Abstract

The preservation of carrier envelope phase (CEP) during Cross-Polarized Wave Generation (XPWG) is demonstrated through two independent experiments based on the spatially and spectrally resolved interference fringes formed by the XPW beam and its fundamental. In a first measurement, we found that the vertical fringe position on the spatial detector was maintained over many consecutive laser shots, implying practically no change in relative CEP between the XPW and the fundamental. In a second experiment, we measured the change in relative CEP between the XPW and fundamental beam by systematically varying the amount of material dispersion inside the XPW arm of the interferometer. The recorded rate of relative phase change was in excellent agreement with the theoretical value.

©2009 Optical Society of America

1. Introduction

The carrier-envelope phase (CEP) of few-cycle light pulses becomes a critical parameter for intense laser-matter interactions since the pulse envelope can vary almost as rapidly as the laser electric field itself [13]. It is therefore essential to stabilize the intrinsic shot-to-shot CEP drift from the laser source. Laser-matter interaction experiments above at intensities 1015W/cm2 require pulses with high temporal contrast. One of the most recent methods to enhance the temporal contrast of high-power femtosecond pulses is cross-polarized wave generation (XPWG) [46]. XPWG is a direct achromatic χ(3) process in which a new wave, polarized in the orthogonal direction, is efficiently generated in a cubic crystal [7]. Recent studies have shown that XPWG can also help smooth the input laser spectrum and broaden it by more than a factor of two [810]. While XPWG results from four-wave mixing and is therefore expected to preserve CEP, it is important to demonstrate that the process does not deteriorate the CEP stability of the system, especially when implementing a XPWG contrast filter inside a CPA laser chain.

Spectrally and spatially resolved interferometry (SSRI) has been proven to be a powerful technique for dispersion measurement of various materials and optical elements [1115], characterization of non-linear processes [16,17] as well as for the measurement of laser pulses [1820]. It typically consists of a two-beam interferometer equipped with an imaging spectrograph. The interference pattern is imaged onto the input slit of the spectrograph, so that spatially (along the slit) and spectrally resolved interference fringes are formed on the 2D detector (CCD camera) located at the output plane of the spectrograph. The slope and the curvature of the interference fringes are characteristic of the dispersion coefficients of the sample as group delay (GD), group delay dispersion (GDD), etc…. The absolute spatial position of the fringes is, however, directly and uniquely related to the relative carrier envelope phase of the sample and reference beams [21].

In this paper we give clear experimental evidence that the carrier envelope phase is preserved during the XPWG process.

2. Theoretical background of the measurement

To introduce the basic idea of the measurement, let us regard first a spectrally and spatially resolved Mach-Zehnder interferometer illuminated by a femtosecond pulse (Fig. 1a ). After the first beamsplitter, the reference pulse with a spectral intensity IR(ω) propagates undisturbed in one arm of the interferometer while the spectral phase of the sample pulse (IS(ω)) is shifted by a dispersive optical element with respect to the phase of the reference pulse. It is customary to describe the phase shift of a pulse in the form of Taylor series around the center frequency ω0 of the laser pulses, so that the phase shift of the reference and the sample pulses within the interferometer is

 figure: Fig. 1

Fig. 1 A spectrally and spatially resolved interferometer (a) and the formation of spectrally and spatially resolved interference fringes (b). The phase-shifting element in the sample arm represents the relative phase difference between the sample and reference pulses.

Download Full Size | PPT Slide | PDF

ϕi(ω)=ϕi(ω0)+dϕidω|ω0(ωω0)+12d2ϕidω2|ω0(ωω0)2+...,i=R,S.

Please note that the physical meaning of the first member of the series, that is φR,S0), is the initial absolute phase of the field. Hence φR,S0) is directly connected to the carrier-envelope phase defined usually by the phase difference of the carrier wave and the maximum of the intensity envelope [22]. The difference of CEP and above mentioned initial phase is a constant that is characteristic to the envelope. Thus, the position of the carrier wave relative to the intensity envelope can be uniquely described by φR,S0) as well.

When the pulses are made to temporally overlap at the second beamsplitter with their phase fronts tilted by an angle ε (Fig. 1b), interference fringes are formed along the y axis parallel to the input slit of the spectrograph. The intensity distribution of the spectrally and spatially resolved interference fringes is

I(y,ω)=IS(ω)+IR(ω)+2IS(ω)·IR(ω)cos(Δϕ(ω)+εωc(yy0)),
where y0 is the height at which the propagation time in the two arms is strictly equal [15].

