Abstract

It is shown theoretically and experimentally that for the specific case of an equidistant frequency spacing of semiconductor laser modes, signals similar to terahertz (THz) time domain spectroscopy (TDS) can be detected in a standard photomixer setup. This quasi TDS system approach enables for both, time and frequency domain data processing. Measurements with a THz system which is based on a low cost multimode laser diode are presented. The system exhibits a bandwidth of 600 GHz and can be applied to the classical THz TDS application scenarios.

© 2009 OSA

1. Introduction

The development of systems working in the terahertz (THz) frequency range is a subject of active research due to the plethora of potential application fields for THz technology. Applications include non-destructive test of industrial processes and products [14], of cultural heritage [57], and the detection of hazardous materials [8,9] and THz near-field imaging [1013]. Two different system approaches exist. Firstly, THz time domain spectroscopy (TDS), where femtosecond lasers are employed to generate broadband THz pulses [14] (see [15] for a comprehensive review). The overall advantage of TDS systems is that a single measurement contains the information on the complete THz frequency window, only restricted by the systems bandwidth. Due to the enormous amount of information obtained by every measurement, TDS systems are discussed for industrial and real world applications. Yet, their core component, the femtosecond laser, is still rather expensive and often not reliable and stable enough for long term industrial operation. Hence, photomixing systems are investigated for their practical applicability due to their potentially lower price. Here, two continuous wave (cw) single mode lasers with slightly different center wavelength are heterodyned onto a photomixer to generate cw THz radiation [1620]. But the measurements of this system type provide only a limited amount of information since only a single frequency component is detected. Furthermore, the thickness determination is complicated because of the 2π ambiguity of the detected phase [21]. In addition a precise and sophisticated frequency stabilization of the laser diodes is essential to preserve the phase information [22].

In this paper, we present an alternative system approach which provides quasi TDS (QTDS) like signals. It is based upon a low cost commercial multimode laser diode. Thus, the proposed system approach bears the potential to be used in real world applications of THz technology.

While multimode laser diodes with three or more oscillating modes have been employed to drive THz spectrometers [2325], a comprehensive analytical discussion of this generation and detection scheme is essential to fully explore the potential of multi-frequency THz systems and especially of the QTDS approach [26] which we introduce here. The paper is organized as follows: First, the theory of cw multi-frequency THz systems is discussed in general. This includes the most promising case of QTDS. Afterwards, the theoretical deductions are validated by measurements obtained with a QTDS system. Finally, the system is utilized for typical THz application scenarios to highlight its practical applicability.

2. Theory

While the theory of continuous wave THz systems based on photoconductive antennas gated with two laser modes has been deeply discussed e.g. in [27], we will analyze here the system properties for the general case of multi-frequency excitation. After calculating the emitted THz field we derive the resulting photocurrent in the detector antenna. We will conclude by discussing the specific case of equidistant mode spacing.

If a laser beam, consisting of multiple frequency components, is focused onto the emitter antenna, the incident photons excite free carriers in the semiconductor material. These carriers are accelerated by the bias voltage which leads to a photocurrent. Due to the fact that the carrier generation is proportional to the laser power, a frequency mixing of the differing laser modes occurs and the photocurrent is modulated by the various mixing products.

However, the free carrier lifetime of the semiconductor material in the range of hundreds of femtoseconds induces a low pass characteristic and hence, the effective current modulation just consists of the difference frequencies between the laser modes. These difference frequencies lie in the THz range. According to [28] the emitted steady state THz field is proportional to time derivative of the photocurrent IE, which itself depends linearly on the antennas conductance GE and thus on the amount of optically excited free carriers nE, which is a function of the optical excitation power POpt,E.

ETHz(t)δδtIE(t)δδtGE(t)δδtnE(t,POpt,E(t)).

The density of the photo carriers can be determined as the solution of the differential equation [28]

nE(t)dt=ΩEPOpt,E(t)nE(t)τ,
where ΩE is a constant depending of the antenna material and structure and τ is the free carrier lifetime. It can be shown that a steady state solution of Eq. (2) in the case of a sinusoidal excitation with the angular frequency ω is given by

nE(t)=ΩEτPOpt,E(t)¯(1+sin(ωt)1+ω2τ2).

