm of chromium. ZEP520A e-beam resist of about 300 nm thickness was spin coated. Following e-beam exposure, the upper chromium layer was dry etched with chlorine, and the e-beam resist removed. The chromium layer served as a hard mask for argon ion milling of the gold. A wet etch removed the upper chromium layer (and likely resulted in some undercut in the underlying chromium adhesion layer). For samples with TiO2 as the adhesion layer, we used reactive sputtering to produce the ~5 nm TiO2 layer by introducing O2 during the sputtering process; pure O2 was flowed through the chamber to fully oxidize the thin film before the chamber was pumped down to sputter the gold film.

The experimental setup is similar to that used previously [7], as shown in Fig. 1. A Ti:Sapphire laser is used at 800 nm wavelength and ~30 fs pulse duration. The setup allows the rotation of the sample with respect to the incident fundamental beam as well as rotation of the detector around the sample so that the radiation pattern can be measured in transmission. The detector is a blue-sensitized PMT (H5784-03) and two spectral filters are used to block the transmitted fundamental at 800 nm and minimize the influence of broadband background luminescence [10]. The angular acceptance of light collection is roughly 1° through a slit of about 2 mm width. Lock-in detection is performed by modulating the 86 MHz pulse train at 2 kHz, and average incident power is 75 mW(measured after the chopper), except where noted.

 figure: Fig. 1.

Fig. 1. Experimental setup for THG measurements. The output of the p-polarized Ti:Sapphire laser passes through a neutral density filter and a spectral longpass filter (690 nm) before being focused onto the sample with a 20 µm spot size by a 10 cm focal length lens; all patterned areas were larger than the spot size (EBL samples are 80 µm by 80 µm). Emission from the sample passes through a collection lens of 5 cm focal length made from fused silica, a spectral UG5 glass filter (Thorlabs) with passband around 225 nm to 400 nm to suppress the fundamental, an Hg line interference filter (CVI, 265 nm center, 25 nm passband) to isolate the TH, and a 2 mm slit, and is detected with the PMT.

Download Full Size | PPT Slide | PDF

3. Results

One significant difference between SHG and THG is that THG does not have the symmetry limitations of SHG. This is observed in Fig. 2 which plots the fundamental transmission, second-harmonic (SH) output, and third-harmonic (TH) output versus incidence angle for a sample with Cr adhesion layer, and 885 nm spacing of round holes. Because of centro-symmetry of the sample at normal incidence, there can be no SH output [6, 7]. However, the χ (3) response always exists. As shown in Fig. 2, the TH output peaks with maxima in fundamental transmission, indicating that the greatest intensity enhancement within the aperture occurs near the transmission maxima, as expected.

Power scaling of the SH and TH signals are also shown in Fig. 2. The measured data points are plotted on a log-log scale and fit to a linear equation with slopes of 2.0 and 2.8, respectively, for SH and TH. From the measurements, it is clear that the samples can withstand average incident power levels where the TH signal is about the same as the maximum SH (under strong symmetry-breaking conditions), not correcting for differences in collection efficiency and PMT responsivity (taking these factors into account, SH is detected with about 4x greater efficiency than TH). Whether this holds for even higher harmonics is not known yet.

Double-angle scans for SHG and THG using the sample with Cr adhesion layer are shown in Fig. 3, where both the incidence and detection angles are varied. Again, the difference between the SHG and THG mechanisms is observed in that there is minimal SH under conditions of inversion symmetry (normal incidence and normal detection), other than a small two-photon luminescence background. The peaks in the detection scan correspond to coherent emissions from the apertures that satisfy the following momentum matching condition [7]:

ktnω=nktω+mK,

where n is the harmonic order, K is a reciprocal lattice vector with |K|=2π/Λ, Λ is the aperture spacing, m is the diffraction order, and k t represents a transverse light wave-vector. For a square lattice, and assuming that the optical wavevectors have only the x̂ transverse component (since the scans are performed along only one axis), Eq. (1) can be written

sinγ=sinθ+mλnΛ,

where γ is the detection angle and θ is the incidence angle. Therefore, the angular spacing between peaks in the TH measurements are narrower due to the shorter wavelength of emission (n=3). At detection angles that lie in-between these peaks, luminescence background can be observed. Since two- and three-photon luminescence are incoherent emissions, they produce broad angular spectra, which is clearly evident. Evidence that the luminescence emits from the apertures is given by the fact that the luminescence is strongest at the same incidence angles that the SH and TH peaks occur.

 figure: Fig. 2.

