Abstract

This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are ‘invisible’ to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being ‘visible’. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance.

©2008 Optical Society of America

1. Introduction

The widespread interest in the invisibility of objects has led to the recent development in electromagnetic cloaking structures. Pendry et al. proposed an electromagnetic material through which electromagnetic fields can be controlled and manipulated to propagate around its interior region like the flow of water [1], hence objects placed inside become ‘invisible’ to external electromagnetic fields. The proposed cloaking structure in [1] requires inhomogeneous and anisotropic media, with both permittivity and permeability independently controlled and radially dependent. The magnitudes of the relative permittivity and permeability of the perfect cloak are less than one, therefore it cannot be constructed using naturally existing materials. The recent development of metamaterials [2] (artificially engineered structures with exotic electromagnetic properties which cannot be obtained naturally) allows the control of material parameters with freedom, and hence the construction of such cloaking structures. However same as the negative-index metamaterials [2], the cloaking materials are inevitably dispersive and therefore band-limited. Furthermore, the complete set of material parameters proposed in [1] requires the control of all the components of permittivity and permeability of the material, making it difficult for practical realization. It has been proposed to use reduced sets of material parameters for both transverse electric (TE) [3] and transverse magnetic (TM) [4] cases. The reduced set of material parameters for the TM case eliminates the dependence on the material’s magnetic property, which is especially important for the realization of the cloak in the optical frequency range due to the absence of optical magnetism in nature. However, considerable reflections occur because of the impedance mismatch at the outer boundary of such a simplified cloak. Under the assumption of the geometric optics, a high-order transformation has been proposed in [5] to improve the performance and minimize the scattering introduced by the cloak.

The development of Pendry’s cloak is based on the coordinate transformation technique [1, 6], which has also evoked other research topics such as the design of magnifying perfect and super lenses [7], the transformation media that rotate electromagnetic fields [8], the design of reflectionless complex media for shifting and splitting optical beams [9], and the design of conformal antennas [10] etc. The spatial transformation technique has also been applied to analyze eccentric elliptic cloaks [11] and for acoustic cloaking [12, 13]. Other theoretical studies of the cloaking structure include the sensitivity of an ideal cloak to tiny perturbations [14], the performance of the cylindrical cloaks with simplified material parameters [15, 16, 17], the realization of cloaking using a concentric layered structure of homogeneous isotropic materials [18], the improvement of the cloaking performance using soft-and-hard surface lining [19], and the broadband cloaking using sensors and active sources near the surface of a region [20] etc. The experimental demonstration of a simplified cloak consisting of split-ring resonators (SRRs) has been reported in microwave frequencies [21]. For the optical frequency range, the cloak can be constructed by embedding silver wires in a dielectric medium [4], or using a gold-dielectric concentric layered structure [22].

It is worth mentioning that there exist different approaches to render objects invisible, for example, by canceling the dipolar scattering using plasmonic coatings [23, 24], and using a left-handed media (LHM) coating [25, 26]. However, the plasmonic coating approach is limited to the sub-wavelength scale of the object, and the coating depends on the geometry and material parameters of the object to be cloaked; the cloaking performance using LHM coating is affected by the objects placed inside. In comparison to these different approaches, Pendry’s cloak is more general and can be applied to objects with any dimensions and under any wavelength condition.

The modeling of Pendry’s invisible cloak has been performed by using both analytical and numerical methods. Besides the widely used coordinate transformation technique [1, 6, 7, 8, 9, 10, 11, 12, 13, 16, 27], a cylindrical wave expansion technique [14], and a method based on the full-wave Mie scattering model [28] have also been applied. In addition, the full-wave finite element method (FEM) based commercial simulation package COMSOL Multiphysics™ has been extensively used to model different cloaks and validate theoretical predictions [3, 4, 5, 11, 16] due to its ability of dealing with anisotropic and radial dependent material parameters. While most of the numerical simulations have been performed in the frequency domain, little attention has been paid to the time-domain analysis of the cloaks. Frequency domain techniques such as FEM may become inefficient when wideband solutions are needed. So far the only time-domain analysis of the cloak is presented in [29] using a time-dependent scattering theory. In this paper, we propose a dispersive finite-difference time-domain (FDTD) method to deal with both the frequency and radial dependent permittivity and permeability of the cloak. Due to its simplicity in implementation and ability of treating anisotropic and inhomogeneous materials, the FDTD method has been extremely popular for the analysis of waveguides, transmission lines and antennas as well as the calculation of dispersion diagrams of photonic crystals in both microwave and optical communities. The aim of this paper is to provide a full-wave FDTD solution to assist the analysis, design and optimization of the cloaking structures. To the authors’ knowledge, it is the first time that the FDTD method is implemented to model cloaking structures.

2. Dispersive FDTD modeling of the cloaking structure

A complete set of material parameters of the ideal cloak is given by [1]:

εr=μr=rR1r,εϕ=μϕ=rrR1,εz=μz=(R2R2R1)2rR1r,

where R 1 and R 2 are the inner and outer radius of the cloak, respectively. It can be easily identified from (1) that the ranges of permittivity and the permeability within the cloak are εr,µr∈[0, (R 2-R 1)/R 2], εϕ,µϕ ∈ [R 2/(R 2-R 1),∞] and εz,µz ∈ [0,R 2/(R 2-R 1)]. Since the values of εr, µr, εz and µz are less than one, same as the case for the LHMs, the cloak cannot be directly modeled using the conventional FDTD method with constant material parameters (at one particular location r). However, one can map the material parameters using dispersive material models e.g. Drude model (taking εr as an example)

εr(ω)=1ωp2ω2jωγ,

where ωp and γ are the plasma and collision frequencies of the material, respectively. By varying the plasma frequency, the radial dependent material parameters (1) can be achieved. For example, for the ideal lossless case considered in this paper i.e. the collision frequency in (2) is equal to zero (γ=0), the radial dependent plasma frequency can be calculated using ωp=ω1εr with a given value of εr calculated from (1). Note that in practice, the plasma frequency of the material depends on the periodicity of the SRRs [21] or wires [4], which varies along the radial direction. It should be noted that other dispersive material models (e.g. Debye, Lorentz etc.) can be also considered for the modeling of electromagnetic cloaks. However, the Drude model has the simplest form when implemented using the dispersive FDTD method and has been widely used in the modeling of metamaterials. The Lorentze model can be also used in the simulation with some additional modifications to the FDTD iterative equations. The Debye model may be less accurate to characterize the dispersion behavior of metamaterials and seldom used in the community.