Yet, it can be concluded from the equation, that the carrier lifetime induces a low pass characteristics. Due to the fact that the optical power POpt,E is given by the squared sum of the electrical field of the M different laser modes, each of them oscillating with the angular frequency ωi:

POpt,E(t)[m=1M(Em(t))]2,
a nonlinear mixing of the modes occurs within the antenna and a plethora of mixture products are created theoretically. However, the free carrier lifetime induced low pass characteristics eliminates the fast oscillating components and thus, only the frequency components up to THz frequencies remain.

For clarity, we will first specify the problem to the case of three laser modes (M = 3). Then the optical power at the emitter antenna is:

POpt,E(t)[E1sin(ω1t+ϕ1)+E2sin(ω2t+ϕ2)+E3sin(ω3t+ϕ3)]2.

Here we account for the amplitude Ei and the time varying phase ϕi of the different laser modes, oscillating with the angular frequencies ωi. By employing Eq. (1) and 3, the THz field can be calculated as:

ETHz(t)Δω12AE(Δω12)E1E2cos(Δω12t+ϕ1ϕ2)+Δω13AE(Δω13)E1E3cos(Δω23t+ϕ1ϕ3)+Δω23AE(Δω23)E2E3cos(Δω23t+ϕ2ϕ3),
where AE(ω) is the spectral emitter antenna characteristics, including the low pass characteristics and the metallization caused radiation efficiency and Δωij is the THz frequency, defined by:

Δωij:=ωiωj.

Since the same laser modes also modulate the carriers and thus the conductance in the detector antenna GD(t), a photocurrent can be detected, which is proportional to the time dependent conductance and the momentarily present electrical THz field at the position of the detector antenna. Due to the quasi DC measurement, the detected photocurrent is the result of a temporal average over these fast oscillations [25] and is given by:

ID(ΔX)ETHZ(tΔXc0)GD(t)dt,
where ΔX is the length difference between the emitter and detector path of the interferometer-like setup. Thus, the time averaging characteristic of the detection process eliminates the oscillating components and consequently, the detected interferometric signal consists only of the time invariant signal components:
ID(ΔX)=Δω12A(Δω12)P1P2cos(ΔXc0Δω12)+Δω13A(Δω13)P1P3cos(ΔXc0Δω13)+Δω23A(Δω23)P2P3cos(ΔXc0Δω23),
where the Pi are the optical powers of the individual laser modes and the A(ω) is the combined spectral characteristics of the emitter and detector antenna, describing the overall frequency depended system performance. Here the dependency of ΔX allows for recording the THz waveform by moving a linear stage and thus by varying the optical path difference [27]. As can be seen from Eq. (9), the phase of the detected THz frequency components is not related to the random phase between the multimode laser lines. However, due to the complex antenna impedance and dispersive materials in the THz path, the phase of the components may be slightly altered. After introducing the constant phase values ϕij, Eq. (9) becomes

ID(ΔX)=Δω12A(Δω12)P1P2cos(ΔXc0Δω12+ϕ12)+Δω13A(Δω13)P1P3cos(ΔXc0Δω13+ϕ13)+Δω23A(Δω23)P2P3cos(ΔXc0Δω23+ϕ23).

Analogue to the deductions above, the more general case of M laser mode mixing can be calculated. Here, the photocurrent is given by:

ID(ΔX)=m=1M1n=m+1MΔωmnA(Δωmn)PmPncos(ΔXc0Δωmn+ϕmn).

The last point that will be generally discussed concerns the power efficiency. As can be seen from Eq. (11), the detected signal is a function of the individual power Pi of the laser modes. Thus by assuming an equal power spreading over the M laser modes, i.e. Pi = P/M, with P being the total power of the laser, the amplitude of the resulting THz frequency components ID(ω) are proportional to

ID(Δω)P2M2,
and hence their amplitude decreases quadratically with the number of modes. Consequently, an increasing of the number of THz frequencies induces a decreasing spectral signal-to-noise ratio per frequency as a price for the enhanced frequency information.

The theoretical waveforms for the case of three and multiple modes and identical total power are shown Fig. 1 : An equidistant frequency spacing of the laser modes leads to TDS-like pulses, which occur with a repetition rate determined by the mode spacing. A frequency difference of 25GHz for instance induces an effective pulse repetition time of 40ps. This is especially interesting, since here the elaborate signal processing known from THz TDS can be utilized to analyze the measured data. Consequently, this specific case will be referred in the following as quasi time domain spectroscopy (QTDS).

