Abstract

We report both linear and nonlinear optical properties of a ferroelectric thin film of polycrystalline BiFeO3 deposited on a quartz substrate. The linear refraction index and absorption coefficient of the film are determined as a function of light wavelength by optical transmittance measurements. By performing Z-scan experiments with femtosecond laser pulses at a wavelength of 780 nm, the third-order nonlinear refraction index and two-photon absorption (2PA) coefficient are measured to be 1.5×10-4 cm2/GW and 16 cm/GW, respectively. The results indicate that the thin film of polycrystalline BiFeO3 is a promising candidate for applications in nonlinear photonic devices.

©2009 Optical Society of America

1. Introduction

As a new multifunctional material, thin films of BiFeO3 (BFO) have recently received particularly attention due to their potential applications in data storage, spintronics, sensors, actuators, nonvolatile random access memory, and microelectromechanical systems [1]. Researchers have reported the notable physical characteristics of BFO thin films, such as prominent ferroelectricity [2], photoconductivity [3], magnetic and electrical properties [4], ferroelectric and dielectric characteristics [5], and large second-order optical nonlinearities [6]. It has been demonstrated that ferroelectric thin films are promising for applications in nonlinear photonic devices because of their high optical transparency and remarkable optical nonlinearity [711]. However, most of these investigations have been carried out with nanosecond and picosecond laser pulses [710]; and the full understanding on the ultrafast nonlinear optical responses of ferroelectric films is seldom in the literature [11]. Here, we present our experimental investigations into the linear optical properties of a polycrystalline BFO ferroelectric thin film on a quartz substrate and its third-order nonlinear response to femtosecond laser pulses.

2. Experiments and results

The BFO ferroelectric thin film was deposited on the quartz substrate at 650°C by radio-frequency magnetron sputtering. The relevant ceramic target was prepared using conventional solid state reaction method starting with high-purity (>99 %) oxide powders of Bi2O3 and Fe2O3. It is noted that 10 wt % excess bismuth was utilized to compensate for bismuth loss during the preparation. During magnetron sputtering, the Ar/O2 ratio was controlled at 7 : 1. The detailed experimental procedure can be found elsewhere [5]. The X-ray diffraction analysis demonstrated that the sample was a polycrystalline structure of perovskite phase. The observation from the scanning electron microscopy showed that the BFO film and the substrate were distinctive and no evident inter-diffusion occurred between them.

The linear optical properties of the BFO film were studied by optical transmittance measurements. The optical transmittance spectrum of the BFO thin film on the quartz substrate was recorded at room temperature with a spectrophotometer (Shimadzu UV-3600). As shown in Fig. 1, it is clear that the BFO thin film is highly transparent with transmittances between 58% and 91% in the visible and near-infrared wavelength region. Furthermore, the pronounced oscillation in the transmittance spectrum indicates that the BFO thin film has a flat surface and good homogeneity. With these desired qualities, the BFO thin film should be a promising candidate for applications in photonic devices.

 figure: Fig. 1.

Fig. 1. Optical transmittance spectrum of the BFO thin film on the quartz substrate (solid line) and its envelope (dotted lines).

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Wavelength dependence of (a) the linear refractive index and (b) the absorption coefficient of the BFO thin film. The circles are the calculated data and the solid lines are the theoretical fittings by the improved Sellmeier-type formulae [13].

Download Full Size | PPT Slide | PDF

Figure 2 presents both linear refractive index n 0 and absorption coefficient α 0 of the BFO film obtained from the transmittance curve using the envelope technique [12]. The film thickness calculated in this way is determined to be 510±23 nm. At 780 nm, we obtain n 0=2.60 and α 0=1.07×104 cm−1 though the Sellmeier-type dispersion fitting [13], respectively. The optical bandgap (Eg) of the film can be estimated using Tauc’s formulae (α 0 )2/n=Const(hν-Eg), where is the photon energy of incident light, n is determined by the characteristics of electron transitions in a material [14]. From the data displayed in Fig. 3, we obtain n=1 and extrapolate Eg=2.80 eV, indicating that the BFO has a direct bandgap at 443-nm wavelength. The observation is very close to the reported one [6].

 figure: Fig. 3.