Since the conventional FDTD method [30, 31] deals with frequency-independent materials, the frequency-dependent FDTD method is hence referred as the dispersive FDTD method [32, 33, 34]. For simplicity, in this paper, we have implemented the dispersive FDTD method for a two-dimensional (2-D) case and only three field components are non-zero: Ex, Ey and Hz. The modeled cloak is cylindrical and infinite along z-direction (µr=µϕ=εz=0 in (1)), however an extension to a three-dimensional (3-D) FDTD method to model a 3-D cloak [1] is straightforward. There are also different dispersive FDTD methods using different approaches to deal with frequency-dependent material parameters: the recursive convolution (RC) method [32], the auxiliary differential equation (ADE) method [33] and the Z-transform method [34]. Due to its simplicity, we have chosen the ADE method for the modeling of the cloak.

The ADE dispersive FDTD method is based on the Faraday’s and Ampere’s Laws:

×E=Bt,
×H=Dt,

as well as the constitutive relations D=ε E and B=µ H where ε and µ are expressed by (1). Equations (3) and (4) can be discretized following a normal procedure [30, 31] which leads to the conventional FDTD updating equations:

Bn+1=BnΔt·˜×En+12,
Dn+1=Dn+Δt·˜×Hn+12,

where ˜ is the discrete curl operator, Δt is the discrete FDTD time step and n is the number of the time steps.

In addition, auxiliary differential equations have to be taken into account and they can be discretized through the following steps. For the conventional Cartesian FDTD mesh, since the material parameters given in (1) are in cylindrical coordinates, the coordinate transformation

[εxxεxyεyxεyy]=[εrcos2ϕ+εϕsin2ϕ(εrεϕ)sinϕcosϕ(εrεϕ)sinϕcosϕεrsin2ϕ+εϕcos2ϕ]

is used. The tensor form of the constitutive relation is given by

ε0[εxxεxyεyxεyy][ExEy]=[DxDy]ε0[ExEy]=[εxxεxyεyxεyy]1[DxDy],

where

[εxxεxyεyxεyy]1=1εrεϕ[εrsin2ϕ+εϕcos2ϕ(εϕεr)sinϕcosϕ(εϕεr)sinϕcosϕεrcos2ϕ+εϕsin2ϕ].

Note that the inverse of the permittivity tensor matrix exists only when εr≠0 and εϕ≠0, which is not the case for the inner boundary of the cloak. In our FDTD simulations, we place a perfect electric conductor (PEC) cylinder with radius equal to R 1 inside the cloak to guarantee the validity of (9).

Substituting (9) into (8) gives

{εrεϕε0Ex=(εrsin2ϕ+εϕcos2ϕ)Dx+(εϕεr)sinϕcosϕDyεrεϕε0Ey=(εrcos2ϕ+εϕsin2ϕ)Dy+(εϕεr)sinϕcosϕDx,

Express εr in the Drude form of (1), Eq. (10) can be written as

{ε0εϕ(ω2jωγωp2)Ex=[(ω2jωγωp2)sin2ϕ+εϕ(ω2jωγ)cos2ϕ]Dx+[εϕ(ω2jωγ)(ω2jωγωp2)]sinϕcosϕDy,ε0εϕ(ω2jωγωp2)Ey=[(ω2jωγωp2)cos2ϕ+εϕ(ω2jωγ)sin2ϕ]Dy+[εϕ(ω2jωγ)(ω2jωγωp2)]sinϕcosϕDx.

Notice that εϕ remains in (11) because its value is always greater than one (except at the inner surface of the cloak) and can be directly used in conventional FDTD updating equations [30, 31]. Using an inverse Fourier transform and the following rules:

jωt,ω22t2,

the first equation of (11) can be rewritten in the time domain as

ε0εϕ(2t2+γt+ωp2)Ex=[(2t2+γt+ωp2)sin2ϕ+εϕ(2t2+γt)cos2ϕ]Dx
+[εϕ(2t2+γt)(2t2+γt+ωp2)]sinϕcosϕDy.

The FDTD simulation domain is represented by an equally spaced 3-D grid with periods Δx, Δy and Δz along x-, y- and z-directions, respectively. For the discretization of Eq. (13), we use the central finite difference operators in time (δt and δ 2 t) and the central average operator with respect to time (µt and µ 2 t):

2t2δt2(Δt)2,tδtΔtμt,ωp2ωp2μt2,

where the operators δt, δ 2 t, µt and µ 2 t are defined as in [35]:

δtFmx,my,mznFmx,my,mzn+12Fmx,my,mzn12,
δt2Fmx,my,mznFmx,my,mzn+12Fmx,my,mzn+Fmx,my,mzn1,
μtFmx,my,mznFmx,my,mzn+12+Fmx,my,mzn122,
μt2Fmx,my,mznFmx,my,mzn+1+2Fmx,my,mzn+Fmx,my,mzn14.

Here F represents field components and mx,my,mz are indices corresponding to a certain discretization point in the FDTD domain. The discretized Eq. (13) reads

ε0εϕ[δt2(Δt)2+γδtΔtμt+ωp2μt2]Ex={[δt2(Δt)2+γδtΔtμt+ωp2μt2]sin2ϕ
+εϕ[δt2(Δt)2+γδtΔtμt]cos2ϕ}Dx+{εϕ[δt2(Δt)2+γδtΔtμt]
[δt2(Δt)2+γδtΔtμt+ωp2μt2]}sinϕcosϕDy.

Note that in (15), the discretization of the term ω 2 p of (13) is performed using the central average operator µ 2 t in order to guarantee an improved stability; the central average operator µt is used for the term containing γ to preserve the second-order feature of the equation. Equation (15) can be written as

ε0εϕ[Exn+12Exn+Exn1(Δt)2+γExn+1Exn12Δt+ωp2Exn+1+2Exn+Exn14]
=sin2ϕ[Dxn+12Dxn+Dxn1(Δt)2+γDxn+1Dxn12Δt+ωp2Dxn+1+2Dxn+Dxn14]
+εϕcos2ϕ[Dxn+12Dxn+Dxn1(Δt)2+γDxn+1Dxn12Δt]
+sinϕcosϕ{εϕ[Dyn+12Dyn+Dyn1(Δt)2+γDyn+1Dyn12Δt]
[Dyn+12Dyn+Dyn1(Δt)2+γDyn+1Dyn12Δt+ωp2Dyn+1+2Dyn+Dyn14]}.