 

Fig. 1 The theoretical waveforms for the case of three THz frequencies (50, 350 and 450GHz) (left) and multiple frequencies (25 to 375GHz in 25GHz steps) (right).

Download Full Size | PPT Slide | PDF

The equidistant mode spacing Δf induces a constructive enhancement of the individual frequency components, which is illustrated in the Fig. 2 . Therefore, in the case of a QTDS system, the detected signal is given by

 

Fig. 2 The generated difference frequencies Δf interfere constructively in the case of equidistant mode spacing of the laser modes. For this example, the frequency component at 100GHz exhibits an amplification of three and the one at 200 GHz is two times amplified.

Download Full Size | PPT Slide | PDF

ID(ΔX)=m=1M1(Mm)M2(2πmΔf)A(2πmΔf)P2cos(ΔXc02πmΔf+ϕm).

As a consequence, the signals peak-to-peak amplitude is theoretically only weakly dependent on the number of oscillating modes. On the one hand the lower frequency components are enhanced by the constructive superposition of the modes with the factor (M-m). On the other hand the signal is also proportional to the factor (2πmΔf ). Thus, the higher frequencies are amplified as well. Yet, the low pass characteristics induced by the free carriers, which is considered in the spectral efficiency of the system A(2πmΔf), effectively lower the pulses amplitude for higher bandwidths, since the higher frequency components have smaller amplitudes than the lower ones. The Fig. 3 shows simulated signals based on Eq. (13) for a different number of laser modes M, and identical total power and a resonance free antenna structure.

 

Fig. 3 Simulated waveforms for a different number of modes M. The equidistant frequency spacing is 25GHz and the free carrier lifetime 250fs.

Download Full Size | PPT Slide | PDF

However, the metallization structures of the utilized photoconductive antennas affect the resulting waveform. Consequently, the antennas resonances can be optimized with respect to the employed laser diodes emission bandwidth.

3. System & Experiment

To experimentally verify the above conclusions, we employ a commercial multi mode laser diode operating at a center wavelength of 660nm. Instead of using a custom-tailored laser diode, we utilized an inexpensive device that was produced for the consumer electronic industry. The diode emits multiple laser lines, spaced by a constant difference frequency Δf of about 24GHz. The diodes spectrum which is shown in Fig. 4 exhibits an emission bandwidth of several hundreds of GHz. The total output power is 100mW with an electrical power consumption of 400mW. The laser beam is collimated by a standard low cost polymeric lens. The overall laser device including the driver electronics consumes the space of a laser pointer.

 

Fig. 4 The spectrum of the multi mode cw laser diode utilized to gate the antennas. The frequency difference between the modes of 1THz is visualized.

Download Full Size | PPT Slide | PDF

The laser beam is spitted by a beam splitter into two paths with equal powers. Afterwards, one of the beams is focused onto the emitter antenna. The other one is focused onto the detector antenna after being guided over a linear stage which is utilized as optical delay line. The antennas comprise a 100µm dipole and a 5µm gap without interdigital structures [21]. They are made of standard low temperature (LT)-gallium arsenide (GaAs). This material provides fast recombination times of the optically exited free carriers and is consequently suitable for cw THz systems [29] as well as for the QTDS system discussed there. The emitter antenna is biased with 35V at 4.6kHz and a lock-in amplifier is utilized to enhance the signal-to-noise ratio. The integration time is set to 50ms. Four parabolic off-axis parabolic mirrors are employed for collimating and focusing the THz beam. The Fig. 5 shows a schematic of the setup.

 

Fig. 5 Schematic of the quasi time domain spectrometer: The laser beam is guided over the Mirrors M1 to M3 and focused onto the emitter and detector antenna. The THz wave are collimated and focused by four off axis parabolic mirrors P1 to P4.

Download Full Size | PPT Slide | PDF

4. Results

In the beginning of this section, we will discuss the experimentally obtained THz waveform and its Fourier spectrum. Afterwards, we will highlight the broad applicability of the QTDS approach by demonstrating its suitability for a few practical application scenarios.