Fig. 2. Fundamental transmission, SH output, and TH output versus incidence angle for a sample of 200 nm holes with 885 nm spacing in a square lattice (left). The adhesion layer is 5 nm of Cr. Power scaling of SH and TH outputs (right). For THG measurement, the sample was set for a 12° incidence angle, while for SHG measurement, the sample was set for 46° incidence (indicated by arrows).

Download Full Size | PPT Slide | PDF

A practical issue not always addressed for plasmonic structures is the adhesion layer. Often-times, a thin layer of Cr is used to promote the adhesion of Au to a glass substrate. However, Cr is a highly lossy material, and can cause significant attenuation of SPP propagation at the metal/substrate interface [14, 15]. We performed subsequent TH measurements on samples with TiO2 adhesion layers, except where noted.

3.1. Effects of aperture spacing

Keeping the aperture size fixed at 250 nm, we investigated the effects of varying the spacing. The results are shown in Fig. 4 for both the transmission of the fundamental beam and emission at the TH wavelength. In these measurements, the sample was rotated with respect to the incident beam (varying θ) and detection was performed at the zeroth order transmission (γ=-θ).

Two effects of changing the aperture spacing are readily observable. First, there is a shift to higher incidence angles at which the transmission/TH output peak. Second, there is a clear increase in TH output for spacings of 885 nm and longer; note that this is repeatable across multiple measurements of these patterns. Even though the fundamental transmission peaks also increase with aperture spacing, the effect is not as dramatic.

 figure: Fig. 3.

Fig. 3. SH (left) and TH (right) outputs for a sample with Cr adhesion layer, 885 nm pitch, and 200 nm aperture diameter. The SH and TH signal intensities are normalized to the same value. Trajectories of the diffraction peaks closely follow Eq. (2), as indicated by the dashed lines on the contour plots.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Fundamental transmission (left) and TH output (right) for samples of 250 nm apertures with variable spacing in a square lattice. The adhesion layer is TiO2.

Download Full Size | PPT Slide | PDF

3.2. Effects of aperture size

Keeping the aperture spacing fixed at about 885 nm, we investigated the effects of varying the aperture size. The results are shown in Fig. 5. Again, there are two effects which are immediately noticed. The first is that the transmission of the fundamental increases with increasing aperture size, which is expected; however, the second effect is unexpected. At the first two peaks in TH output (near 0° and 10°), TH decreases with aperture size, while at the third peak (near 30°), TH increases with aperture size; at the fourth peak, it decreases again. Individual apertures have cutoff frequencies, below which group velocity is minimized, resulting in increase in intra-aperture intensity [16, 10]. This simplification (neglecting effects due to periodicity) suggests an explanation for the behavior seen at 0°, 10°, and 50°, where the decreasing aperture size should result in increasing TH. However, this doesn’t explain the results at 30°, which is the subject of further investigation.

 figure: Fig. 5.

Fig. 5. Fundamental transmission (left) and TH output (right) for samples of variable hole size with 885 nm spacing in a square lattice. The adhesion layer is TiO2.

Download Full Size | PPT Slide | PDF

3.3. Effects of aperture shape

It is known that aperture shape can have a strong influence on SHG [10, 11, 7], due, in part, to symmetry breaking. Aperture shape also affects the conversion efficiency of THG, as shown in Fig. 6 for a sample with asymmetric aperture shape and Cr adhesion layer, where field enhancement is expected to be localized along the long edge of the apertures [7]. In comparison to the results of a round aperture, an 8 times increase in TH is obtained. Optimization of the aperture shape may allow for even greater TH conversion to be obtained.

 figure: Fig. 6.