Therefore the updating equation for Ex can be obtained as

Exn+1=[axDxn+1+bxDxn+cxDxn1+dxDy¯n+1+exDy¯n+fxDy¯n1(gxExn+hxExn1)]lx.

where the coefficients ax to lx are given by

ax=sin2ϕ[1(Δt)2+γ2Δt+ωp24]+εϕcos2ϕ[1(Δt)2+γ2Δt],
bx=sin2ϕ[2(Δt)2+ωp22]εϕcos2ϕ2(Δt)2,
cx=sin2ϕ[1(Δt)2γ2Δt+ωp24]+εϕcos2ϕ[1(Δt)2γ2Δt],
dx={εϕ[1(Δt)2+γ2Δt][1(Δt)2+γ2Δt+ωp24]}sinϕcosϕ,
ex={εϕ[2(Δt)2][2(Δt)2+ωp22]}sinϕcosϕ,
fx={εϕ[1(Δt)2γ2Δt][1(Δt)2γ2Δt+ωp24]}sinϕcosϕ,
gx=ε0εϕ[2(Δt)2+ωp22],   hx=ε0εϕ[1(Δt)2γ2Δt+ωp24],   lx=ε0εϕ[1(Δt)2+γ2Δt+ωp24].

Following the same procedure, the updating equation for Ey is

Eyn+1=[ayDyn+1+byDyn+cyDyn1+dyDx¯n+1+eyDx¯n+fyDx¯n1(gyEyn+hyEyn1)]ly.

where the coefficients ay to ly are given by

ay=cos2ϕ[1(Δt)2+γ2Δt+ωp24]+εϕsin2ϕ[1(Δt)2+γ2Δt],
by=cos2ϕ[2(Δt)2+ωp22]εϕsin2ϕ2(Δt)2,
cy=cos2ϕ[1(Δt)2γ2Δt+ωp24]+εϕsin2ϕ[1(Δt)2γ2Δt],
dy={εϕ[1(Δt)2+γ2Δt][1(Δt)2+γ2Δt+ωp24]}sinϕcosϕ,
ey={εϕ[2(Δt)2][2(Δt)2+ωp22]}sinϕcosϕ,
fy={εϕ[1(Δt)2γ2Δt][1(Δt)2γ2Δt+ωp24]}sinϕcosϕ,
gy=ε0εϕ[2(Δt)2+ωp22],hy=ε0εϕ[1(Δt)2γ2Δt+ωp24],ly=ε0εϕ[1(Δt)2+γ2Δt+ωp24].

Note that the field quantities Dx¯ in (18) and Dy¯ in (17) are locally averaged values of Dx and Dy, respectively since the x- and y-components of the field are in different locations in the FDTD domain. The averaged values can be calculated using [36]

Dx¯(i,j)=Dx(i,j)+Dx(i,j+1)+Dx(i1,j)+Dx(i1,j+1)4,
Dy¯(i,j)=Dy(i,j)+Dy(i+1,j)+Dy(i,j1)+Dy(i+1,j1)4,

where (i, j) is the coordinate of the field component.

The magnetic field Hz can be calculated by starting from the constitutive relation Bz=µz Hz, where µz is defined in (1). Again we map the permeability using the Drude model

μz(ω)=A(1ωpm2ω2jωγm),

where we choose A=R 2/(R 2-R 1), and ωpm and γm are the magnetic plasma and collision frequencies of the material, respectively. Following the above discretization procedure, the updating equation for Hz can be derived as

Hzn+1=1A{[1μ0(Δt)2+γm2μ0Δt]Bzn+12μ0(Δt)2Bzn+[1μ0(Δt)2γm2μ0Δt]Bzn1+A[2(Δt)2ωpm22]H2nA[1(Δt)2γm2Δt+ωpm24]Hzn1}[1(Δt)2+γm2Δt+ωpm24]..

Equations (5), (6), (17), (18) and (21) form an FDTD updating equation set for the well-known leap-frog scheme [30].

Since the FDTD method is inherently a numerical technique, the spatial as well as time discretizations have important effects on the accuracy of simulation results. Also because the permittivity/permeability is frequency dependent, one can expect a slight difference between the analytical and numerical material parameters due to the discrete time step in FDTD. In general, for the modeling of conventional dielectrics with the relative permittivity/permeability greater than one, a spatial resolution (FDTD cell size) of Δx<λ/10 is required [31]. However from our previous analysis [38] that for the modeling of metamaterials especially LHMs, the numerical errors due to the time discretization will cause spurious resonances, hence a requirement of Δx<λ/80 is necessary. For the case of the cloak, following the same approach as in [38] and for the case of plane-waves, substituting

En=EejnωΔt,Dn=DejnωΔt,

into Eq. (16), and comparing the resulting equation with the first equation of (10) one can find that εϕ~ (numerical permittivity along ϕ direction) has the exact analytical value, while εr~ (numerical permittivity along radial directions) takes the following form:

εr~=ε0[1ωp2(Δt)2cos2ωΔt22sinωΔt2(2sinωΔt2jγΔtcosωΔt2)].

Note that Eq. (23) simplifies to the Drude dispersion model (2) when Δt→0. We plot the comparison between the analytical (2) and numerical relative permittivity (23) for the case of εr=0.1 (lossless) in Fig. 1. It is apparent that the conventional requirement of FDTD spatial resolution does not guarantee the accuracy for the modeling of the cloaks, and even for the case of Δx=λ/40, the numerical error is still about 2%.

With the expression of the numerical permittivity (23) available, one can correct the errors introduced by the discrepancy between numerical and analytical material parameters. For example, if the required permittivity is εr=εr+r, after simple derivations, the corrected plasma and collision frequencies can be calculated as

ωp2~=2sinωΔt2[2(εr1)sinωΔt2εrγΔtcosωΔt2](Δt)2cos2ωΔt2,γ~=2εrsinωΔt2(εr1)ΔtcosωΔt2.
 figure: Fig. 1.

Fig. 1. The comparison between the analytical (2) and numerical material parameters (23) for different FDTD spatial resolutions for the case of εr=0.1 (lossless).

Download Full Size | PPT Slide | PDF

It is found from our FDTD simulations with Δx=λ/35 that without the correction of numerical material parameters, the simulation becomes unstable before reaching the steady-state. The cause of such an instability is currently under our investigation. On the other hand, the correction of material parameters (both permittivity and permeability) guarantees stable FDTD simulations. Therefore in the following, the corrected material parameters (24) are always used.