The signal obtained with the system is shown in Fig. 6 . As can be seen from the figure, the resulting pulse repetition time is 41ps, which is given by the inverse mode spacing of the utilized diode laser. Please note that this time constant can be optimized for the specific application scenario by choosing a laser diode with the preferred mode spacing. The Fig. 7 shows the corresponding THz spectra for a time window of 82ps and for one of only 41ps. For the latter, the second pulse is not considered within the time window of the measurement. This leads to a smooth spectrum. However, the frequency resolution is determined by the oscillation laser modes. In this case the mode spacing is 24.1GHz. As can be further seen from the spectra, the signal-to-noise ratio of this demonstrator system is in the range of 50 dB and the bandwidth is on the order of 600GHz. The latter is determined by the restricted spectral bandwidth of the employed laser diode and the antenna characteristic, which exhibits its constructive resonance at 500GHz. The second maximum in the pulse shape originates from the back reflections from the dipole ends [30]. The ringing of the ground level is caused by water absorption lines and by back reflections from the contact pads.

 

Fig. 6 The time domain waveform obtained from the system. The signals period TR is 41ps. The dashed lines indicate the time window exploited to determine the spectrum in Fig. 7 (right).

Download Full Size | PPT Slide | PDF

 

Fig. 7 The THz spectrum of the system for a time window of 82ps (left) and 41ps (right).

Download Full Size | PPT Slide | PDF

In analogy to THz TDS measurements, a sample inserted into the THz path induces a delay of the pulses and reduces their amplitude due to reflection and absorption losses. Furthermore, Fabry Pérot (FP) echo pulses occur caused by the multiple reflections within the sample [31,32]. By comparing the reference and the sample measurement, the optical parameters of the sample can be determined.

To demonstrate the applicability of the QTDS approach for material characterization as well as thickness determination, we conduct measurements on a high resistive silicon wafer. The results are presented in Fig. 8 . The figure shows the delayed pulse and two clearly observable echo pulses. This signal can be exploited to analyze the sample by a time domain algorithm recently presented in [33]. By numerically shifting the time axis and by amplitude scaling of the reference pulse to optimally overlap with the samples pulse, the refractive index and the absolute thickness of the sample under investigation can be determined simultaneously.

 

Fig. 8 The waveform from the measurement on a HR Si wafer. The pulse is delayed and its amplitudes is reduced compared to the reference signal. In addition, FP echo pulses occur.

Download Full Size | PPT Slide | PDF

Figure 9 shows on the left the measured waveform compared to the results of the time domain algorithm. A very good agreement is observed. The derived spectrally averaged refractive index of 3.418 and the thickness of 531µm are in accordance to the literate value [14] and the values obtained by a micrometer screw, respectively. Additionally, a frequency domain based algorithm, proposed in [34], was employed to extract the refractive index of the sample from a single measurement over a broad frequency range. The extracted data are shown on the right side of Fig. 9.

 

Fig. 9 Left: Experimental THz signal for the HR SI measurement together with the simulation based on a time domain algorithm to determine the thickness and the refractive index simultaneously. Right: The refractive index of HR Si extracted with a frequency domain algorithm from the measured data.

Download Full Size | PPT Slide | PDF

These results clearly demonstrate that the QTDS approach is suitable to determine the thickness and the dielectric THz properties of samples analogous to TDS systems with both, time domain and frequency domain parameter extraction.

A second potential application of THz systems is the monitoring of the water status of plants [35,36]. A leaf of coffea arabica was detached from the plant and afterwards measured in the system for 6 hours. With time the leaf looses water by evaporation. Consequently, the thickness of the leaf decreases and its THz transmittance increases. Figure 10 shows on the left hand side the amplitude of the transmitted THz pulse (100% corresponds to the pulse amplitude without the leaf in the beam path) which rises with time as the water evaporates. On the right hand side we plot the temporal evolution of the position of the pulse maximum. Both measurands can be exploited to monitor the plant water status.

 

Fig. 10 Measurements results of the detached leafs monitoring: The water loss of the leaf induces an increase of the pulses amplitude (left) and a reduced delay of the pulses maxima (right).

