Abstract

Transmission- and reflection-type single–walled carbon nanotube saturable absorbers (SWCNT-SAs) were designed and fabricated for passive mode-locking of bulk lasers in the 1 µm spectral range. Mode-locked laser operation based on a diffusion-bonded Yb:KYW/KYW crystal was demonstrated, and pulses as short as 83 fs and 140 fs were achieved applying reflection-type and transmission-type SWCNT-SA, respectively. The nonlinear parameters of the absorbers were measured to be in close vicinity to those of a semiconductor saturable absorber mirror for the same wavelength range. Mode-locking performance with SWCNT-SAs and the SESAM was compared utilizing the same cavity, with the SESAM resulting in only slightly shorter pulses of 66 fs duration. The nearly identical performance indicates that well-optimized SWCNT-SAs can substitute SESAMs even in the 1 µm region.

©2009 Optical Society of America

1. Introduction

Single-walled carbon nanotube saturable absorbers (SWCNT-SAs) are unique nanostructures that feature interesting optical properties [1,2] beside curious electrical, chemical, and mechanical properties. SWCNT-SAs exhibit high-speed third-order optical nonlinearity [3] and saturable absorption, which makes them a promising replacement for semiconductor-based ultrafast saturable absorber mirrors (SESAMs) [4]. While SESAMs demand challenging and expensive fabrication processes like metal organic chemical vapor deposition (MOCVD), metal organic phase vapor epitaxy (MOPVE), or molecular beam epitaxy (MBE) [5], fabrication of SWCNT-SAs is comparatively simple, restricting itself to the three steps of nanotube growth, dispersion, and deposition processes. Since purified SWCNTs grown by different methods are commercially available, they can be used without any additional treatment for manufacturing SWCNT-SAs.

Moreover, the absorption band of the SWCNT is controllable by varying the tube diameter and its chirality. Therefore, SWCNT-SAs are readily applicable within a broad spectral range throughout the near-infrared from 1.0 μm up to 2.0 μm. Passive mode-locking employing a SWCNT-SA was first demonstrated for fiber lasers. Using an Er-doped fiber as the gain medium at a wavelength of 1.55 µm, a train of pulses with 318 fs duration was reported [6]. The performance of SWCNT-SA mode-locked fiber lasers was further improved and extended to other wavelengths. SWCNT-SAs that were directly deposited onto the fiber endface enabled mode-locking of Yb-doped fiber lasers in the 1 µm spectral range, resulting in 137 fs pulse duration [7]. Carbon nanototube saturable absorbers have also been successfully used to mode-lock Tm-fiber lasers around 2 µm [8,9]. Exploiting the wavelength dependence of absorption lines with carbon nanotube diameter, manufacturing of octave-spanning absorber devices is conceivable. Very recently, the broadband approach of carbon nanotube absorber mode-locking was demonstrated, using one and the same absorber deposited on an Ag-mirror for mode-locking of Yb-, Er- and Tm:Ho-doped fiber lasers at 1.05, 1.56 and 1.99 µm with sub-picosecond pulse durations [10]. In contrast, the reflection bandwidth of a SESAM is limited to about 100 nm due to the low index contrast in the GaAs/AlAs Bragg mirror and probably even more by the quantum well absorption characteristics.

The first efforts of passive mode-locking with SWCNT-SAs were mainly restricted to fiber lasers, since the single-pass gain of fiber lasers is much higher than that of other laser materials. Therefore, they can easily tolerate large non-saturable losses. For application in bulk solid-state lasers, however, it was mandatory to reduce these losses to the lowest level possible. The first bulk laser that was passively mode-locked by a SWCNT-SA operated near 1.5 µm and was based on Er/Yb:glass, where a pulse duration of 68 fs at 1.57 µm was obtained [11]. This successful demonstration motivated mode-locking investigations in adjacent wavelength regions. Using a flash-lamp pumped Nd:GdVO4 laser, 30 ps pulses were achieved at 1.34 µm [12]. We demonstrated passive mode-locking of Yb:KLu(WO4)2 (Yb:KLuW) in the 1 µm range [13] and recently of a Cr:forsterite laser at 1.25 μm [14] with pulse durations of 115 and 120 fs, respectively. Only very recently, we also achieved SWCNT-SA mode-locked operation of a Tm-doped KLuW laser in the emerging wavelength range around 2 µm [15]. So far, the reported carbon nanotube absorber mode-locked bulk laser results were achieved with transmission-type SWCNT-SAs.