3. Numerical results and discussion

The 2-D FDTD simulation domain is shown in Fig. 2. The following parameters are used in the simulations: FDTD cell size Δxy=λ/150 where λ is the wavelength at the operating frequency f=2.0 GHz, and the time step Δtx/√2c, chosen according to the Courant stability criterion [31]. In the present paper, we assume the ideal lossless case i.e. the collision frequency in (2) is equal to zero (γ=0). The radial dependent plasma frequency can be calculated using (24) with a given value of εr calculated from (1). The radii of the cloak are: R 1=0.1 m and R 2=0.2 m. The computation domain is truncated using Berenger’s perfectly matched layer (PML) [37] in x-direction to absorb waves leaving the computation domain without introducing reflections, and terminated with the periodic boundary conditions (PBCs) in y-direction for the modeling of a plane-wave source. The plane-wave source is implemented by specifying a complete column of FDTD cells using a certain wave function (sinusoidal source in our case), see Fig. 2.

 figure: Fig. 2.

Fig. 2. A two-dimensional (2-D) FDTD simulation domain for the case of plane-wave incidence on the cloak.

Download Full Size | PPT Slide | PDF

First we consider the ideal cloak, whose material parameters are given by (1) with µr=µϕ=εz=0. Figure 3 shows the distributions of the electric and magnetic field components calculated from the dispersive FDTD simulation of the ideal cloak. Note that only the central part of the simulation domain is shown and the actual computation domain is larger. It is seen in Fig. 3(b), (c) and (d) that the distribution is in good agreement with those in [3, 4] calculated using frequency domain methods, although there are some tiny ripples in the magnetic field. In fact the field distribution presented in [3] shows even stronger ripples which may be due to the inadequate spatial resolution used in the calculation. These ripples are purely numerical and will disappear when an extremely fine FDTD grid is used. In our case, the slight ripples are also caused by the staircase approximation of the circular surface of the cloak in the Cartesian coordinate system. There are also non-zero scattered fields in the x-component of the electric field outside the cloak (see Fig. 3(b)), which is also a sign of numerical errors because an ideal cloak does not introduce any scattering outside the cloak. The staircase approximation only causes a very small amount of numerical errors due to the fine mesh used in our simulations. The staircase problem can be further alleviated to improve the accuracy of simulations using a conformal scheme in addition to the dispersive FDTD method i.e. using an effective permittivity at material boundaries, as it was done for the case of isotropic dispersive materials at planar [38] and curved boundaries [39]. However, the difficulty lies in the anisotropy of the cloaking material, which leads to an eighth-order differential equation to be discretized (the order of the differential equation for the case of isotropic dispersive materials is four [39]).

 figure: Fig. 3.

Fig. 3. (a) Material parameters for an infinite ideal cylindrical cloak [3] where all εr, εϕ and µz are radial dependent. (b), (c) and (d) Field distributions from dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field and (d) the magnetic field. [Media 1]

Download Full Size | PPT Slide | PDF

As mentioned previously, it is difficult to realize the ideal cloak with all the components of permittivity and permeability being radial dependent. Therefore it is proposed in [4] that while keeping the same wave trajectory, a reduced set of material parameters also allows to construct a simplified cloak. The reduced set of material parameters is given by [4]:

εr=(R2R2R1)2(rR1r)2,εϕ=(R2R2R1)2,μz=1.

Following the same procedure, we have also modified the above proposed dispersive FDTD method to model the reduced set of material parameters and analyzed its cloaking performance. The dimensions of the simplified cloak remain the same as the ideal one. The field distributions in the steady-state of the simulation are plotted in Fig. 4. Such a cloak significantly reduces the complexity of practical realization since only εr is radial dependent, as shown in Fig. 4(a). However, considerable reflections occur due to the fact that the impedance matching at the outer boundary of the simplified cloak is not satisfied anymore, see Fig. 4(b) and (d). Interestingly, the y-component of the electric field is only affected slightly by the scattered field. Note that here we only consider the simplified non-magnetic cloak [4], the simplified cloak proposed in [3] can be modeled in a similar way.

 figure: Fig. 4.

Fig. 4. (a) Material parameters for an infinite simplified cylindrical cloak using a linear transformation [4] where only εr is radial dependent. (b), (c) and (d) Field distributions from dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field and (d) the magnetic field. [Media 2]

Download Full Size | PPT Slide | PDF

The scattering from the simplified cloak (25) due to the impedance mismatch can be reduced by using an improved cloak based on a high-order transformation [5]. The material parameters are given by [5]

εr=(rr)2,εϕ=[g(r)r]2,μz=1.

where r=g(r′)=[(R 1/R 2)(r′/R 2-2)+1]r′+R 1. We have also modeled such a cloak and plotted the field distributions in Fig. 5. Its dimensions are kept the same as the previous two cases. In fact the dimensions of this cloak is at its limit since it is required to have R 1/R 2<0.5 to guarantee a monotonic transformation [5]. The improved cloak adds an additional dependency of the permittivity on the radius, as shown in Fig. 5(a). It is clear that indeed the simplified cloak based on the high-order transformation has an improved impedance on its outer boundary and hence considerably reduces the scattered field. Notice that the wavefront only starts to bend near the inner surface of the cloak, in comparison to the case for the ideal cloak shown in Fig. 3. This is due to the slow variance of the impedance from the outer boundary towards the inner surface of the cloak.

 figure: Fig. 5.

