Abstract

We investigate the carrier-wave Rabi flopping effects in an asymmetric semiparabolic semiconductor quantum well (QW) with few-cycle pulse. It is found that higher spectral components of few-cycle ultrashort pulses in the semiparabolic QW depend crucially on the carrier-envelope phase (CEP) of the few-cycle ultrashort pulses: continuum and distinct peaks can be achieved by controlling the CEP. Our results demonstrate that by adjusting the CEP of few-cycle ultrashort pulses, the intersubband dynamics in the asymmetric semiparabolic QW can be controlled in an ultrashort timescale with moderate laser intensity.

©2008 Optical Society of America

1. Introduction

The evolution of ultrashort pulse optics has made it routine to generate light pulses with durations comparable to the carrier oscillation cycle [1]. This progress opens new prospects in nonlinear optics [2–7]. For few-cycle ultrashort pulse propagating in a resonant two-level system, Hughes firstly predicted that, when the area under the individual carriers may themselves cause Rabi flopping, carrier-wave Rabi flopping (CWRF) will occur, which manifests in local carrier reshaping and subsequently the generation of higher spectral components [2]. This phenomenon has then been demonstrated experimentally in the semiconductor GaAs [3].

When few-cycle ultrashort pulse is considered, the CEP becomes a physically important parameter for studying nonlinear optics [8–20]. The study the CEP dependent phenomenon is very meaningful. Firstly, by controlling the CEP, the motion of electronic can be controlled or detected in an ultrashort timescale [10–14]. Secondly, the CEP dependent phenomena also provide routes to determine the CEP [15, 16]. Most of the CEP dependent phenomena heretofore are based on the ionization mechanism, and amplified few-cycle ultrashort pulses are usually necessary [10–16]. With nonamplified laser pulse, several CEP dependent schemes using semiconductor have been discussed recently. For example, if the Rabi frequency becomes comparable to the light frequency, the different Rabi sidebands interfere around twice the laser center frequency, giving rise to a signal which depends on the CEP [17]. This CEP dependent phenomenon was observed in experiments on thin GaAs films [18]. Recently, the CEP control of ultrafast optical rectification has also been investigated in resonantly excited semiconductors. A characteristic phase map is predicted using parameters for thin-film GaAs [19]. However, to the best of our knowledge, no corresponding studies about the CEP effects with moderate electric field intensity in asymmetric semiconductor QW have been discussed.

In the past few years, thanks to computer-controlled molecular beam epitaxy technology, many specially-shaped QWs have been synthesized [22, 23]. Especially, the semiparaboic QWs have been grown and studied in the experiments [22, 23]. Because the inversion symmetry is broken, the second-order optical effects have been found in this system [4]. Moreover, the permanent dipole moment (PDM) in these media is nonzero [24, 25]. This parameter plays an essential role in many nonlinear optical effects [20, 26, 29, 30]. For example, due to the existence of PDM, two-photon transition enhancement in polar molecule has been observed in experiment [26]. Very recently, in our previous work, we found the pulse evolution in polar molecule depends sensitively on the CEP of the incident ultrashort pulse due to the effect of PDM, which may be utilized to measure the CEP of ultrashort pulse under the moderate intensity [20].

In this work, we investigate the interaction of few-cycle ultrashort pulse with asymmetric semiparabolic semiconductor QWs. Comparing with the symmetrical parabolic QW models, even-order spectral components can occur due to the asymmetry structure of the medium itself, and the CEPs related phenomena are more evident in asymmetric semiconductor QW. Moreover, continuum and distinct peaks of higher spectral components can be achieved by the control of the CEP from 0 to π. Our results show that by adjusting the CEP of few-cycle pulse in an asymmetric semiconductor QW, the CWRF can be controlled in an ultrashort timescale.

This paper is organized as follows. The interaction of few-cycle ultrashort pulses with the semiconductor QW is described in Sec. 2. The characteristics of the CWRF and the corresponding higher spectral components with the CEP changing in the asymmetric QW are presented in Sec. 3. We summary the results in Sec. 4.