Download Full Size | PPT Slide | PDF

A third promising application of THz spectroscopy systems is the orientation analysis of birefringent samples such as fiber enforced polymers, liquid crystal polymers, paper tissue or optical crystals [3740]. As one example, a 4mm thick LCP sample is measured at different orientation angles. This sample exhibits a distinctive birefringence as shown by the measured refractive index presented on the left side of Fig. 11 . This birefringence induces an extended pulse delay if the THz wave is polarized along the slow axis of the sample. The waveforms for the signals parallel and perpendicular to the slow axis are shown in Fig. 11.

 

Fig. 11 Left: The measured refractive index of the LCP sample for the fast and the slow axis. Right: The waveform of the LCP measurements parallel and perpendicular to the slow axis.

Download Full Size | PPT Slide | PDF

After the samples THz properties have been determined using the procedure described in [34], we use the algorithm presented in [40] to analyze its orientation angle with respect to the slow axis. Figure 12 shows the waveforms for two arbitrarily adjusted orientations together with the simulated signals. A very good agreement allows for a precise orientation analysis.

 

Fig. 12 The measured and simulated waveform for an orientation of 38° (left) and 62° (right).

Download Full Size | PPT Slide | PDF

Overall, the results of theses selective examples suggest that the QTDS approach combines the practically applicability of THz TDS with an unrivaled cost-effectiveness.

5. Conclusion

A new approach for THz spectroscopy systems based on inexpensive, commercially available multimode laser diodes has been proposed. This approach provides signals similar to that of THz TDS systems and is consequently referred to quasi time domain spectroscopy (QTDS). A demonstration system was presented, which exhibits a bandwidth of 600GHz and a signal-to-noise ratio of about 50 dB. The potential of QTDS was demonstrated by means of three examples.

While the presented system performance already allows for a broad applicability, the THz bandwidth could be extended by employing antenna structures with different resonance behavior and laser diodes with broader spectral emission. In conclusion, the QTDS approach carries the potential to foster real world applications of THz technology.

References and links

1. K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

2. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005). [PubMed]  

3. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008). [PubMed]  

4. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).

5. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

6. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling III, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

7. A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “TeraHertz imaging of hidden paint layers on canvas,” Opt. Express 17(5), 3407–3416 (2009). [PubMed]  

8. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

9. H. B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14(1), 415–423 (2006). [PubMed]  

10. S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

11. H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).

12. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008). [PubMed]  

13. M. A. Seo, A. J. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008). [PubMed]  

14. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).

15. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).

16. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).

17. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

18. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

19. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

20. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

21. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008). [PubMed]  

22. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008). [PubMed]  

23. O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).

24. I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

25. K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

26. German patent application, Nr. 10 2009 036 111.1.

27. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

28. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).

29. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

30. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

31. L. Duvillaret, F. Garet, and J. L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999).

32. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18(7), 1562–1571 (2001).

33. M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009).

34. M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).

35. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).

36. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009). [PubMed]  

37. N. C. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005). [PubMed]  

38. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45(12), 2766–2772 (2006). [PubMed]  

39. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

40. C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009). [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).
  2. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [PubMed]
  3. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
    [PubMed]
  4. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
  5. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).
  6. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).
  7. A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “TeraHertz imaging of hidden paint layers on canvas,” Opt. Express 17(5), 3407–3416 (2009).
    [PubMed]
  8. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).
  9. H. B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14(1), 415–423 (2006).
    [PubMed]
  10. S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).
  11. H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
  12. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
    [PubMed]
  13. M. A. Seo, A. J. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
    [PubMed]
  14. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
  15. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
  16. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).
  17. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
  18. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
  19. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
  20. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
  21. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008).
    [PubMed]
  22. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
    [PubMed]
  23. O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).
  24. I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).
  25. K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).
  26. German patent application, Nr. 10 2009 036 111.1.
  27. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
  28. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
  29. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
  30. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).
  31. L. Duvillaret, F. Garet, and J. L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999).
  32. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18(7), 1562–1571 (2001).
  33. M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009).
  34. M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
  35. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
  36. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
    [PubMed]
  37. N. C. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
    [PubMed]
  38. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45(12), 2766–2772 (2006).
    [PubMed]
  39. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
  40. C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
    [PubMed]

2009 (6)

A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “TeraHertz imaging of hidden paint layers on canvas,” Opt. Express 17(5), 3407–3416 (2009).
[PubMed]

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009).