Fig. 5. (a) Material parameters for an infinite simplified cylindrical cloak using a high-order transformation [5] where only εr and εϕ are radial dependent. (b), (c) and (d) Field distributions from dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field and (d) the magnetic field. [Media 3]

Download Full Size | PPT Slide | PDF

For demonstration, we have also plotted the power flow diagrams as well as the scattering patterns in Fig. 6 for the above ideal cloak, the simplified cloak based on the linear transformation, and the simplified cloak based on the high-order transformation. The power flow diagrams show that for the ideal case (Fig. 6(a)), the wavefront enters the cloak smoothly, bends around the central region and returns to its original pattern after leaving the cloak. The cloak based on the high-order transformation (Fig. 6(c)) shows a similar pattern with a smooth bending of the wavefront near the central region of the cloak. However due to reflections, the power flow is disturbed before entering the cloak, while the wavefront leaving the cloak has a relatively smoother distribution. For the case of the cloak based on the linear transformation as shown in Fig. 6(b), the waves do not strictly follow the trend of the bending inside the cloak and propagate in arbitrary directions. The consequence is that the external field is significantly disturbed. This can be clearly identified from the scattering patterns. The scattering pattern is calculated with the reference to the free space case without any cloak or objects, and then normalized to the scattering pattern of a PEC cylinder without any cloak, see Fig. 6(d). For all the cloaks, the scattering at the back of the cloak (relative to the direction of wave incidence) is dramatically reduced. However the level of scattered field for the linear cloak is almost the same as the case for a PEC cylinder without any cloak, leading to the conclusion that the object placed inside this simplified cloak can be detected from its front side, similar to the conclusion drawn in [15]. For the simplified cloak based on the high-order transformation, the scattering is reduced by around four times comparing with the simplified cloak based on the linear transformation. Theoretically the ideal cloak has zero scattered field, however the nonzero (small) values in Fig. 6(d) is mainly caused by the staircase approximation in FDTD simulations, and will approach zero when an extremely fine FDTD grid is used or a conformal scheme is employed, as mentioned earlier.

 figure: Fig. 6.

Fig. 6. Power flow diagrams for (a) the ideal cloak [3], (b) the simplified cloak based on the linear transformation [4] and (c) the simplified cloak based on the high-order transformation [5]. (d) Comparison of the scattering patterns for different cloaks and for the case of the PEC cylinder without cloak: black solid line - PEC cylinder; yellow dot-dashed line - the simplified cloak based on the linear transformation; blue dashed line - the simplified cloak based on the high-order transformation; red solid line - the ideal cloak.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have proposed a dispersive FDTD method for the modeling of cloaking structures. The unusual material parameters (the relative magnitudes of the permittivity and permeability are less than one) are mapped to the Drude dispersion model, which is then taken into account in FDTD simulations using an auxiliary differential equation based method. The proposed method is implemented in a two-dimensional case and three different cylindrical cloaks are considered in our simulations: the ideal cloak, the simplified cloak based on the linear transformation and the simplified cloak based on the high-order transformation. It is found from the simulations that the cloak based on the linear transformation introduces a level of back scattering similar to the one of a PEC cylinder without the cloak, causing the possibility of the object being detected. Such scattering can be significantly reduced by using the simplified cloak based on the high-order transformation. In this paper we have only considered lossless cloaks. The ‘ideal’ cloak with a material loss of tan δ=0.1 has been modeled in [3] using the finite element method, and the case for tan δ=0.01, 0.1 and 1 modeled in [28] using a full-wave Mie scattering theory. Lossy cloaks can be also directly modeled using the above proposed dispersive FDTD method by specifying a certain value for the collision frequency in the Drude model for εr and defining a dielectric loss for εϕ. Furthermore, this paper has demonstrated the first FDTD modeling of electromagnetic cloaks at fixed frequencies in comparison with those published results obtained from a frequency domain technique. A wideband Gaussian pulse excitation can be readily deployed in FDTD simulations to tackle the bandwidth issue of the cloaks, which is currently under our investigation and will be presented in a subsequent publication.

References and links

1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]   [PubMed]  

2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and µ,” Sov. Phys. Usp. 10, 509 (1968). [CrossRef]  

3. S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]  

4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]  

5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]  

6. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]   [PubMed]  

7. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008). [CrossRef]  

8. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]  

9. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef]   [PubMed]  

10. Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

11. D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008). [CrossRef]  

12. S. A Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007). [CrossRef]  

13. H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007). [CrossRef]  

14. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007). [CrossRef]   [PubMed]  

15. M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007). [CrossRef]  

16. G. Isic, R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, “Radiation and scattering from imperfect cylindrical electromagnetic cloaks,” Opt. Express 16, 1413–1422 (2008). [CrossRef]   [PubMed]  

17. B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007). [CrossRef]  

18. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007). [CrossRef]   [PubMed]  

19. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Improvement of cylindrical cloaking with the SHS lining,” Opt. Express 15, 12717–12734 (2007). [CrossRef]   [PubMed]  

20. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006). [CrossRef]   [PubMed]  

21. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]   [PubMed]  

22. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Electromagnetic cloaking in the visible frequency range,” ArXiv.org:0709.2862v2 (2007).

23. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]  

24. M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007). [CrossRef]  

25. G. W. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006). [CrossRef]  

26. H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007). [CrossRef]  

27. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006). [CrossRef]   [PubMed]  

28. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007). [CrossRef]   [PubMed]  

29. R. Weder, “A rigorous time-domain analysis of fullwave electromagnetic cloaking (Invisibility),” ArXiv.org:0704.0248v4 (2007).

30. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]  

31. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Norwood, MA: Artech House, 2000).

32. R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990). [CrossRef]  

33. O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993). [CrossRef]  

34. D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992). [CrossRef]  

35. F. B. Hildebrand, Introduction to Numerical Analysis (New York: Mc-Graw-Hill, 1956).

36. J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces,” Microw. Opt. Tech. Lett. 23, 245–249 (1999). [CrossRef]  

37. J. R. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994). [CrossRef]  

38. Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007). [CrossRef]  

39. Y. Zhao and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. 55, 3070–3077 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
    [Crossref]
  3. S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
    [Crossref]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [Crossref]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
    [Crossref]
  6. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref] [PubMed]
  7. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
    [Crossref]
  8. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
    [Crossref]
  9. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
    [Crossref] [PubMed]
  10. Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).
  11. D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008).
    [Crossref]
  12. S. A Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
    [Crossref]
  13. H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
    [Crossref]
  14. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
    [Crossref] [PubMed]
  15. M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
    [Crossref]
  16. G. Isic, R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, “Radiation and scattering from imperfect cylindrical electromagnetic cloaks,” Opt. Express 16, 1413–1422 (2008).
    [Crossref] [PubMed]
  17. B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
    [Crossref]
  18. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
    [Crossref] [PubMed]
  19. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Improvement of cylindrical cloaking with the SHS lining,” Opt. Express 15, 12717–12734 (2007).
    [Crossref] [PubMed]
  20. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006).
    [Crossref] [PubMed]
  21. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  22. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Electromagnetic cloaking in the visible frequency range,” ArXiv.org:0709.2862v2 (2007).
  23. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  24. M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
    [Crossref]
  25. G. W. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
    [Crossref]
  26. H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007).
    [Crossref]
  27. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
    [Crossref] [PubMed]
  28. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
    [Crossref] [PubMed]
  29. R. Weder, “A rigorous time-domain analysis of fullwave electromagnetic cloaking (Invisibility),” ArXiv.org:0704.0248v4 (2007).
  30. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [Crossref]
  31. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Norwood, MA: Artech House, 2000).
  32. R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
    [Crossref]
  33. O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993).
    [Crossref]
  34. D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
    [Crossref]
  35. F. B. Hildebrand, Introduction to Numerical Analysis (New York: Mc-Graw-Hill, 1956).
  36. J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces,” Microw. Opt. Tech. Lett. 23, 245–249 (1999).
    [Crossref]
  37. J. R. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
    [Crossref]
  38. Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007).
    [Crossref]
  39. Y. Zhao and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. 55, 3070–3077 (2007).
    [Crossref]