2. Theory

Under the effective mass approximation, the Hamiltonian of the semiconductor QW structure can be written as

H=H0+H1,

where

H1=erE(r,t),

is the part of light-matter interaction, and

H0=P22m*+px22m*+V(x),

is the light-unperturbed Hamiltonian, here V(x) is the semiconductor confining potential which is illustrated in Fig. 1. For symmetric parabolic QW [21]

V(x)=12m*ω02x2, <x<,

while for asymmetric semiparabolic QW [24, 25, 27]

V(x)={12m*ω02x2,x0,,x<0,
 figure: Fig. 1.

Fig. 1. Conduction-band profile of GaAs-AlGaAs symmetric QW (a) and asymmetric QW (b).

Download Full Size | PPT Slide | PDF

here x represents the QW’s grown direction, and ω0 is the frequency of the confining potential in the QW.

The unperturbed energy levels and wave function for the symmetric QW are given by

Es=(n1+12)ω0+22m*k2,n1=0,1,2,...
φs=Nsexp(12β2x2)Hn1(βx)Uc(r)exp(ikr),

with

β=m*ω0,

which for the asymmetric QW, energy levels and wave function are given by

Ea=(2n2+32)ω0+22m*k2,n2=0,1,2,...
φa=Naexp(12β2x2)H2n2+1(βx)Uc(r)exp(ikr),

where k⃑ and r⃑ are the wave and position vectors in the y-z plane, respectively, and Uc (r⃑) is the periodic part of the Bloch function in the conduction band at k=0.Hn1(βx) and H2n2+1(βx) denote the Hermite polynomials, Ns and Na are the normalization constants. We should note that d=μ22-μ11=<φ2|ex|φ2>-<φ1|ex|φ1> is the difference in the PDMs between the ground and the excited levels, and d is nonzero in asymmetric semiparabolic QW.

Consider a hyperbolic secant functional form for the initial electric field polarized along x direction, which can be written as [28]

Ω(t=0,z)=Ωmsech[1.76(zcz0c)τp]cos[ωp(zz0)c+ϕ],

where Ωm is the maximum Rabi frequency and Ω=μ21 Ex/ħ, μ21=<φ2|ex|φ1> is the dipole moment, ϕ is the initial CEP, and τp is the full width at half maximum (FWHM) of the pulse intensity envelope. The pulse area Am τpπ/1.76, and Ωm=1.0 fs-1 corresponds to the electric field of Ex=6.9×106V/cm or an intensity of I=6.3×1010W/cm2.

We employ an iterative predictor-corrector finite-difference time-domain technique to solve the full-wave Maxwell equations in the system without invoking the slowly-varying-envelope approximation and the rotating-wave approximation [20, 28, 30–37]. The time and space increments Δt and Δz are chosen to ensure cΔtΔz [38].

3. Results and discussion

The above theory is now applied to study the CEP dependent effect of few-cycle ultrashort pulses in GaAs-AlGaAs symmetric QW and asymmetric semiparabolic QW. The material parameters chosen are listed [39–41]: m* GaAs=0.067m 0, where m0 is the mass of a free-electron. N=1.0×1023 m-3, τp=20 fs, z0=15 µm, ωp=ω0=0.4 fs-1. We consider the excited-state lifetime τ1 and the dephasing time τ2 in ps timescale which are much longer than the time duration of the pulse we used in our work (20 fs) [27, 42, 43]. The intensity we used is I=3.1×1010 W/cm2, corresponding to A=8π.

 figure: Fig. 2.

Fig. 2. (Color online) The spectra of few-cycle ultrashort pulses in symmetric QW with ω 0=0.4 fs-1 at z=120 µm.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3(a).

Fig. 3(a). The spectra of few-cycle ultrashort pulses in asymmetric QW with ω0=0.4 fs-1 at z=120 µm.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3(b).