M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[PubMed]

2008 (7)

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008).
[PubMed]

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
[PubMed]

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

M. A. Seo, A. J. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[PubMed]

2007 (4)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

2006 (3)

2005 (4)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[PubMed]

N. C. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
[PubMed]

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

2004 (3)

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

2003 (1)

H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).

2002 (1)

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

2001 (1)

1999 (2)

O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).

L. Duvillaret, F. Garet, and J. L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999).

1998 (2)

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

1997 (1)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).

1996 (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).

1995 (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

1993 (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).

1990 (1)

Adam, A. J.

Adam, A. J. L.

Ahn, K. J.

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Araki, T.

Baraniuk, R. G.

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Bastiaans, G. J.

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Blackshire, J. L.

Blary, K.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

Bocquet, R.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Bohn, M. J.

Breitenstein, B.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

Breitfeld, F.

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).

Calawa, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).

Chen, H.-T.

H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).

Chen, Y.

Cho, G. C.

H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).

Coutaz, J. L.

Crozat, P.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

Cumming, D. R. S.

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).

Deninger, A. J.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

Dik, J.

Dinatale, W. F.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

Dorney, T. D.

Drysdale, T. D.

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

Duerr, E. K.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

Duling, I. N.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Duvillaret, L.

Evans, M. J.

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

Exter, M.

Ezdi, K.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

Fattinger, C.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Fedosejevs, R.

Feiginov, M.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Fukunaga, K.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

Garet, F.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Göbel, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Gregory, I. S.

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

Grischkowsky, D.

Hangyo, M.

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).

Hartnagel, H. L.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Hasek, T.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

Hayashi, S.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

Heinen, B.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

Hillenbrand, R.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Hindle, F.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Hosako, I.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Huber, A. J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Hunsche, S.

S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

Isu, T.

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

Jackson, J. B.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).

Jansen, C.

M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).

Jördens, C.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[PubMed]

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).

Kan, H.

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

Kang, J. H.

Keiding, S.

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Kersting, R.

H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).

Kim, D. S.

Kinder, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Köberle, M.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Koch, M.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[PubMed]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).

M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009).

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008).
[PubMed]

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

Krumbholz, N.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

Lampin, J. F.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Lee, J. W.

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Lippens, D.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Lison, F.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Liu, H. B.

Löffler, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Mangeney, J.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).

Matton, S.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

McIntosh, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).

Meissner, P.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Meloni, S.

Mendis, R.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Menu, M.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Merigault, A.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

Mikulics, M.

Missous, M.

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

Mittelman, D. M.

S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).

T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18(7), 1562–1571 (2001).

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).

Molvar, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

Morikawa, O.

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).

Mouret, G.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Mourou, G. A.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Mourou, M.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Müller-Wirts, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

Nuss, M. C.

S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).

Ogawa, Y.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Park, Q. H.

Peytavit, E.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Planken, P. C.

Planken, P. C. M.

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Reid, M.

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

Roggenbuck, A.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Roskos, H. G.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

Sakai, K.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).

Sawanaka, K.

Scheller, M.

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[PubMed]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009).

M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).

Schönherr, D.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Selmar, D.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

Seo, M. A.

Shibuya, K.

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Sigmund, J.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).

Stoik, C. D.

Sydlo, C.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Tani, M.

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).

Teramura, S.

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

Tomita, N.

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

Tonouchi, M.

O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).

Tribe, W. R.

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

van der Marel, W. A. M.

van der Valk, N. C.

Verghese, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

Vieweg, N.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

Whitaker, J. F.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Wichmann, M.

Wiesauer, K.

Wilk, R.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008).
[PubMed]

Williamson, S. L.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Yamaguchi, M.

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

Yamamoto, K.

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

Yasuda, T.

Yasui, T.

Zerounian, N.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

Zhang, X.-C.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Appl. Opt. (5)

Appl. Phys. B (1)

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).

Appl. Phys. Lett. (11)

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).

O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999).

I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005).

K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007).

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).

K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004).

H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997).

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).

IEICE Electronics Express (1)

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007).

IEICE Trans. Electron. (1)

S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).

J. Appl. Phys. (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).

J. Biol. Phys. (1)

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[PubMed]

J. Europ. Opt. Soc. Rap. Public. (1)

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).

J. of Infrared, Millimeter, and Terahertz Waves (1)

M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Opt. Commun. (2)

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).