The relative spectral phase shift Δφ(ω), that is the difference between the phase of the reference and the sample pulses at the output of the interferometer, can be expressed as

Δϕ(ω)=ϕR(ω)ϕS(ω)=Δϕ(ω0)+dΔϕdω|ω0(ωω0)+12d2Δϕdω2|ω0(ωω0)2+...,
where the first member of the series determines the spatial position of the spectrally resolved interference pattern. For instance, if Δφ(ω0) = 0 + j·2π (where j is an integer), then the intensity of the interference pattern at the point (ω0, y0) is always at maximum. The second member of the series, the group delay difference, gives the tangent of the fringes, while the higher order terms (difference of group delay dispersion, third order dispersion, etc.) provide the curvature of the intensity pattern in the spectral-spatial co-ordinate system [15].

The leading spirit of our method is the first member of the series since it is basically the carrier-envelope offset phase difference ΔφCE between the reference and sample pulses. One can hence write

Δϕ(ω)=ΔϕCE+D(ω),
where D(ω) describes all the linear and higher order dispersion differences and is responsible for the shape of the fringes. Thus, if the relative carrier envelope phase between the reference and sample pulse changes from pulse to pulse, the resulting interference patterns will be shifted up and down along the spatial coordinate y.

Let us assume that the subsequent pulses in the sample arm are provided with different CEP while their higher order dispersion relative to the appropriate reference pulses (D(ω)) is not affected. In this case, the maxima of the otherwise identically shaped spectrally resolved interference fringes generated by subsequent reference and sample pulses at ω0 would be located at y1, y2, y3, ..., each of them being characteristic of respective CEP differences ΔφCE1, ΔφCE2, ΔφCE3, ... . Consequently, from the shift Δy1,2,3 of the individual interference fringes, the amount of CEP change in the sample arm can be deduced. If the detector, i.e. the CCD chip of the imaging spectrograph, is slow or its exposure time is chosen long enough, then it actually captures many subsequent interference patterns, stacked on top of each other. As a result, the visibility of the recorded interference pattern would be substantially degraded. However, if there is no CEP difference between the pulses propagating in the reference and the sample arm, then the position of the fringes should be maintained and the visibility of the integrated fringe system is expected to be independent of the exposure time.

3. Experimental

In our experiment (Fig. 2 ) the laser source is based on a commercial 1 kHz CEP-stabilized chirped pulse amplification laser system from Femtolasers GmbH. The energy of the laser pulses is boosted by a home-made multipass amplifier, while the final compression takes place in a hybrid compressor constructed of prisms and chirped mirrors. The system produces 4 mJ, 21 fs, laser pulses at 800 nm [23]. To avoid white light generation but keep the XPWG process saturated, the pulse energy is considerably attenuated prior to the XPWG stage, consisting of a f = 1.0 m focal lens and a holographic cut BaF2 crystal [10]. The energy of the fundamental pulse at the front surface of the crystal is 40 μJ providing an intensity in the crystal less than 1012 W/cm2, whereas the XPWG efficiency reaches 15%. The generated XPW beam and the rest of the fundamental pulses were collimated by a second lens. The orthogonally polarized XPW beam is split off from the fundamental beam by a Glan polarizer. After adjusting their relative polarization and timing, both beams are sent to the input slit of an imaging spectrograph.

 figure: Fig. 2

Fig. 2 Experimental setup. The XPW pulses interfere with the fundamental beam and the interference pattern is resolved spectrally.

Download Full Size | PPT Slide | PDF

Two independent experiments were carried out to measure the relative change in CEP between XPW and fundamental beams. First the fringes were recorded for different exposure times of the CCD camera. Here, both the position and the visibility of the fringes were measured. In a second experiment, the CEP of the XPW beam was varied independently of the fundamental beam with a wedge pair and the relative CEP change was determined.

4. Dependence on the exposure time

In the first experiment, the exposure time of the CCD camera was set to 1 ms, 10 ms, 100 ms and 1000 ms to test the fringe stability and visibility over time. Since the repetition rate of the laser is 1 kHz, the captured images result from the interference of a single pulse, ten pulses, hundred pulses and one thousand pulses, respectively.