Here we report, what we believe to be the first demonstration of a SWCNT-SA mode-locked laser with sub-100 fs pulse duration in the 1 µm range. Using a diffusion-bonded Yb-doped KY(WO4)2 (KYW) crystal as active medium, the passively mode-locked laser performance of a reflection-type SWCNT-SA is compared to that achieved with a SESAM in the same cavity configuration. The nonlinear parameters important for stable mode locking are investigated by pump-probe and nonlinear transmission measurements for both saturable absorber devices. This comparison shows that SWCNT-SAs – like SESAMs in the early years of their development – are further maturing and are becoming a match to the well established SESAM technology.

2. Transmission- and reflection-type SWCNT-SA

Due to the relatively simple fabrication technology of SWCNT-SA, the saturable absorbers can be manufactured for use in transmission or reflection. For fabrication of the SWCNT-SA, dried arc-made SWCNTs were first dispersed in dichlorobenzene via ultrasonic agitation, while poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) (PmPV) was added to enhance solubility of the SWCNTs. The SWCNT dispersion was subsequently mixed with a prepared polymethyl methacrylate (PMMA) solution in the volume ratio of 1:1. Finally, the SWCNT/PMMA mixture was deposited on a quartz substrate or directly onto a dielectric mirror by the spin-coating technique and baked at 90°C. The physical layer thickness of the reflection- and transmission-type SWCNT-SA amounts to approximately 250 nm with a good homogeneity over the whole optical element. Both absorbers are shown in Fig. 1 . A more detailed description of the fabrication procedure can be found in [16]. The simplicity of the SWCNT deposition process allows application to a broad variety of surfaces, enabling several approaches for its incorporation into a laser resonator. Coating the laser gain medium or an output coupler is conceivable, and the optically assisted deposition of SWCNTs directly onto fiber end faces has already been demonstrated [7].

 figure: Fig. 1

Fig. 1 Photograph of reflection-type (left) and transmission-type (right) SWCNT-SAs. The latter was directly deposited onto a quartz substrate, the former onto a dielectric mirror.

Download Full Size | PPT Slide | PDF

Application of SWCNT-SAs in transmission is especially promising for mode-locked laser resonators using a Brewster-plate to define the output polarization. Furthermore, application in transmission enables an additional parameter for the laser alignment. Whereas the beam waist of the cavity mode on the SWCNT-SA mirror or a SESAM can only be influenced via massive changes of the resonator geometry, the focus spot size on the transmission-type SWCNT-SA can be continuously varied from the minimum in a beam waist up to the maximum beam radius inside the resonator.

Although semiconductor saturable absorbers have been shown to operate in various transmission geometries [17,18], the reflection-type is typically strongly favored as only this geometry allows positioning of the quantum wells relative to the nodes of the standing-field pattern of the laser field, which is important to tailor saturation fluence and other SESAM parameters.

3. Characterization of the SWCNT-SA nonlinear response

The resonant response and the saturation fluence of the SWCNT-SAs and the 10-nm-thick InGaAs surface-quantum-well SESAM used for passive mode-locking of the Yb:KYW laser were characterized by pump–probe and nonlinear reflection measurements. For both measurements, 150 fs pulses from a mode-locked Nd:glass laser (High-Q Laser Inc.) operating at 1058 nm were focused on the sample. The pump–probe traces and fits to the data are shown in Fig. 2(a) and 2(b) for the reflection-type SWCNT-SA and the SESAM, respectively. These traces were obtained in a non-collinear cross-polarized set-up at a pump fluence of about 10 µJ/cm2. The pump-probe trace of the SWCNT-SA reveals a nearly instantaneous (< 150 fs) response together with a fast exponential decay with 1 ps recovery time. The measurement indicates a relative weight of the quasi-instantaneous response of about 25%. The deconvolved 1/e recovery time of the total response amounts to 260 fs. The values measured for the surface SESAM are in close vicinity to those of the SWCNT-SA with the exception of a slightly longer deconvolved 1/e recovery time of 370 fs.