Fig. 3. (α0)2 is plotted as a function of photon energy, , or wavelength for the BFO thin film.

Download Full Size | PPT Slide | PDF

The nonlinear-optical measurements were conducted by using conventional Z-scan technique [15] with 780-nm, 350-fs laser pulses at 1 kHz repetition rate. The laser pulses were generated by a Ti:sapphire regenerative amplifier (Quantronix, Titan) and focused onto the sample with a minimum beam waist of 31 µm. The transmitted pulse energies in the presence or absence of an aperture placed in front of the detector at the far field were monitored as the sample was moved along the propagation direction of the laser pulses, giving rise to the closed-aperture (CA) and open-aperture (OA) Z-scans, respectively. For the CA Z-scans, the linear transmittance of the far-field aperture was fixed at 15% by adjusting the aperture radius. The measurement system was calibrated with carbon disulfide. In addition, neither laser-induced damage nor significant scattering signal was observed from our Z-scan measurements.

To exclude the optical nonlinearity from the substrate, we first performed Z-scans on the 1.0-mm-thick quartz substrate. The nonlinear absorption coefficient of α sub 2⋍0 and the third-order refractive index of n sub 2=3.26×10−7 cm2/GW are extracted from the best fittings between the femtosecond-pulsed Z-scan theory [16] and the experimental data illustrated in Fig. 4(a) at I 0=156 GW/cm2. The measured n sub 2 value is independent of I 0 under our experimental conditions and is consistent with the reported one [17]. It should be noted that I0 is the peak intensity within the sample and can be evaluated through the relation I 0=I 00(1-R 1), where I 00 is the peak intensity just before the sample surface and R 1=(n 0−1)2/(n 0+1)2 is the Fresnel reflection coefficient at the air-sample interface. The peak intensity within the substrate for a cascade nonlinear medium of sample and substrate can be yielded from I0=I 0(1-R 2), where R 2=(n 0n sub 0)2/(n 0+n sub 0)2 is the Fresnel reflection coefficient at the sample-substrate interface.

Figure 4(b) displays typical OA and CA Z-scans for the 510-nm-thick BFO thin film on the 1.0-mm-thick quartz substrate at I 0=156 GW/cm2, showing positive signs for both absorptive and refractive nonlinearities, respectively. It should be pointed out that such Z-scan signals arise from the resultant nonlinear response contributed by both the BFO film and the substrate. To separate each contribution, a rigorous analysis of Z-scan data for a cascaded nonlinear medium [18] is adopted as follows. Firstly, under the assumption that both the BFO film and the substrate only exhibit third-order nonlinearities, we evaluate the total nonlinear response of absorptive nonlinearity, q 0, and refractive nonlinearity, Δϕ 0, from the best fittings to the measured Z-scans for the composite system of BFO and quartz with the femtosecond-pulsed Z-scan theory, which is described in detail elsewhere [16]. Such evaluations are carried out for the Z-scans measured at different levels of I 0. Secondly, the nonlinear absorption coefficient α 2 and the nonlinear refraction index n 2 for the BFO film can then be obtained from the following relations: α 2=[q 0/I0-(1-R 2)α sub 2 L sub eff]/L eff and n 2=[Δϕ 0 λ/2πI 0−(1−R 2)n sub 2 L sub eff]/L eff, respectively, where L eff=[1−exp(−α 0 L)]/α 0 is the effective length of the BFO film, λ is the laser wavelength, and R 2 is the Fresnel reflection coefficient at the BFO-substrate interface. As such, the nonlinear coefficients of α 2 and n 2 for the BFO film at different values of I 0 are determined unambiguously and rigorously.

 figure: Fig. 4.

Fig. 4. Examples of Z-scans measured at I 0=156 GW/cm2 for (a) the 1.0-mm-thick quartz substrate and (b) the 510-nm-thick BFO film deposited on the 1.0-mm-thick quartz substrate. Filled and open circles are the OA and CA Z-scans, respectively; and the solid lines are the best-fit curves calculated by the femtosecond-pulsed Z-scan theory [16].