Nine interferograms were captured for each exposure time. Figure 3 shows images compiled from slices cut out from each interferogram along the spatial axis (y) at three different wavelengths. As one can see, the position of the fringes is maintained over nine subsequent interferograms captured with single pulses, that is, for an exposure time of 1 ms. There is very little change for 10 pulses (10 ms). The position changes slightly for 100 pulses, due most probably to fluctuations in the interferometric setup. This change, however, is less than π/4 for CEP. The position of the fringes of the interferorgrams for 1000 pulses (1000 ms) is again very stable. As is clear from the composed images at three different wavelengths, the vertical position of the fringes is maintained over the large variation of the exposure time. Moreover, the spatial position of each fringe is maintained during the relatively long experiment, that is, it is the same for the first 1 ms fringe system as for the last 1000 ms one.

 figure: Fig. 3

Fig. 3 Spatial cross section of the fringes at three different wavelengths as a function of exposure time of the CCD camera. For each exposure time the corresponding slice of nine independent interferograms is displayed.

Download Full Size | PPT Slide | PDF

The above evaluation of the fringes is spectacular but restricted to certain wavelengths. We can assess the entire interference pattern, that is each spatial point at each wavelength, if we compute the visibility of the fringes for the whole interferogram. The visibility map was calculated for each interferogram of each series and the average of nine maps consisting of each series is displayed on Fig. 4 .

 figure: Fig. 4

Fig. 4 Averaged visibility map of interference fringes captured with an exposition time of 1 ms (a), 10 ms (b), 100 ms (c) and 1 s (d), respectively. The corresponding averaged visibility is 0.883, 0.867, 0.939 and 0.823.

Download Full Size | PPT Slide | PDF

From the captured interferograms, the visibility was also evaluated, varying from 0.883 to 0.823 as the exposure time was increased from 1 ms to 1 s. Moreover, it is worth noting that the average visibility is highest for the 100 ms case even if the position of the fringes changed (see Fig. 3). This small change in visibility is due to inevitable fluctuations of the large and uncovered Mach-Zehnder setup. It may be worth mentioning that similar result would have been obtained if interference fringes of subsequent pulses were recorded, then evaluated. In the lack of ultrafast CCD camera and frame grabber system, however, it was not possible.

5. Control of CEP of the XPW beam

To separately confirm the stability of the relative CEP, in the second measurement we introduced a known change in relative phase difference between the two arms of the interferometer. A pair of fused silica wedges with an apex angle of 10.3° was inserted into the XPW arm of the interferometer. The change in relative CEP between XPW and fundamental beams was measured as a function of the amount of material inserted into the XPW beam by moving one of the wedges. Nine interferograms were captured at each wedge position, controlled with a precision translator in 10 μm steps.

The change in fringe position shown in Fig. 5 is displayed in a similar way to that used in Section 4 with the difference that now only one slice of the first interferogram of each series is shown (Fig. 5). Note, that the spatial position of a fringe system is determined by the relative CEP as well as relative group delay between the interfering pulses. Upon shifting one of the wedges, both the CEP and the GD are changed. As a result, not only does the shape of the fringes (practically their slope) change but also their vertical offset position. Only at the central wavelength, where the interferometer was originally balanced and hence the SSRI fringes were straight, do the fringes stay in the same position. However, they apparently suffer a phase jump of 2π. These phase jumps are clearly indicated and calculated from the shift of the side wavelengths. The reason is that a wedge displacement of 10 μm already causes a phase jump somewhat larger than 2π.

 figure: Fig. 5

Fig. 5 Spatial cross section of the fringes at three different wavelengths as a function of wedge position. At each wedge position one slice of the first interferogram of each series is displayed.

Download Full Size | PPT Slide | PDF

When calculating the relative total phase shift between the fundamental and the XPW beam, the interferograms captured at the initial wedge position were considered as the starting point. The absolute change in CEP for the XPW beam was then calculated for each wedge position. The values of the change in GD as a function of wedge insertion were calculated from the slope of the interference fringes (Fig. 6a ). As one can see, the rate of GD change versus wedge position of 280.5 fs/mm is in very good agreement with the theoretical value of 283.1 fs/mm. In Fig. 6b. the rate of phase change of the XPW beam over 100mm was evaluated at 16.4 rad/mm, which matches well the theoretical value of 18.7 rad/mm.

 figure: Fig. 6

Fig. 6 Change of group delay (a) and the initial phase of the XPW pulses (b) as a function of the fused silica wedge position.