2008 (4)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008).
[Crossref]

G. Isic, R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, “Radiation and scattering from imperfect cylindrical electromagnetic cloaks,” Opt. Express 16, 1413–1422 (2008).
[Crossref] [PubMed]

M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
[Crossref]

2007 (15)

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[Crossref]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[Crossref] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Improvement of cylindrical cloaking with the SHS lining,” Opt. Express 15, 12717–12734 (2007).
[Crossref] [PubMed]

S. A Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007).
[Crossref]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
[Crossref] [PubMed]

Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007).
[Crossref]

Y. Zhao and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. 55, 3070–3077 (2007).
[Crossref]

2006 (7)

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

G. W. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[Crossref]

2005 (1)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

1999 (1)

J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces,” Microw. Opt. Tech. Lett. 23, 245–249 (1999).
[Crossref]

1994 (1)

J. R. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

1993 (1)

O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993).
[Crossref]

1992 (1)

D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
[Crossref]

1990 (1)

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

Alu, A.

M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[Crossref]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Belov, P. A.

Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007).
[Crossref]

Berenger, J. R.

J. R. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

Chan, C. T.

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Chen, H.

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
[Crossref] [PubMed]

Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

Chen, J.-Y.

O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993).
[Crossref]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Cory, H.

H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007).
[Crossref]

Cummer, S. A

S. A Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Electromagnetic cloaking in the visible frequency range,” ArXiv.org:0709.2862v2 (2007).

Engheta, N.

M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[Crossref]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Feng, Y.

Gajic, R.

Gandhi, O. P.

O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993).
[Crossref]

Gao, B.-Q.

O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993).
[Crossref]

Greenleaf, A.

Hao, Y.

H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007).
[Crossref]

Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007).
[Crossref]

Y. Zhao and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. 55, 3070–3077 (2007).
[Crossref]

Hildebrand, F. B.

F. B. Hildebrand, Introduction to Numerical Analysis (New York: Mc-Graw-Hill, 1956).

Hingerl, K.

Huang, Y.

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Electromagnetic cloaking in the visible frequency range,” ArXiv.org:0709.2862v2 (2007).

Hunsberger, F. P.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

Isic, G.

Jiang, T.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

Kong, J. A.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
[Crossref] [PubMed]

Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

Kunz, K.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

Kurylev, Y.

Kwon, D.-H.

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008).
[Crossref]

Lassas, M.

Lee, J.-Y.

J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces,” Microw. Opt. Tech. Lett. 23, 245–249 (1999).
[Crossref]

Lee, Y.

H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Luebbers, R.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

Luo, Y.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

Miller, D. A. B.

Milton, G. W.

G. W. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Myung, N.-H.

J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces,” Microw. Opt. Tech. Lett. 23, 245–249 (1999).
[Crossref]

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
[Crossref] [PubMed]

Nicorovici, N. P.

G. W. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[Crossref]

Novakovic, B.

Pendry, J. B.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

Popovic, Z. V.

Psaltis, D.

M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
[Crossref]

Qiu, M.

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[Crossref]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
[Crossref] [PubMed]

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

Ran, L.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

Ruan, Z.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[Crossref]

Schneider, M.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

S. A Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[Crossref]

Smith, D. R.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Electromagnetic cloaking in the visible frequency range,” ArXiv.org:0709.2862v2 (2007).

Standler, R.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Sullivan, D. M.

D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Norwood, MA: Artech House, 2000).

Tsang, M.

M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
[Crossref]

Uhlmann, G.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Weder, R.

R. Weder, “A rigorous time-domain analysis of fullwave electromagnetic cloaking (Invisibility),” ArXiv.org:0704.0248v4 (2007).

Werner, D. H.

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008).
[Crossref]

Wu, B.-I.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
[Crossref] [PubMed]

Yan, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[Crossref]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

Zhang, B.

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
[Crossref] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

Zhang, J.

Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

Zhao, Y.

Y. Zhao and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. 55, 3070–3077 (2007).
[Crossref]

Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007).
[Crossref]

Appl. Phys. Lett. (4)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

IEEE Trans. Antennas Propag. (3)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
[Crossref]

Y. Zhao and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Antennas Propag. 55, 3070–3077 (2007).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-difference time-domain formulation for general dispersive media,” IEEE Trans. Microw. Theory Tech. 41, 658–664 (1993).
[Crossref]

IET Microw. Antenna Propag. (1)

H. Cory, Y. Lee, and Y. Hao, “On the use of conjugate dielectric and metamaterial slabs as radomes,” IET Microw. Antenna Propag. 1, 137–143 (2007).
[Crossref]

J. Comput. Phys. (1)

J. R. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

Y. Zhao, P. A. Belov, and Y. Hao, “Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries,” J. Opt. A: Pure Appl. Opt. 9, 468–475 (2007).
[Crossref]

Microw. Opt. Tech. Lett. (1)

J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces,” Microw. Opt. Tech. Lett. 23, 245–249 (1999).
[Crossref]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

New J. Phys. (1)

S. A Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

Opt. Express (5)

Phys. Rev. B (2)

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007).
[Crossref]

M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
[Crossref]

Phys. Rev. E (3)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[Crossref]

S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

Phys. Rev. Lett (1)

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett 99, 063903 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99113903 (2007).
[Crossref] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[Crossref]

Proc. R. Soc. A (1)

G. W. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[Crossref]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Other (5)

Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic sources by coordinate transformation,” ArXiv.org:0712.3776v1 (2007).

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Electromagnetic cloaking in the visible frequency range,” ArXiv.org:0709.2862v2 (2007).