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. Intensity independence of (a) 2PA coefficient α 2 and (b) nonlinear refraction index n 2 for the BFO film.

Download Full Size | PPT Slide | PDF

As displayed in Fig. 5, the values of α 2 and n 2 are independent of the intensity, clearly indicating that the observed nonlinearities are of cubic nature; and α 2=16.0±0.6 cm/GW and n 2=(1.46±0.06)×10−4 cm2/GW at 780 nm. It should be emphasized that the above-said nonlinear coefficients are average values due to the polycrystalline, multi-domain nature of the BFO film. For comparison, Table I lists the nonlinear coefficients of several thin films in the near infrared region under the excitation of femtosecond laser pulses. It suggests that the BFO thin film should have a greater potential for nonlinear photonic devices, compared to the other films.

Tables Icon

Table 1. Femtosecond optical nonlinearities of several thin films in the near infrared region.

From Fig. 4(b), we conclude that the positive nonlinear absorption mainly originates from the 2PA process because (i) the Z-scan theory on two-photon absorbers fits our OA Z-scans well; and (ii) both excitation photon energy (=1.60 eV) and bandgap (Eg=2.80 eV) of the BFO film fulfill the 2PA requirement (<Eg<2). It is also known that the ultrafast femtosecond pulses can eliminate the contribution to the refractive nonlinearity from electrostriction, molecular reorientation, and population redistribution since those effects have a response time much longer than 350 fs [22]. Moreover, accumulative thermal effects are negligible because the experiments were conducted at a low repetition rate of 1 kHz. Consequently, the measured n 2 should directly result from the electronic origin of the refractive nonlinearity in the BFO thin film.

3. Conclusion

In summary, we have investigated the linear optical properties of polycrystalline BFO thin film and its third-order nonlinear response to femtosecond laser pulses. The high optical transparency and large third-order optical nonlinearity show that the BFO thin film is a promising candidate for applications in nonlinear photonic devices.

Acknowledgements

This work was supported in part by the National Science Foundation of China (Grant Number: 10704042) and the National University of Singapore (Grant Number: R-144-000-213-112). Dr Wang Yang is supported by the Singapore Millennium Foundation.

References and links

1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003). [CrossRef]   [PubMed]  

2. K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003). [CrossRef]  

3. S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008). [CrossRef]  

4. A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005). [CrossRef]  

5. Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009). [CrossRef]  

6. A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008). [CrossRef]  

7. H. Shin, H. J. Chang, R. W. Boyd, M. R. Choi, and W. Jo, “Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates,” Opt. Lett. 32, 2453–2455 (2007). [CrossRef]   [PubMed]  

8. B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004). [CrossRef]  

9. W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007). [CrossRef]  

10. T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009). [CrossRef]  

11. S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006). [CrossRef]  

12. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983). [CrossRef]  

13. N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95, 453–458 (2009). [CrossRef]  

14. J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966). [CrossRef]  

15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]  

16. B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47, 1187–1192 (2008). [CrossRef]   [PubMed]  

17. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001). [CrossRef]   [PubMed]  

18. W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003). [CrossRef]  

19. H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004). [CrossRef]  

20. D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007). [CrossRef]  

21. R. Lopez, R. F. Haglund Jr., L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004). [CrossRef]  

22. with contributions by R. L. SutherlandD. G. McLean and S. Kikpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003). [CrossRef]  

References

  • View by:

  1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
    [Crossref] [PubMed]
  2. K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003).
    [Crossref]
  3. S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
    [Crossref]
  4. A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
    [Crossref]
  5. Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
    [Crossref]
  6. A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
    [Crossref]
  7. H. Shin, H. J. Chang, R. W. Boyd, M. R. Choi, and W. Jo, “Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates,” Opt. Lett. 32, 2453–2455 (2007).
    [Crossref] [PubMed]
  8. B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
    [Crossref]
  9. W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
    [Crossref]
  10. T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
    [Crossref]
  11. S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
    [Crossref]
  12. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
    [Crossref]
  13. N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95, 453–458 (2009).
    [Crossref]
  14. J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966).
    [Crossref]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  16. B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47, 1187–1192 (2008).
    [Crossref] [PubMed]
  17. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
    [Crossref] [PubMed]
  18. W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
    [Crossref]
  19. H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
    [Crossref]
  20. D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
    [Crossref]
  21. R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
    [Crossref]
  22. with contributions by R. L. SutherlandD. G. McLean and S. Kikpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003).
    [Crossref]

2009 (3)

Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
[Crossref]

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95, 453–458 (2009).
[Crossref]

2008 (3)

B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47, 1187–1192 (2008).
[Crossref] [PubMed]

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

2007 (3)

H. Shin, H. J. Chang, R. W. Boyd, M. R. Choi, and W. Jo, “Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates,” Opt. Lett. 32, 2453–2455 (2007).
[Crossref] [PubMed]

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

2006 (1)

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

2005 (1)

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

2004 (3)

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

2003 (3)

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003).
[Crossref]

2001 (1)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[Crossref]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Barboza, N. A.

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95, 453–458 (2009).
[Crossref]

Basu, S. R.

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

Bhattacharya, P.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Boatner, L. A.

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

Boyd, R. W.

Burger, A.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Chang, H. J.

Chen, C.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Chen, C. L.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Chen, H.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

Choi, M. R.

Chu, Y. H.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

Collins, R. W.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Cudney, R. S.

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95, 453–458 (2009).
[Crossref]

Cui, Y.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Dadson, J. B.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

de Araujo, R. E.

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

de Araújo, C. B.

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

Denev, S.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Ding, J. P.

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

Elim, H. I.

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

Feldman, L. C.

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

Franco, M.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

Gajek, M.

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

Gao, L.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

Gomes, A. S. L.

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

Gopalan, V.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Gu, B.

B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47, 1187–1192 (2008).
[Crossref] [PubMed]

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

Guzun, D.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Haglund, R. F.

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

Haynes, T. E.

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

He, J. L.

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

Heeg, T.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Huan, C. H. A.

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

Huang, X. Q.

Hunter, D.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Ihlefeld, J.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Ji, H.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

Ji, W.

B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47, 1187–1192 (2008).
[Crossref] [PubMed]

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

Jo, W.

Kassab, L. R. P.

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

Katiyar, R.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Kumar, A.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Leng, W.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

Lim, K. Y.

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

Lin, Y.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Liu, B.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Liu, S. W.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Liu, Z. B.

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Lopez, R.

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

Loutts, G. B.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Lu, H.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Ma, G. H.

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

Martin, L. W.

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Ming, H.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Musfeldt, J. L.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

Mysyrowicz, A.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

Nagarajan, V.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Neaton, J. B.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Ning, T.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Noda, M.

K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003).
[Crossref]

Ogale, S. B.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Okuyama, M.

K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003).
[Crossref]

Orenstein, J.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Peng, X. C.

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

Podraza, N. J.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Prade, B.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

Pradhan, A. K.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Rabe, K. M.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Rai, R. C.

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Ramesh, R.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Ramirez, M.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Rativa, D.

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

Roy, U. N.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Salamo, G. J.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Schlom, D. G.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Sellmyer, D. J.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shin, H.

Sim, C. H.

Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
[Crossref]

Sow, C. H.

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

Spaldin, N. A.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Suchubert, J.

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

Sudrie, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

Sutherland, R. L.

with contributions by R. L. SutherlandD. G. McLean and S. Kikpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[Crossref]

Tang, J.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Tian, J. G.

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Tzortzakis, S.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

Vaithyanathan, V.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Viehland, D.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Waghmare, U. V.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Wang, H. T.

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

Wang, J.

Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
[Crossref]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
[Crossref]

Wang, Y. H.

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wuttig, M.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Xiao, M.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Xu, J.

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

Xu, X.

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

Yang, C.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

Yang, G.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Yun, K. Y.