 figure: Fig. 2

Fig. 2 Pump-probe measurements of the resonant response for the reflection-type SWCNT-SA, dots: data, solid line: fit (a) and the SESAM, black line: data, blue line: fit (b).

Download Full Size | PPT Slide | PDF

The saturation fluence and the modulation depth of the SWCNT-SAs were measured with high accuracy in a setup similar to the one reported in [19]. As the saturable absorbers exhibit modulation depths well below 1%, their exact characterization is a very demanding task. To remove laser drift problems, we repetitively scan the nonlinear transmission characteristics of the sample and a linear reference mirror, using an acousto-optic modulator for high-dynamic range attenuation. In our measurements we find residual noise on the order of 0.05-0.1%. The measured absolute reflection of the reflection-type SWCNT-SA and the SESAM versus input pulse fluence are depicted in Fig. 3(a) and 3(b), respectively. From a fit to the data we extract a saturation fluence of about 5 µJ/cm2, a modulation depth of 0.21%, and a nonsaturable loss of 0.6% for the SWCNT-SA. The corresponding values that were measured for the surface SESAM are a 0.5% modulation depth, 1.7% nonsaturable loss, and a saturation fluence of 10 µJ/cm2. Therefore, all relevant nonlinear parameters of the SWCNT-SA and the SESAM are similar. With increasing pulse fluence (> 100 µJ/cm2) two-photon absorption can be observed in the SESAM leading to a decrease of the reflectivity and, in the worst case, to damage of the device. This nonlinear effect was not observed with SWCNT-SAs. The nonlinear characteristics of the transmission-type SWCNT-SA are a saturation fluence of about 10 µJ/cm2, a modulation depth of 0.25%, and a nonsaturable loss of 2.3%. The higher nonsaturable loss is not intrinsically connected to the transmission-type SWCNT. We therefore expect to be able to reduce this value to the level observed with reflection-type devices.

 figure: Fig. 3

Fig. 3 Nonlinear reflection of the reflection-type single-walled carbon-nanotube saturable absorber (a) and of the SESAM (b) vs. incident pulse fluence (dots: measured data; solid curve: fit to the data).

Download Full Size | PPT Slide | PDF

4. Laser setup

The setup of the laser is depicted in Fig. 4(a) . For the laser experiments a diffusion-bonded Yb:KYW/KYW crystal (FEE GmbH) was selected [20]. The bonded Yb-doped part as well as the undoped KYW part is 1.5 mm thick each, yielding a total crystal thickness of 3 mm [Fig. 4(b)]. The polished plane-parallel {010}-faces of the compound crystal are oriented normal to the Np-principal optical axis, and the sample is oriented for polarization parallel to Nm and propagation approximately along the Np-optical axis. The uncoated Yb:KYW/KYW sample with a rectangular aperture of 5.2 × 4.8 mm2 is positioned between two folding resonator mirrors at Brewster’s angle in a z-shaped astigmatically compensated cavity. The positioning at Brewsters’s angle as well as the polarization dependent gain of the crystal determine the laser polarization which is parallel to the optical table. In one arm of the cavity, containing the plane output coupler, a pair of SF10 Brewster-cut prisms can be inserted to compensate for the intracavity dispersion. The positive group velocity dispersion (GVD) of the crystal is calculated to be ~115 fs2 mm−1 resulting in a round trip GVD of around 700 fs2. As the prisms introduce a negative GVD of −2400 fs2 per round trip, the laser operates in the regime of negative GVD.

 figure: Fig. 4

Fig. 4 (a) Laser set-up: Lp: focusing lens, M1-M3: high reflection curved mirrors, M4: wedged output coupler, P1, P2: SF10 prisms, SWCNT-SA on quartz substrate, oriented at Brewster’s angle (I), SWCNT-SA deposited on a plane mirror (II) and SESAM (II). (b) Photograph of the diffusion-bonded Yb:KYW/KYW in the lasing state (green fluorescence indicates the pump channel).