Opt. Eng. (1)

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).

Opt. Express (4)

Opt. Lett. (1)

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).

Rev. Sci. Instrum. (1)

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005).

Solid-State Electron. (1)

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).

Other (1)

German patent application, Nr. 10 2009 036 111.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The theoretical waveforms for the case of three THz frequencies (50, 350 and 450GHz) (left) and multiple frequencies (25 to 375GHz in 25GHz steps) (right).

Fig. 2
Fig. 2

The generated difference frequencies Δf interfere constructively in the case of equidistant mode spacing of the laser modes. For this example, the frequency component at 100GHz exhibits an amplification of three and the one at 200 GHz is two times amplified.

Fig. 3
Fig. 3

Simulated waveforms for a different number of modes M. The equidistant frequency spacing is 25GHz and the free carrier lifetime 250fs.

Fig. 4
Fig. 4

The spectrum of the multi mode cw laser diode utilized to gate the antennas. The frequency difference between the modes of 1THz is visualized.

Fig. 5
Fig. 5

Schematic of the quasi time domain spectrometer: The laser beam is guided over the Mirrors M1 to M3 and focused onto the emitter and detector antenna. The THz wave are collimated and focused by four off axis parabolic mirrors P1 to P4.

Fig. 6
Fig. 6

The time domain waveform obtained from the system. The signals period TR is 41ps. The dashed lines indicate the time window exploited to determine the spectrum in Fig. 7 (right).

Fig. 7
Fig. 7

The THz spectrum of the system for a time window of 82ps (left) and 41ps (right).

Fig. 8
Fig. 8

The waveform from the measurement on a HR Si wafer. The pulse is delayed and its amplitudes is reduced compared to the reference signal. In addition, FP echo pulses occur.

Fig. 9
Fig. 9

Left: Experimental THz signal for the HR SI measurement together with the simulation based on a time domain algorithm to determine the thickness and the refractive index simultaneously. Right: The refractive index of HR Si extracted with a frequency domain algorithm from the measured data.

Fig. 10
Fig. 10

Measurements results of the detached leafs monitoring: The water loss of the leaf induces an increase of the pulses amplitude (left) and a reduced delay of the pulses maxima (right).

Fig. 11
Fig. 11

Left: The measured refractive index of the LCP sample for the fast and the slow axis. Right: The waveform of the LCP measurements parallel and perpendicular to the slow axis.

Fig. 12
Fig. 12

The measured and simulated waveform for an orientation of 38° (left) and 62° (right).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ETHz(t)δδtIE(t)δδtGE(t)δδtnE(t,POpt,E(t)).
nE(t)dt=ΩEPOpt,E(t)nE(t)τ,
nE(t)=ΩEτPOpt,E(t)¯(1+sin(ωt)1+ω2τ2).
POpt,E(t)[m=1M(Em(t))]2,
POpt,E(t)[E1sin(ω1t+ϕ1)+E2sin(ω2t+ϕ2)+E3sin(ω3t+ϕ3)]2.
ETHz(t)Δω12AE(Δω12)E1E2cos(Δω12t+ϕ1ϕ2)+Δω13AE(Δω13)E1E3cos(Δω23t+ϕ1ϕ3)+Δω23AE(Δω23)E2E3cos(Δω23t+ϕ2ϕ3),
Δωij:=ωiωj.
ID(ΔX)ETHZ(tΔXc0)GD(t)dt,
ID(ΔX)=Δω12A(Δω12)P1P2cos(ΔXc0Δω12)+Δω13A(Δω13)P1P3cos(ΔXc0Δω13)+Δω23A(Δω23)P2P3cos(ΔXc0Δω23),
ID(ΔX)=Δω12A(Δω12)P1P2cos(ΔXc0Δω12+ϕ12)+Δω13A(Δω13)P1P3cos(ΔXc0Δω13+ϕ13)+Δω23A(Δω23)P2P3cos(ΔXc0Δω23+ϕ23).
ID(ΔX)=m=1M1n=m+1MΔωmnA(Δωmn)PmPncos(ΔXc0Δωmn+ϕmn).
ID(Δω)P2M2,
ID(ΔX)=m=1M1(Mm)M2(2πmΔf)A(2πmΔf)P2cos(ΔXc02πmΔf+ϕm).

Metrics