K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003).
[Crossref]

Zang, W. P.

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Zhang, C. P.

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Zhang, D.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Zhang, G. Y.

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Zhang, J.

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Zhang, K.

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Zheng, H.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Zheng, R. Y.

Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
[Crossref]

Zhou, W. Y.

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Zhou, Y.

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, and G. Yang, “Large optical nonlinearity in CaCu3Ti4O12 thin films,” Appl. Phys. A 94, 567–570 (2009).
[Crossref]

Appl. Phys. B (3)

S. W. Liu, J. Xu, D. Guzun, G. J. Salamo, C. L. Chen, Y. Lin, and M. Xiao, “Nonlinear optical absorption and refraction of epitaxial Ba0.6Sr0.4TiO3 thin films on (001) MgO substrates,” Appl. Phys. B 82, 443–447 (2006).
[Crossref]

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95, 453–458 (2009).
[Crossref]

W. P. Zang, J. G. Tian, Z. B. Liu, W. Y. Zhou, C. P. Zhang, and G. Y. Zhang, “Study on Z-scan characteristics of cascaded nonlinear media,” Appl. Phys. B 77, 529–533 (2003).
[Crossref]

Appl. Phys. Lett. (7)

H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Appl. Phys. Lett. 85, 1799–1801 (2004).
[Crossref]

D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films,” Appl. Phys. Lett. 90, 231906 (2007).
[Crossref]

R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett. 85, 5191–5193 (2004).
[Crossref]

K. Y. Yun, M. Noda, and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett. 83, 3981–3983 (2003).
[Crossref]

S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, “Photoconductivity in BiFeO3 thin films,” Appl. Phys. Lett. 92, 091905 (2008).
[Crossref]

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Suchubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92, 121915 (2008).
[Crossref]

B. Gu, Y. H. Wang, X. C. Peng, J. P. Ding, J. L. He, and H. T. Wang, “Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film,” Appl. Phys. Lett. 85, 3687–3689 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. Appl. Phys. (2)

A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).
[Crossref]

Y. Wang, R. Y. Zheng, C. H. Sim, and J. Wang, “Charged defects and their effects on electrical behavior in Bi1-xLaxFeO3 thin films,” J. Appl. Phys. 105, 016106 (2009).
[Crossref]

J. Mater. Sci: Mater. Electron. (1)

W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, and L. Gao, “Linear and nonlinear optical properties of RF sputtered (Pb,La)(Zr,Ti)O3 ferroelectric thin films,” J. Mater. Sci: Mater. Electron. 18, 887–892 (2007).
[Crossref]

J. Phys. E: Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[Crossref] [PubMed]

Phys. Stat. Sol. (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Stat. Sol. 15, 627–637 (1966).
[Crossref]

Science (1)

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref] [PubMed]

Other (1)

with contributions by R. L. SutherlandD. G. McLean and S. Kikpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Optical transmittance spectrum of the BFO thin film on the quartz substrate (solid line) and its envelope (dotted lines).
Fig. 2.
Fig. 2. Wavelength dependence of (a) the linear refractive index and (b) the absorption coefficient of the BFO thin film. The circles are the calculated data and the solid lines are the theoretical fittings by the improved Sellmeier-type formulae [13].
Fig. 3.
Fig. 3. (α0)2 is plotted as a function of photon energy, , or wavelength for the BFO thin film.
Fig. 4.
Fig. 4. Examples of Z-scans measured at I 0=156 GW/cm2 for (a) the 1.0-mm-thick quartz substrate and (b) the 510-nm-thick BFO film deposited on the 1.0-mm-thick quartz substrate. Filled and open circles are the OA and CA Z-scans, respectively; and the solid lines are the best-fit curves calculated by the femtosecond-pulsed Z-scan theory [16].
Fig. 5.
Fig. 5. Intensity independence of (a) 2PA coefficient α 2 and (b) nonlinear refraction index n 2 for the BFO film.

Tables (1)

Tables Icon

Table 1. Femtosecond optical nonlinearities of several thin films in the near infrared region.

Metrics