Download Full Size | PPT Slide | PDF

The other resonator arm is additionally folded by two highly reflecting focusing mirrors to incorporate the SWCNT-SA-coated substrate in transmission at Brewster’s angle [Fig. 4(a)-I] or modified by replacing the end mirror with the plane SWCNT-SA-coated dielectric mirror [Fig. 4(a)-II]. The latter configuration is also applied when the SESAM was used for passive mode-locking the Yb:KYW/KYW laser [20]. To compare the results achieved with SESAM in [20], the same Ti:sapphire laser serves as pump source, emitting up to 2 W of output power near 980 nm.

5. Mode-locked operation

5.1. Transmission-type SWCNT-SA

First, we employed the transmission-type SWCNT-SA for mode locking the Yb:KYW/KYW laser. For femtosecond operation, the tip-to-tip separation of the SF10 prism pair was 39 cm, and an output coupler with a 1% transmission was placed in the same arm of the cavity. The laser was operating in the negative dispersion regime with soliton-like mode-locking. Applying the SWCNT-SA in transmission, the threshold for mode-locked operation was 640 mW of input power. Pulses as short as 140 fs were obtained at a slightly shifted central wavelength of 1038 nm [Fig. 5(a) ] at a repetition rate of 88 MHz. Due to additional losses introduced by the prisms, the average output power dropped to about 32 mW. The time-bandwidth product (TBP) of 0.37 indicates that the pulses obtained are nearly Fourier-limited but still hold some potential for further compression. At the expense of a longer pulse duration of 216 fs, the output power increased to 93 mW using a 3% transmission output coupler. Mode-locked operation was observed without the need of an initiating perturbation, i.e., the laser is reliably self starting. Q-switching instabilities as well as CW components in the optical spectrum can be suppressed by careful alignment.

 figure: Fig. 5

Fig. 5 Transmission-type SWCNT-SA mode-locked Yb:KYW/KYW laser in the femtosecond regime, (a) Autocorrelation trace and spectrum (inset), dots: data, solid line: fit with a sech2-pulse shape, (b) Spectral tunability.

Download Full Size | PPT Slide | PDF

The short pulse spectral tunability was examined for the Yb:KYW/KYW oscillator at an incident pump power of 1.2 W. The central wavelength was simply tuned by means of the intracavity prisms. A continuous tunability range of 9 nm between 1045.5 and 1036.5 nm was measured [Fig. 5(b)], with the pulse duration varying between 400 fs down to 140 fs.

5.2 Reflection-type SWCNT-SA

Single-walled carbon nanotubes directly deposited on a highly reflecting mirror represent a technological step to establish an analogous design compared to the SESAM. Slightly changing the resonator geometry of Fig. 4 from (I) to (II) enabled reflection-type SWCNT-SA and SESAM mode-locked operation of the Yb:KYW/KYW laser with a repetition frequency of 84 MHz and 24 mW of average output power at an incident pump power of about 1.4 W. The measured autocorrelation traces with corresponding fits of sech2 temporal profiles are shown in Fig. 6 for the reflection-type SWCNT-SA and for the SESAM. Emission spectra are shown as insets in Fig. 6. These measurements reveal notably shorter pulses than in all the cases discussed before, with a pulse duration of 83 fs [Fig. 6(a)]. The central wavelength was shifted to 1049 nm, which is longer compared to the transmission-type SWCNT-SA results. This wavelength shift is attributed to the roughly two times lower nonsaturable loss of the reflection-type SWCNT-SA [Fig. 3(a)] and the reflection characteristics of the dielectric mirror used for the deposition of SWCNTs. The spectral bandwidth amounts to 15.6 nm (FWHM), and again the pulses obtained directly from the oscillator are nearly bandwidth-limited as indicated by the TBP of 0.35. The embedded SWCNT-SAs tolerate the high incident laser fluences of ~100 µJ/cm2 for the reflection type- and ~80 µJ/cm2 – 120 µJ/cm2 for the transmission type saturable absorber. The latter fluence-range corresponds to an absorber displacement of 30 mm around the minimum beam waist in the second folding. The beam waists on the SWCNT-SAs are 100 µm and 80 µm – 100 µm, respectively