Fig. 6. TH (left) output for a sample with Cr adhesion layer, 885 nm pitch, and asymmetric aperture shape. TH is normalized to the maximum TH produced from the sample in Fig. 3. An SEM scan of the asymmetric aperture array is shown on the right figure.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have observed TH from arrays of sub-wavelength apertures. TH maxima are obtained at incidence angles corresponding to EOT of the fundamental, with signal strengths comparable to SH under symmetry-breaking conditions. There is a clear effect of lattice spacing and aperture size and shape on the TH signal, where an anomaly is observed in the scaling of TH with aperture size at different incidence angles corresponding to EOT.

Acknowledgement

We thank the reviewers for their useful comments. This research was sponsored by grant ECS 0622225 from the NSF and contractW911NF-07-1-0245 from the ARO.

References and links

1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998). [CrossRef]  

2. L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001). [CrossRef]   [PubMed]  

3. Y. Liu and S. Blair “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003). [CrossRef]   [PubMed]  

4. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi “Enhanced nonlinear optical conversion using periodically nanostructured metal films,” Opt. Lett. 28, 423–425 (2003). [CrossRef]   [PubMed]  

5. N. Rakov, F. E. Ramos, and M. Xiao “Strong second-harmonic generation from a thin silver film with randomly distributed small holes,” J. Phys.: Condens. Matter 15, L349–L352 (2003). [CrossRef]  

6. M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005). [CrossRef]  

7. T. Xu, X. Jiao, G. P. Zhang, and S. Blair “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007). [CrossRef]   [PubMed]  

8. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood Jr., K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006). [CrossRef]  

9. A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006). [CrossRef]  

10. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006). [CrossRef]   [PubMed]  

11. A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007). [CrossRef]  

12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]   [PubMed]  

13. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008). [CrossRef]  

14. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009). [CrossRef]  

15. H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009). [CrossRef]   [PubMed]  

16. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006). [CrossRef]  

References

  • View by:

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [Crossref]
  2. L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
    [Crossref] [PubMed]
  3. Y. Liu and S. Blair “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
    [Crossref] [PubMed]
  4. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi “Enhanced nonlinear optical conversion using periodically nanostructured metal films,” Opt. Lett. 28, 423–425 (2003).
    [Crossref] [PubMed]
  5. N. Rakov, F. E. Ramos, and M. Xiao “Strong second-harmonic generation from a thin silver film with randomly distributed small holes,” J. Phys.: Condens. Matter 15, L349–L352 (2003).
    [Crossref]
  6. M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005).
    [Crossref]
  7. T. Xu, X. Jiao, G. P. Zhang, and S. Blair “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007).
    [Crossref] [PubMed]
  8. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
    [Crossref]
  9. A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006).
    [Crossref]
  10. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
    [Crossref] [PubMed]
  11. A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007).
    [Crossref]
  12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  13. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
    [Crossref]
  14. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
    [Crossref]
  15. H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
    [Crossref] [PubMed]
  16. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
    [Crossref]

2009 (2)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

2008 (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

2007 (2)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007).
[Crossref]

T. Xu, X. Jiao, G. P. Zhang, and S. Blair “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007).
[Crossref] [PubMed]

2006 (4)

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006).
[Crossref]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
[Crossref]

2005 (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005).
[Crossref]

2003 (3)

2001 (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Abdenour, A.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Airola, M.

M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005).
[Crossref]

Aouani, H.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

Blair, S.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

T. Xu, X. Jiao, G. P. Zhang, and S. Blair “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007).
[Crossref] [PubMed]

M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005).
[Crossref]

Y. Liu and S. Blair “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
[Crossref] [PubMed]

Bonod, N.

Brueck, S. R. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Chaumet, P.

Devaux, E.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

Dintinger, J.

Ebbesen, T.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Ebbesen, T.W.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Fan, W.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref] [PubMed]

Gerard, D.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Goeckeritz, J.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Gordon, R.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007).
[Crossref]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006).
[Crossref]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref] [PubMed]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Ishi, T.

Jiao, X.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

T. Xu, X. Jiao, G. P. Zhang, and S. Blair “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Krishna, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007).
[Crossref]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006).
[Crossref]

Lenne, P.-F.

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007).
[Crossref]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Linke, R. A.

Liu, Y.

M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005).
[Crossref]

Y. Liu and S. Blair “Fluorescence enhancement from an array of sub-wavelength metal apertures,” Opt. Lett. 28, 507–509 (2003).
[Crossref] [PubMed]

Mahdavi, F.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

Malloy, K. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Nahata, A.