Download Full Size | PPT Slide | PDF

One can, of course, describe the change of the absolute CEP resulted in both the phase and the GD variation upon shifting the wedge (Fig. 7 ). The slope of the curve is 621 rad/mm, while the theoretical value is 647.0 rad/mm. However, if only the 100-200 μm range is taken into account, then the measured value of 644.6 rad/mm is in an excellent agreement to the theoretical value.

 figure: Fig. 7

Fig. 7 Change of total phase of the generated XPW pulses relative to the fundamental ones as a function of position of the fused silica wedge.

Download Full Size | PPT Slide | PDF

The slight discrepancy between the theoretical and measured values for GD, CEP and the absolute phase change may be due to two reasons. First, the exact type of fused silica (and the temperature of the laboratory environment) differs from that one for which the dispersion equation has been measured [24]. Second, a slight deviation of about 15’ of the manufactured apex angle from the specification can also result in such small discrepancies.

6. Summary

In summary, we have proved through two independent measurements that the CEP is preserved during XPWG. Both measurements rely on the spatially and spectrally resolved interference fringes formed by the XPW beam and its fundamental. In a first experiment, we have shown that the spatial position of the spectrally and spatially resolved interference fringes is determined by the carrier envelope phase difference between the fundamental and the XPW pulses. It was found that their position is maintained over many hundreds of pulses in the laser pulse train and the visibility of the fringes is independent of the number of pulses interfering. In a second experiment, the CEP of the XPW pulses was manipulated independently of the fundamental beam. The measured change in absolute phase of the XPW beam is in excellent agreement with the expected values. Such an accurate and noise-free measurement would not be possible if there were random shot-to-shot changes in the relative CEP between the fundamental and the XPW.

Hence, both experiments above reveal that the CEP of the XPW pulses changes with the same rate as that of the fundamental pulse, i.e. there is no visible loss in CEP stability of the generated XPW beam compared to that of the fundamental beam. These findings might help further spread the use of XPWG in high intensity pulse shaping technology. In particular, with the use of XPWG as a nonlinear filter in a double-chirped pulse amplification scheme [25], not only could intense few-cycle pulses be generated with high temporal contrast [26] but also with stable CEP.

Ackowledgements

This work was supported by the Hungarian Scientific Research Found (OTKA) under grant No K75149.

References and links

1. G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006). [CrossRef]  

2. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001). [CrossRef]   [PubMed]  

3. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003). [CrossRef]  

4. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 ( 2005). [CrossRef]   [PubMed]  

5. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 ( 2006). [CrossRef]   [PubMed]  

6. L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009). [CrossRef]  

7. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 ( 2004). [CrossRef]  

8. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007). [CrossRef]  

9. L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008). [CrossRef]  

10. L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008). [CrossRef]  

11. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 ( 1995). [CrossRef]   [PubMed]  

12. C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990). [CrossRef]  

13. D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997). [CrossRef]  

14. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 ( 2008). [CrossRef]   [PubMed]  

15. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 ( 2008). [CrossRef]  

16. K. Osvay, A. Börzsönyi, Zs. Heiner, and M. P. Kalashnikov, “Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases,” CLEO 2009, Baltimore, USA, paper CMU7.

17. D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, “Spatio-Temporal Characterization of Nonlinear Propagation of Femtosecond Pulses,” CLEO 2009, Baltimore, USA, paper CThDD5.

18. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 ( 1997). [CrossRef]  

19. B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249. [CrossRef]  

20. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 ( 2006). [CrossRef]   [PubMed]  

21. K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 ( 2007). [CrossRef]   [PubMed]  

22. F. X. Kaertner, ed., “Few-cycle laser pulses and its applications,” Topics in Applied Physics, Vol. 95, Springer, Berlin, 2004.

23. A. Trisorio, L. Canova, and R. Lopez Martens, “Hybrid Prism/Chirped Mirror Compressor for Multi-mJ, kHz, Sub-30 fs”, CEP Stabilized Ti:Sa Laser,” CLEO 2008, San José, USA, paper JWA60.

24. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 ( 1965). [CrossRef]  

25. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 ( 2005). [CrossRef]   [PubMed]  

26. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 ( 2009). [CrossRef]   [PubMed]  

References

  • View by:

  1. G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006).
    [Crossref]
  2. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
    [Crossref] [PubMed]
  3. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
    [Crossref]
  4. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 ( 2005).
    [Crossref] [PubMed]
  5. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 ( 2006).
    [Crossref] [PubMed]
  6. L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
    [Crossref]
  7. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 ( 2004).
    [Crossref]
  8. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
    [Crossref]
  9. L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
    [Crossref]
  10. L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
    [Crossref]
  11. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 ( 1995).
    [Crossref] [PubMed]
  12. C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990).
    [Crossref]
  13. D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997).
    [Crossref]
  14. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 ( 2008).
    [Crossref] [PubMed]
  15. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 ( 2008).
    [Crossref]
  16. K. Osvay, A. Börzsönyi, Zs. Heiner, and M. P. Kalashnikov, “Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases,” CLEO 2009, Baltimore, USA, paper CMU7.
  17. D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, “Spatio-Temporal Characterization of Nonlinear Propagation of Femtosecond Pulses,” CLEO 2009, Baltimore, USA, paper CThDD5.
  18. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 ( 1997).
    [Crossref]
  19. B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
    [Crossref]
  20. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 ( 2006).
    [Crossref] [PubMed]
  21. K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 ( 2007).
    [Crossref] [PubMed]
  22. F. X. Kaertner, ed., “Few-cycle laser pulses and its applications,” Topics in Applied Physics, Vol. 95, Springer, Berlin, 2004.
  23. A. Trisorio, L. Canova, and R. Lopez Martens, “Hybrid Prism/Chirped Mirror Compressor for Multi-mJ, kHz, Sub-30 fs”, CEP Stabilized Ti:Sa Laser,” CLEO 2008, San José, USA, paper JWA60.
  24. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 ( 1965).
    [Crossref]
  25. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 ( 2005).
    [Crossref] [PubMed]
  26. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 ( 2009).
    [Crossref] [PubMed]

2009 (2)

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 ( 2009).
[Crossref] [PubMed]

2008 (4)

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 ( 2008).
[Crossref] [PubMed]

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 ( 2008).
[Crossref]

2007 (2)

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 ( 2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

2004 (1)

2003 (1)

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

2001 (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

1997 (2)

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997).
[Crossref]

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 ( 1997).
[Crossref]

1995 (1)

1990 (1)

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990).
[Crossref]

1965 (1)

Akturk, S.

Albert, O.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 ( 2005).
[Crossref] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 ( 2004).
[Crossref]

Allard, J-F.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

Antonucci, L.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Augé-Rochereau, F.

Baltuska, A.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Bor, Z.

Börzsönyi, A.

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 ( 2008).
[Crossref] [PubMed]

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 ( 2008).
[Crossref]

Boschetto, D.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Bowlan, P.

Burgy, F.

Calatroni, J. E.

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990).
[Crossref]

Canova, L.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Cha, Y. H.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Chambaret, J.-P.

Chaudet, P.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Cheriaux, G.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Chériaux, G.

Chvykov, V.

Cornet, A.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

Eidmann, K.

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006).
[Crossref]

Ell, R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Etchepare, J.

Forget, N.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

Fujimoto, J. G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Gabolde, P.

Görbe, M.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 ( 2008).
[Crossref]

K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 ( 2007).
[Crossref] [PubMed]

Goulielmakis, E.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Grebing, C.

Hamoniaux, G.

Hänsch, T. W.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Haus, H. A.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Heiner, Z.

Herrmann, D.

Houde, D.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

Ippen, E. P.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Jullien, A.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 ( 2005).
[Crossref] [PubMed]

Kalashnikov, M. P.

Kalinchenko, G.

Kärtner, F. X.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Kienberger, R.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Kourtev, S.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Kovács, A. P.

Krausz, F.

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 ( 2009).
[Crossref] [PubMed]

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006).
[Crossref]

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Laude, V.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

Lopez-Martens, R.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

Malitson, I. H.

McGresham, K.

Mercier, B.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

Meshulach, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 ( 1997).
[Crossref]

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997).
[Crossref]

Metzler, G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Meyer-Ter-Vehn, J.

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006).
[Crossref]

Minkovski, N.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 ( 2005).
[Crossref] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 ( 2004).
[Crossref]

Morgner, U.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Morris, D.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

Osvay, K.

Parys, B.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

Pervak, V.