Fig. 3(b). The carrier of few-cycle ultrashort pulses Ω(fs-1) (solid line) and the population difference w (dotted line) at z=0 µm.

Download Full Size | PPT Slide | PDF

We first model the CEP effect on the higher spectral components in the symmetric semiconductor QW. From Fig. 2, it can be seen that, only the odd higher spectral components can be found because of the inversion symmetry of the QW. Moreover, odd higher spectral components do not change with the CEP increasing from 0 to π.

Then we have a further discussion on the influence of the asymmetry on the higher spectral components. When asymmetric semiparabolic QW is considered, both odd and even spectral components occur because inversion symmetry is broken (see Fig. 3(a)). Moreover, there have an obvious modification which depends on the CEP of few-cycle ultrashort pulses in this case. Figure 3(a) presents the spectra produced by the few-cycle pulses at the propagation distance of z=120 µm for the three different initial CEPs ϕ=0, π/2 and π, respectively. We can find some radical discrepancies among them: for ϕ=0, higher spectral components exhibit a continuous feature; when ϕ increases, the continuous feature becomes much weaker whereas the oscillatory feature becomes more and more intense, and especially for ϕ=π, well-resolved splitting peaks of higher spectral components can be obtained.

To describe the physical mechanism for these phenomena, Fig. 3(b) shows the carrier of the few-cycle ultrashort pulses and the population difference with different CEPs of ϕ=0, π/2 and π at the input surface of the nonlinear material. The PDM plays an essential role on the interaction. When the carrier is parallel to the PDM (labeled as elliptical symbol), the incomplete CWRF occurs instead of the integer number. The CWRF which will further induce the production of higher spectral components is clearly discerned. While for the carrier which is antiparallel to the PDM (labeled as quadrate symbol), enhanced intersubband transitions are clearly found. Approximately symmetric transitions between the ground and excited states occur, and the CWRF is much weaker for these carriers. Because the generation of higher spectral components is mainly due to the CWRF, the pattern of the generated higher spectral components is determined predominantly by the carriers paralleling to the PDM. For ϕ=0, the CWRF is mainly induced by the single central carrier which has the largest amplitude among the carriers paralleling to the PDM, so the higher spectral components distribution is continuous. When ϕ=π/2, the second largest carrier paralleling to the PDM becomes stronger, hence the interference structure of the higher spectral components is enhanced. While for ϕ=π, the CWRF is caused by two carriers with equal amplitudes, and the interference between them is most strong, as a result, the spectrum shows distinct peaks of higher spectral components. That means the CWRF can be controlled in an ultrashort timescale in asymmetric semiparabolic QW by adjusting the CEP.

 figure: Fig. 4(a).

Fig. 4(a). As in Fig. 3(a) but for ω0=0.5 fs-1.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4(b).

Fig. 4(b). As in Fig. 3(b) but for ω0=0.5 fs-1.

Download Full Size | PPT Slide | PDF

In fact, such CEP dependent phenomena are not limited to the exact two-photon resonance case. When confinement potential ω0 of asymmetric QW increases, two-photon transition resonance is mismatch. As can be shown in Fig. 4(a) and Fig. 4(b) that the CEP dependent CWRF effects and the corresponding higher spectral components also occur.

4. Conclusions

In conclusion, we have studied theoretically the spectra of few-cycle ultrashort pulses in the semiconductor QW by solving the full-wave Maxwell equations. It has been shown that the QW’s formation can significantly modify the behavior of the higher spectral components. In asymmetric semiparabolic QW, the features of higher spectral components depend crucially on the CEP and ultrafast controls of electron dynamics can be achieved by adjusting the CEP of few-cycle ultrashort pulse with moderate intensity. Since the main physics of our results originates from the properties of the permanent dipole moment existing in semiparabolic quantum well, we expect these effects to occur in other asymmetric quantum wells with similar properties.