 figure: Fig. 6

Fig. 6 Autocorrelation traces and spectra (insets) of the mode-locked Yb:KYW/KYW laser in the femtosecond regime: (a) reflection-type SWCNT-SA, (b) SESAM – data of (b) were taken from Ref. 20, Fig. 3 (dots: data, solid lines: fits with a sech2-pulse shape).

Download Full Size | PPT Slide | PDF

Using a higher output coupling of 5% the average output power could be increased to 170 mW at almost unchanged pulse duration (84 fs). The major limitation of the output power in both SWCNT-SA mode-locked configurations was the tendency towards multi-pulsing that was setting in at higher pump powers. However, after optimum adjustment assuming the above mentioned settings, the lasers were operating stable for several tens of minutes.

SESAM mode locking in the otherwise unchanged cavity configuration but using a 3% transmission output coupler yielded shorter pulses with a duration of 66 fs [Fig. 6(b)]. Due to the higher output coupling, the average output power increased to 182 mW, and the emission spectrum was centered at 1029 nm, which means at shorter wavelengths compared to SWCNT-SA mode-locking. The TBP of 0.43 is slightly above the Fourier-limit, yet again indicating the potential for further chirp compensation as was demonstrated in [20]. We mainly attribute the obtained slightly shorter pulse duration to the higher modulation depth of the SESAM in comparison to the SWCNT-SA. In all configurations tested the laser output was a nearly diffraction limited TEM00 mode.

Figure 7 shows the RF-spectrum of the fundamental beat note at 84.31 MHz recorded with a resolution bandwidth of 1 KHz and a 1 GHz span measurement for the reflection-type SWCNT-SA mode-locked Yb:KYW/KYW laser. A very high extinction down to 58 dBc and the absence of any spurious modulation prove clean CW mode-locked operation of the Yb:KYW/KYW laser. In this operation mode the laser was not reliably self-starting, though only a very slight perturbation was sufficient to initiate the pulsed regime.

 figure: Fig. 7

Fig. 7 Reflection-type SWCNT-SA mode-locked Yb:KYW/KYW laser in the femtosecond regime, (a) RF-spectrum of the fundamental beat-note (b) RF-spectrum at 1 GHz – span.

Download Full Size | PPT Slide | PDF

6. Conclusion

Novel reflection-type single-walled carbon nanotube saturable absorbers (SWCNT-SAs) were successfully fabricated and applied for ultrafast mode-locking of solid-state lasers in the 1 µm spectral range. Their parameters relevant for stable mode-locking, such as transient nonlinear absorption, saturation fluence and recovery time, are investigated and compared with transmission-type SWCNT-SA and SESAM. Typically, low modulation depths of 0.25% and fast recovery times well below 1 ps were extracted for both types of SWCNT-SAs. These values are very close to those measured for the SESAM. Passive mode-locking of a diffusion-bonded Yb:KYW/KYW laser using the transmission-type SWCNT-SA resulted in pulses as short as 140 fs. Even shorter pulses of 83 fs duration could be achieved using the novel SWCNT-SA directly deposited on dielectric mirror. To the best of our knowledge, these are so far the shortest pulses generated using SWCNT-SAs for mode-locking around 1 µm, a technology that is rapidly maturing. Similar mode-locked laser performance was obtained by implementing a SESAM in the same cavity configuration delivering slightly shorter pulse durations of 66 fs. Nevertheless, novel saturable absorbers based on SWCNTs can already be considered as a real alternative to currently widespread SESAMs for ultrashort pulse generation, and an avenue for their further improvement lies at hand. As indicated by our direct comparison, SWCNT-SAs offer a low-cost solution with a relatively simple fabrication process, as compared to the high-cost SESAM technology.