R. Weder, “A rigorous time-domain analysis of fullwave electromagnetic cloaking (Invisibility),” ArXiv.org:0704.0248v4 (2007).

F. B. Hildebrand, Introduction to Numerical Analysis (New York: Mc-Graw-Hill, 1956).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Norwood, MA: Artech House, 2000).

Supplementary Material (3)

» Media 1: MOV (2756 KB)     
» Media 2: MOV (2840 KB)     
» Media 3: MOV (2763 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The comparison between the analytical (2) and numerical material parameters (23) for different FDTD spatial resolutions for the case of εr =0.1 (lossless).
Fig. 2.
Fig. 2. A two-dimensional (2-D) FDTD simulation domain for the case of plane-wave incidence on the cloak.
Fig. 3.
Fig. 3. (a) Material parameters for an infinite ideal cylindrical cloak [3] where all εr , εϕ and µz are radial dependent. (b), (c) and (d) Field distributions from dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field and (d) the magnetic field. [Media 1]
Fig. 4.
Fig. 4. (a) Material parameters for an infinite simplified cylindrical cloak using a linear transformation [4] where only εr is radial dependent. (b), (c) and (d) Field distributions from dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field and (d) the magnetic field. [Media 2]
Fig. 5.
Fig. 5. (a) Material parameters for an infinite simplified cylindrical cloak using a high-order transformation [5] where only εr and εϕ are radial dependent. (b), (c) and (d) Field distributions from dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field and (d) the magnetic field. [Media 3]
Fig. 6.
Fig. 6. Power flow diagrams for (a) the ideal cloak [3], (b) the simplified cloak based on the linear transformation [4] and (c) the simplified cloak based on the high-order transformation [5]. (d) Comparison of the scattering patterns for different cloaks and for the case of the PEC cylinder without cloak: black solid line - PEC cylinder; yellow dot-dashed line - the simplified cloak based on the linear transformation; blue dashed line - the simplified cloak based on the high-order transformation; red solid line - the ideal cloak.