Nevière, M.

Ohashi, K.

Oldham, M.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Osgood, R. M.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Panoiu, N. C.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Popov, E.

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Rakov, N.

N. Rakov, F. E. Ramos, and M. Xiao “Strong second-harmonic generation from a thin silver film with randomly distributed small holes,” J. Phys.: Condens. Matter 15, L349–L352 (2003).
[Crossref]

Ramos, F. E.

N. Rakov, F. E. Ramos, and M. Xiao “Strong second-harmonic generation from a thin silver film with randomly distributed small holes,” J. Phys.: Condens. Matter 15, L349–L352 (2003).
[Crossref]

Rigneault, H.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
[Crossref]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref] [PubMed]

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Wenger, J.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Xiao, M.

N. Rakov, F. E. Ramos, and M. Xiao “Strong second-harmonic generation from a thin silver film with randomly distributed small holes,” J. Phys.: Condens. Matter 15, L349–L352 (2003).
[Crossref]

Xu, T.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

T. Xu, X. Jiao, G. P. Zhang, and S. Blair “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007).
[Crossref] [PubMed]

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref] [PubMed]

Zhang, G. P.

Zhang, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

ACS Nano (1)

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006).
[Crossref]

J. Opt. A (1)

M. Airola, Y. Liu, and S. Blair “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys.: Condens. Matter (1)

N. Rakov, F. E. Ramos, and M. Xiao “Strong second-harmonic generation from a thin silver film with randomly distributed small holes,” J. Phys.: Condens. Matter 15, L349–L352 (2003).
[Crossref]

Nano Lett. (1)

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck “Second-harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[Crossref]

Nature (London) (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim “High-harmonic generation by resonant plasmon field enhancement,” Nature (London) 453, 757–760 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon “Apex-enhanced second harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 045423 (2007).
[Crossref]

Phys. Rev. Lett. (2)

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref] [PubMed]

Plasmonics (1)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham “Localization of near-field resonances in bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup for THG measurements. The output of the p-polarized Ti:Sapphire laser passes through a neutral density filter and a spectral longpass filter (690 nm) before being focused onto the sample with a 20 µm spot size by a 10 cm focal length lens; all patterned areas were larger than the spot size (EBL samples are 80 µm by 80 µm). Emission from the sample passes through a collection lens of 5 cm focal length made from fused silica, a spectral UG5 glass filter (Thorlabs) with passband around 225 nm to 400 nm to suppress the fundamental, an Hg line interference filter (CVI, 265 nm center, 25 nm passband) to isolate the TH, and a 2 mm slit, and is detected with the PMT.
Fig. 2.
Fig. 2. Fundamental transmission, SH output, and TH output versus incidence angle for a sample of 200 nm holes with 885 nm spacing in a square lattice (left). The adhesion layer is 5 nm of Cr. Power scaling of SH and TH outputs (right). For THG measurement, the sample was set for a 12° incidence angle, while for SHG measurement, the sample was set for 46° incidence (indicated by arrows).
Fig. 3.
Fig. 3. SH (left) and TH (right) outputs for a sample with Cr adhesion layer, 885 nm pitch, and 200 nm aperture diameter. The SH and TH signal intensities are normalized to the same value. Trajectories of the diffraction peaks closely follow Eq. (2), as indicated by the dashed lines on the contour plots.
Fig. 4.
Fig. 4. Fundamental transmission (left) and TH output (right) for samples of 250 nm apertures with variable spacing in a square lattice. The adhesion layer is TiO2.
Fig. 5.
Fig. 5. Fundamental transmission (left) and TH output (right) for samples of variable hole size with 885 nm spacing in a square lattice. The adhesion layer is TiO2.
Fig. 6.
Fig. 6. TH (left) output for a sample with Cr adhesion layer, 885 nm pitch, and asymmetric aperture shape. TH is normalized to the maximum TH produced from the sample in Fig. 3. An SEM scan of the asymmetric aperture array is shown on the right figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k t n ω = n k t ω + m K ,
sin γ = sin θ + m λ n Λ ,

Metrics