Acknowledgments

The work was supported by the National Basic Research Program of China (Grant No. 2006CB806000), the National Natural Science Foundation of China (Grant Nos. 10523003 and 60608001) and the Knowledge Innovation Program of the Chinese Academy of Science.

References and links

1. T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys 72, 545–591 (2000). [CrossRef]  

2. S. Hughes, “Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett 81, 3363–3366 (1998). [CrossRef]  

3. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001). [CrossRef]   [PubMed]  

4. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003). [CrossRef]   [PubMed]  

5. C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett 32, 187–189 (2007). [CrossRef]  

6. F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001). [CrossRef]  

7. C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004). [CrossRef]   [PubMed]  

8. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001). [CrossRef]   [PubMed]  

9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef]   [PubMed]  

10. A. Baltuška Th., Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003). [CrossRef]   [PubMed]  

11. M. Drescher and F. Krausz, “Attosecond physics: facing the wave-particle duality,” J. Phys. B: At. Mol. Opt. Phys 38, 727–740 (2005). [CrossRef]  

12. C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007). [CrossRef]  

13. S. T. Cundiff, “Attosecond Physics: better by half,” Nature. Phys 3, 16–18 (2007). [CrossRef]  

14. X. M. Tong and C. D. Lin, “Dynamics of light–field control of molecular dissociation at the few-cycle limit,” Phys. Rev. Lett 98, 123002 (2007). [CrossRef]   [PubMed]  

15. G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003). [CrossRef]  

16. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006). [CrossRef]   [PubMed]  

17. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002). [CrossRef]   [PubMed]  

18. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004). [CrossRef]   [PubMed]  

19. C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett 98, 167404 (2007). [CrossRef]   [PubMed]  

20. W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007). [CrossRef]   [PubMed]  

21. R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984). [CrossRef]  

22. M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991). [CrossRef]   [PubMed]  

23. A. C. Gossard, “Growth of microstructures by molecular beam epitaxy,” IEEE J. Quantum Electron 22, 1649–1655 (1986). [CrossRef]  

24. R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985). [CrossRef]  

25. W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993). [CrossRef]  

26. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006). [CrossRef]   [PubMed]  

27. L. Zhang and H. J. Xie, “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells,” Phys. Rev. B 68, 235315 (2003). [CrossRef]  

28. J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002). [CrossRef]  

29. G. L. Kamta and A. D. Bandrauk, “Phase dependence of enhanced ionization in asymmetric molecules,” Phys. Rev. Lett 94, 203003 (2005). [CrossRef]   [PubMed]  

30. W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrashort four-wave mixing in a polar molecule medium,” Opt. Express 14, 7216–7223 (2006). [CrossRef]   [PubMed]  

31. X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004). [CrossRef]  

32. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995). [CrossRef]   [PubMed]  

33. L. W. Casperson, “Few-cycle pulses in two-level media,” Phys. Rev. A 57, 609–621 (1998). [CrossRef]  

34. A. V. Tarasishin, S. A. Magnitskii, V. A. Shuvaev, and A. M. Zheltikov, “Evolution of ultrashort light pulses in a two-level medium visualized with the finite-difference time domain technique,” Opt. Express 8, 452–457 (2001). [CrossRef]   [PubMed]  

35. V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett 83, 544–547 (1999). [CrossRef]  

36. X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005). [CrossRef]  

37. Y. Loiko and C. Serrat, “Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level Λ type systems studied with the finite-difference time-domain method,” Phys. Rev. A 73, 063809 (2006). [CrossRef]  

38. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE. Trans. Microwave. Theory. Tech 23, 623–630 (1975). [CrossRef]  

39. K. X. Guo and S. W. Gu, “Nonlinear optical rectification in parabolic quantum wells with an applied electric field,” Phys. Rev. B 47, 16322–16325 (1993). [CrossRef]  