Petrov, G. I.

Pipin, C.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

Reed, S.

Risse, E.

Rousseau, J. P.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

Rousseau, J.-P.

Rousseau, P.

Sainz, C.

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990).
[Crossref]

Saltiel, S. M.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 ( 2005).
[Crossref] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 ( 2004).
[Crossref]

Sandner, W.

Schibli, T. R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Schmid, K.

Schönnagel, H.

Shreenath, A.

Siberberg, Y.

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997).
[Crossref]

Silberberg, Y.

Steinmeyer, G.

Szipöcs, R.

Tautz, R.

Tavella, F.

Trebino, R.

Tribillon, G.

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990).
[Crossref]

Tsakiris, G. D.

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006).
[Crossref]

Udem, T.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Uiberacker, M.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Veisz, L.

Yakovlev, V. S.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

Yanovsky, V.

Yelin, D.

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997).
[Crossref]

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 ( 1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 ( 2007).
[Crossref]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 ( 2008).
[Crossref]

Appl. Phys. Lett. (1)

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 ( 2008).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 ( 1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 ( 2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 ( 1990).
[Crossref]

N. J. Phys. (1)

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 ( 2006).
[Crossref]

Opt. Commun. (2)

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 ( 2009).
[Crossref]

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 ( 2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 ( 2001).
[Crossref] [PubMed]

Other (5)

K. Osvay, A. Börzsönyi, Zs. Heiner, and M. P. Kalashnikov, “Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases,” CLEO 2009, Baltimore, USA, paper CMU7.

D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, “Spatio-Temporal Characterization of Nonlinear Propagation of Femtosecond Pulses,” CLEO 2009, Baltimore, USA, paper CThDD5.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt. 7, 249–254 ( 2005) 249.
[Crossref]

F. X. Kaertner, ed., “Few-cycle laser pulses and its applications,” Topics in Applied Physics, Vol. 95, Springer, Berlin, 2004.

A. Trisorio, L. Canova, and R. Lopez Martens, “Hybrid Prism/Chirped Mirror Compressor for Multi-mJ, kHz, Sub-30 fs”, CEP Stabilized Ti:Sa Laser,” CLEO 2008, San José, USA, paper JWA60.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A spectrally and spatially resolved interferometer (a) and the formation of spectrally and spatially resolved interference fringes (b). The phase-shifting element in the sample arm represents the relative phase difference between the sample and reference pulses.
Fig. 2
Fig. 2 Experimental setup. The XPW pulses interfere with the fundamental beam and the interference pattern is resolved spectrally.
Fig. 3
Fig. 3 Spatial cross section of the fringes at three different wavelengths as a function of exposure time of the CCD camera. For each exposure time the corresponding slice of nine independent interferograms is displayed.
Fig. 4
Fig. 4 Averaged visibility map of interference fringes captured with an exposition time of 1 ms (a), 10 ms (b), 100 ms (c) and 1 s (d), respectively. The corresponding averaged visibility is 0.883, 0.867, 0.939 and 0.823.
Fig. 5
Fig. 5 Spatial cross section of the fringes at three different wavelengths as a function of wedge position. At each wedge position one slice of the first interferogram of each series is displayed.
Fig. 6
Fig. 6 Change of group delay (a) and the initial phase of the XPW pulses (b) as a function of the fused silica wedge position.
Fig. 7
Fig. 7 Change of total phase of the generated XPW pulses relative to the fundamental ones as a function of position of the fused silica wedge.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ i ( ω ) = ϕ i ( ω 0 ) + d ϕ i d ω | ω 0 ( ω ω 0 ) + 1 2 d 2 ϕ i d ω 2 | ω 0 ( ω ω 0 ) 2 + ... , i = R , S .
I ( y , ω ) = I S ( ω ) + I R ( ω ) + 2 I S ( ω ) · I R ( ω ) cos ( Δ ϕ ( ω ) + ε ω c ( y y 0 ) ) ,
Δ ϕ ( ω ) = ϕ R ( ω ) ϕ S ( ω ) = Δ ϕ ( ω 0 ) + d Δ ϕ d ω | ω 0 ( ω ω 0 ) + 1 2 d 2 Δ ϕ d ω 2 | ω 0 ( ω ω 0 ) 2 + ... ,
Δ ϕ ( ω ) = Δ ϕ C E + D ( ω ) ,

Metrics