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grants funded by the Korea Government (MEST) (No. R01-2007-000-10733-0 and No. R0A-2007-000-20113-0).

References and links

1. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008). [CrossRef]  

2. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002). [CrossRef]  

3. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003). [CrossRef]  

4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]  

5. H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999). [CrossRef]  

6. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]  

7. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007). [CrossRef]   [PubMed]  

8. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008). [CrossRef]   [PubMed]  

9. K. Kieu and F. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21(3), 128–130 (2009). [CrossRef]  

10. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009). [CrossRef]   [PubMed]  

11. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005). [CrossRef]   [PubMed]  

12. S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007). [CrossRef]  

13. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008). [CrossRef]   [PubMed]  

14. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(21), 2449–2451 (2008). [CrossRef]   [PubMed]  

15. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009). [CrossRef]   [PubMed]  

16. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008). [CrossRef]  

17. A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006). [CrossRef]  

18. V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

19. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004). [CrossRef]  

20. S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008). [CrossRef]  

References

  • View by:

  1. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
    [Crossref]
  2. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
    [Crossref]
  3. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
    [Crossref]
  4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  5. H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
    [Crossref]
  6. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  7. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
    [Crossref] [PubMed]
  8. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
    [Crossref] [PubMed]
  9. K. Kieu and F. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21(3), 128–130 (2009).
    [Crossref]
  10. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [Crossref] [PubMed]
  11. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
    [Crossref] [PubMed]
  12. S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
    [Crossref]
  13. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008).
    [Crossref] [PubMed]
  14. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(21), 2449–2451 (2008).
    [Crossref] [PubMed]
  15. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009).
    [Crossref] [PubMed]
  16. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008).
    [Crossref]
  17. A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
    [Crossref]
  18. V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).
  19. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
    [Crossref]
  20. S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
    [Crossref]

2009 (3)

2008 (6)

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(21), 2449–2451 (2008).
[Crossref] [PubMed]

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
[Crossref] [PubMed]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

2007 (2)

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
[Crossref] [PubMed]

2006 (1)

A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
[Crossref]

2005 (1)

2004 (2)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

2003 (1)

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

2002 (1)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

1999 (1)

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Aguiló, M.

Ahn, Y. H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Aitchison, B.

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Avouris, P.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Brown, D. P.

Bukin, V. V.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Carvajal, J. J.

Cech, M.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Chernov, A. I.

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
[Crossref] [PubMed]

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Cho, W. B.

Choi, S. Y.

Cockayne, D. J. H.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Dianov, E. M.

Díaz, F.

Diels, J.-C.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Digiovanni, D. J.

Drahokoupil, M.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Freitag, M.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Furuki, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Garnov, S. V.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

Griebner, U.

Gross, A.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

Guina, M. D.

A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
[Crossref]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Hakulinen, T.

Härkönen, A.

Hirsl, P.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Isomaki, A.

A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
[Crossref]

Itoga, E.

Iwasa, I.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Jablonski, M.

Jagadish, C.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kaskela, A.

Kataura, H.

Kauppinen, E. I.

Kazaoui, S.

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kieu, K.

K. Kieu and F. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21(3), 128–130 (2009).
[Crossref]

Kim, K.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Kivistö, S.

Konov, V. I.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kubecek, V.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Kutovoi, S. A.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Lederer, M. J.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Lee, S.

Lim, H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Lobach, A. S.

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
[Crossref] [PubMed]

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Luther-Davies, B.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Mateos, X.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Minami, N.

Minoshima, K.

Mitsu, H.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Miyashita, K.

Nasibulin, A. G.

Nicholson, J. W.

Obraztsov, P. A.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Obraztsova, E. D.

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
[Crossref] [PubMed]

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Okhotnikov, G.

A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
[Crossref]

Okhotnikov, O. G.