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

ε r = μ r = r R 1 r , ε ϕ = μ ϕ = r r R 1 , ε z = μ z = ( R 2 R 2 R 1 ) 2 r R 1 r ,
ε r ( ω ) = 1 ω p 2 ω 2 j ω γ ,
× E = B t ,
× H = D t ,
B n + 1 = B n Δ t · ˜ × E n + 1 2 ,
D n + 1 = D n + Δ t · ˜ × H n + 1 2 ,
[ ε xx ε xy ε yx ε yy ] = [ ε r cos 2 ϕ + ε ϕ sin 2 ϕ ( ε r ε ϕ ) sin ϕ cos ϕ ( ε r ε ϕ ) sin ϕ cos ϕ ε r sin 2 ϕ + ε ϕ cos 2 ϕ ]
ε 0 [ ε xx ε xy ε yx ε yy ] [ E x E y ] = [ D x D y ] ε 0 [ E x E y ] = [ ε xx ε xy ε yx ε yy ] 1 [ D x D y ] ,
[ ε xx ε xy ε yx ε yy ] 1 = 1 ε r ε ϕ [ ε r sin 2 ϕ + ε ϕ cos 2 ϕ ( ε ϕ ε r ) sin ϕ cos ϕ ( ε ϕ ε r ) sin ϕ cos ϕ ε r cos 2 ϕ + ε ϕ sin 2 ϕ ] .
{ ε r ε ϕ ε 0 E x = ( ε r sin 2 ϕ + ε ϕ cos 2 ϕ ) D x + ( ε ϕ ε r ) sin ϕ cos ϕ D y ε r ε ϕ ε 0 E y = ( ε r cos 2 ϕ + ε ϕ sin 2 ϕ ) D y + ( ε ϕ ε r ) sin ϕ cos ϕ D x ,
{ ε 0 ε ϕ ( ω 2 j ω γ ω p 2 ) E x = [ ( ω 2 j ω γ ω p 2 ) sin 2 ϕ + ε ϕ ( ω 2 j ω γ ) cos 2 ϕ ] D x + [ ε ϕ ( ω 2 j ω γ ) ( ω 2 j ω γ ω p 2 ) ] sin ϕ cos ϕ D y , ε 0 ε ϕ ( ω 2 j ω γ ω p 2 ) E y = [ ( ω 2 j ω γ ω p 2 ) cos 2 ϕ + ε ϕ ( ω 2 j ω γ ) sin 2 ϕ ] D y + [ ε ϕ ( ω 2 j ω γ ) ( ω 2 j ω γ ω p 2 ) ] sin ϕ cos ϕ D x .
j ω t , ω 2 2 t 2 ,
ε 0 ε ϕ ( 2 t 2 + γ t + ω p 2 ) E x = [ ( 2 t 2 + γ t + ω p 2 ) sin 2 ϕ + ε ϕ ( 2 t 2 + γ t ) cos 2 ϕ ] D x
+ [ ε ϕ ( 2 t 2 + γ t ) ( 2 t 2 + γ t + ω p 2 ) ] sin ϕ cos ϕ D y .
2 t 2 δ t 2 ( Δ t ) 2 , t δ t Δ t μ t , ω p 2 ω p 2 μ t 2 ,
δ t F m x , m y , m z n F m x , m y , m z n + 1 2 F m x , m y , m z n 1 2 ,
δ t 2 F m x , m y , m z n F m x , m y , m z n + 1 2 F m x , m y , m z n + F m x , m y , m z n 1 ,
μ t F m x , m y , m z n F m x , m y , m z n + 1 2 + F m x , m y , m z n 1 2 2 ,
μ t 2 F m x , m y , m z n F m x , m y , m z n + 1 + 2 F m x , m y , m z n + F m x , m y , m z n 1 4 .
ε 0 ε ϕ [ δ t 2 ( Δ t ) 2 + γ δ t Δ t μ t + ω p 2 μ t 2 ] E x = { [ δ t 2 ( Δ t ) 2 + γ δ t Δ t μ t + ω p 2 μ t 2 ] sin 2 ϕ
+ ε ϕ [ δ t 2 ( Δ t ) 2 + γ δ t Δ t μ t ] cos 2 ϕ } D x + { ε ϕ [ δ t 2 ( Δ t ) 2 + γ δ t Δ t μ t ]
[ δ t 2 ( Δ t ) 2 + γ δ t Δ t μ t + ω p 2 μ t 2 ] } sin ϕ cos ϕ D y .
ε 0 ε ϕ [ E x n + 1 2 E x n + E x n 1 ( Δ t ) 2 + γ E x n + 1 E x n 1 2 Δ t + ω p 2 E x n + 1 + 2 E x n + E x n 1 4 ]
= sin 2 ϕ [ D x n + 1 2 D x n + D x n 1 ( Δ t ) 2 + γ D x n + 1 D x n 1 2 Δ t + ω p 2 D x n + 1 + 2 D x n + D x n 1 4 ]
+ ε ϕ cos 2 ϕ [ D x n + 1 2 D x n + D x n 1 ( Δ t ) 2 + γ D x n + 1 D x n 1 2 Δ t ]
+ sin ϕ cos ϕ { ε ϕ [ D y n + 1 2 D y n + D y n 1 ( Δ t ) 2 + γ D y n + 1 D y n 1 2 Δ t ]
[ D y n + 1 2 D y n + D y n 1 ( Δ t ) 2 + γ D y n + 1 D y n 1 2 Δ t + ω p 2 D y n + 1 + 2 D y n + D y n 1 4 ] } .
E x n + 1 = [ a x D x n + 1 + b x D x n + c x D x n 1 + d x D y ¯ n + 1 + e x D y ¯ n + f x D y ¯ n 1 ( g x E x n + h x E x n 1 ) ] l x .
a x = sin 2 ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t + ω p 2 4 ] + ε ϕ cos 2 ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t ] ,
b x = sin 2 ϕ [ 2 ( Δ t ) 2 + ω p 2 2 ] ε ϕ cos 2 ϕ 2 ( Δ t ) 2 ,
c x = sin 2 ϕ [ 1 ( Δ t ) 2 γ 2 Δ t + ω p 2 4 ] + ε ϕ cos 2 ϕ [ 1 ( Δ t ) 2 γ 2 Δ t ] ,
d x = { ε ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t ] [ 1 ( Δ t ) 2 + γ 2 Δ t + ω p 2 4 ] } sin ϕ cos ϕ ,
e x = { ε ϕ [ 2 ( Δ t ) 2 ] [ 2 ( Δ t ) 2 + ω p 2 2 ] } sin ϕ cos ϕ ,
f x = { ε ϕ [ 1 ( Δ t ) 2 γ 2 Δ t ] [ 1 ( Δ t ) 2 γ 2 Δ t + ω p 2 4 ] } sin ϕ cos ϕ ,
g x = ε 0 ε ϕ [ 2 ( Δ t ) 2 + ω p 2 2 ] ,       h x = ε 0 ε ϕ [ 1 ( Δ t ) 2 γ 2 Δ t + ω p 2 4 ] ,       l x = ε 0 ε ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t + ω p 2 4 ] .
E y n + 1 = [ a y D y n + 1 + b y D y n + c y D y n 1 + d y D x ¯ n + 1 + e y D x ¯ n + f y D x ¯ n 1 ( g y E y n + h y E y n 1 ) ] l y .
a y = cos 2 ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t + ω p 2 4 ] + ε ϕ sin 2 ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t ] ,
b y = cos 2 ϕ [ 2 ( Δ t ) 2 + ω p 2 2 ] ε ϕ sin 2 ϕ 2 ( Δ t ) 2 ,
c y = cos 2 ϕ [ 1 ( Δ t ) 2 γ 2 Δ t + ω p 2 4 ] + ε ϕ sin 2 ϕ [ 1 ( Δ t ) 2 γ 2 Δ t ] ,
d y = { ε ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t ] [ 1 ( Δ t ) 2 + γ 2 Δ t + ω p 2 4 ] } sin ϕ cos ϕ ,
e y = { ε ϕ [ 2 ( Δ t ) 2 ] [ 2 ( Δ t ) 2 + ω p 2 2 ] } sin ϕ cos ϕ ,
f y = { ε ϕ [ 1 ( Δ t ) 2 γ 2 Δ t ] [ 1 ( Δ t ) 2 γ 2 Δ t + ω p 2 4 ] } sin ϕ cos ϕ ,
g y = ε 0 ε ϕ [ 2 ( Δ t ) 2 + ω p 2 2 ] , h y = ε 0 ε ϕ [ 1 ( Δ t ) 2 γ 2 Δ t + ω p 2 4 ] , l y = ε 0 ε ϕ [ 1 ( Δ t ) 2 + γ 2 Δ t + ω p 2 4 ] .
D x ¯ ( i , j ) = D x ( i , j ) + D x ( i , j + 1 ) + D x ( i 1 , j ) + D x ( i 1 , j + 1 ) 4 ,
D y ¯ ( i , j ) = D y ( i , j ) + D y ( i + 1 , j ) + D y ( i , j 1 ) + D y ( i + 1 , j 1 ) 4 ,
μ z ( ω ) = A ( 1 ω pm 2 ω 2 j ω γ m ) ,
H z n + 1 = 1 A { [ 1 μ 0 ( Δ t ) 2 + γ m 2 μ 0 Δ t ] B z n + 1 2 μ 0 ( Δ t ) 2 B z n + [ 1 μ 0 ( Δ t ) 2 γ m 2 μ 0 Δ t ] B z n 1 + A [ 2 ( Δ t ) 2 ω pm 2 2 ] H 2 n A [ 1 ( Δ t ) 2 γ m 2 Δ t + ω pm 2 4 ] H z n 1 } [ 1 ( Δ t ) 2 + γ m 2 Δ t + ω pm 2 4 ] . .
E n = E e j n ω Δ t , D n = D e j n ω Δ t ,
ε r ~ = ε 0 [ 1 ω p 2 ( Δ t ) 2 cos 2 ω Δ t 2 2 sin ω Δ t 2 ( 2 sin ω Δ t 2 j γ Δ t cos ω Δ t 2 ) ] .
ω p 2 ~ = 2 sin ω Δ t 2 [ 2 ( ε r 1 ) sin ω Δ t 2 ε r γ Δ t cos ω Δ t 2 ] ( Δ t ) 2 cos 2 ω Δ t 2 , γ ~ = 2 ε r sin ω Δ t 2 ( ε r 1 ) Δ t cos ω Δ t 2 .
ε r = ( R 2 R 2 R 1 ) 2 ( r R 1 r ) 2 , ε ϕ = ( R 2 R 2 R 1 ) 2 , μ z = 1 .
ε r = ( r r ) 2 , ε ϕ = [ g ( r ) r ] 2 , μ z = 1 .

Metrics