Perebeinos, V.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Petrov, V.

Pujol, M. C.

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Rivier, S.

A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008).
[Crossref] [PubMed]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

Rotermund, F.

Rytz, D.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

Sakakibara, Y.

Sato, Y.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Schibli, T. R.

Schmidt, A.

Set, S. Y.

Shcherbakov, I. A.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Siegner, U.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Sirotkin, A. A.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Solodyankin, M. A.

Solokhin, S. A.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Steinmeyer, G.

Stintz, A.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Tan, H. H.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Tanaka, Y.

Tatsuura, S.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Tausenev, A. V.

Tian, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Tokumoto, M.

Tuomisto, P.

A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
[Crossref]

Vernay, S.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wesemann, V.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

Windeler, R. S.

Wise, F.

K. Kieu and F. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21(3), 128–130 (2009).
[Crossref]

Yaguchi, H.

Yim, J. H.

Zagumennyi, Y. D.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Zatorsky, P.

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Zavartsev, Y. D.

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Zou, J.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

Adv. Mater. (1)

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical communications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Appl. Phys. B (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

Appl. Phys. Express (1)

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1, 112601 (2008).
[Crossref]

Appl. Phys. Lett. (3)

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, “Role of implantation induced defects on the response time of semiconductor saturable absorbers,” Appl. Phys. Lett. 75(10), 1437–1439 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Isomaki, M. D. Guina, P. Tuomisto, and G. Okhotnikov, “Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission,” IEEE Photon. Technol. Lett. 18(20), 2150 (2006).
[Crossref]

K. Kieu and F. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21(3), 128–130 (2009).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:YGdVO4 lasers operating at 1.34 µm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[Crossref]

Nat. Photonics (1)

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Other (1)

V. Kubecek, M. Drahokoupil, P. Zatorsky, P. Hirsl, M. Cech, A. Stintz, and J.-C. Diels, “Quasi-Continuously Pumped Passively Mode-Locked Operation of a Nd:GdVO4 and Nd:YVO4 Laser in a Bounce Geometry,” Laser Physics 19, 396–399 (2009).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Photograph of reflection-type (left) and transmission-type (right) SWCNT-SAs. The latter was directly deposited onto a quartz substrate, the former onto a dielectric mirror.
Fig. 2
Fig. 2 Pump-probe measurements of the resonant response for the reflection-type SWCNT-SA, dots: data, solid line: fit (a) and the SESAM, black line: data, blue line: fit (b).
Fig. 3
Fig. 3 Nonlinear reflection of the reflection-type single-walled carbon-nanotube saturable absorber (a) and of the SESAM (b) vs. incident pulse fluence (dots: measured data; solid curve: fit to the data).
Fig. 4
Fig. 4 (a) Laser set-up: Lp: focusing lens, M1-M3: high reflection curved mirrors, M4: wedged output coupler, P1, P2: SF10 prisms, SWCNT-SA on quartz substrate, oriented at Brewster’s angle (I), SWCNT-SA deposited on a plane mirror (II) and SESAM (II). (b) Photograph of the diffusion-bonded Yb:KYW/KYW in the lasing state (green fluorescence indicates the pump channel).
Fig. 5
Fig. 5 Transmission-type SWCNT-SA mode-locked Yb:KYW/KYW laser in the femtosecond regime, (a) Autocorrelation trace and spectrum (inset), dots: data, solid line: fit with a sech2-pulse shape, (b) Spectral tunability.
Fig. 6
Fig. 6 Autocorrelation traces and spectra (insets) of the mode-locked Yb:KYW/KYW laser in the femtosecond regime: (a) reflection-type SWCNT-SA, (b) SESAM – data of (b) were taken from Ref. 20, Fig. 3 (dots: data, solid lines: fits with a sech2-pulse shape).
Fig. 7
Fig. 7 Reflection-type SWCNT-SA mode-locked Yb:KYW/KYW laser in the femtosecond regime, (a) RF-spectrum of the fundamental beat-note (b) RF-spectrum at 1 GHz – span.

Metrics