40. H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000). [CrossRef]  

41. S. Adachi, “GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys 58, 1–29 (1985). [CrossRef]  

42. A. Shik, Quantum Well: Physics and Electronics of Two-Dimensional Systems (World Scientific, Singapore, 1997).

43. V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys 67, 433–512 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys 72, 545–591 (2000).
    [Crossref]
  2. S. Hughes, “Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett 81, 3363–3366 (1998).
    [Crossref]
  3. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
    [Crossref] [PubMed]
  4. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
    [Crossref] [PubMed]
  5. C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett 32, 187–189 (2007).
    [Crossref]
  6. F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
    [Crossref]
  7. C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
    [Crossref] [PubMed]
  8. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
    [Crossref] [PubMed]
  9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  10. A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
    [Crossref] [PubMed]
  11. M. Drescher and F. Krausz, “Attosecond physics: facing the wave-particle duality,” J. Phys. B: At. Mol. Opt. Phys 38, 727–740 (2005).
    [Crossref]
  12. C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
    [Crossref]
  13. S. T. Cundiff, “Attosecond Physics: better by half,” Nature. Phys 3, 16–18 (2007).
    [Crossref]
  14. X. M. Tong and C. D. Lin, “Dynamics of light–field control of molecular dissociation at the few-cycle limit,” Phys. Rev. Lett 98, 123002 (2007).
    [Crossref] [PubMed]
  15. G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
    [Crossref]
  16. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
    [Crossref] [PubMed]
  17. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
    [Crossref] [PubMed]
  18. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
    [Crossref] [PubMed]
  19. C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett 98, 167404 (2007).
    [Crossref] [PubMed]
  20. W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
    [Crossref] [PubMed]
  21. R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
    [Crossref]
  22. M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
    [Crossref] [PubMed]
  23. A. C. Gossard, “Growth of microstructures by molecular beam epitaxy,” IEEE J. Quantum Electron 22, 1649–1655 (1986).
    [Crossref]
  24. R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985).
    [Crossref]
  25. W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
    [Crossref]
  26. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
    [Crossref] [PubMed]
  27. L. Zhang and H. J. Xie, “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells,” Phys. Rev. B 68, 235315 (2003).
    [Crossref]
  28. J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002).
    [Crossref]
  29. G. L. Kamta and A. D. Bandrauk, “Phase dependence of enhanced ionization in asymmetric molecules,” Phys. Rev. Lett 94, 203003 (2005).
    [Crossref] [PubMed]
  30. W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrashort four-wave mixing in a polar molecule medium,” Opt. Express 14, 7216–7223 (2006).
    [Crossref] [PubMed]
  31. X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
    [Crossref]
  32. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995).
    [Crossref] [PubMed]
  33. L. W. Casperson, “Few-cycle pulses in two-level media,” Phys. Rev. A 57, 609–621 (1998).
    [Crossref]
  34. A. V. Tarasishin, S. A. Magnitskii, V. A. Shuvaev, and A. M. Zheltikov, “Evolution of ultrashort light pulses in a two-level medium visualized with the finite-difference time domain technique,” Opt. Express 8, 452–457 (2001).
    [Crossref] [PubMed]
  35. V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett 83, 544–547 (1999).
    [Crossref]
  36. X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005).
    [Crossref]
  37. Y. Loiko and C. Serrat, “Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level Λ type systems studied with the finite-difference time-domain method,” Phys. Rev. A 73, 063809 (2006).
    [Crossref]
  38. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE. Trans. Microwave. Theory. Tech 23, 623–630 (1975).
    [Crossref]
  39. K. X. Guo and S. W. Gu, “Nonlinear optical rectification in parabolic quantum wells with an applied electric field,” Phys. Rev. B 47, 16322–16325 (1993).
    [Crossref]
  40. H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000).
    [Crossref]
  41. S. Adachi, “GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys 58, 1–29 (1985).
    [Crossref]
  42. A. Shik, Quantum Well: Physics and Electronics of Two-Dimensional Systems (World Scientific, Singapore, 1997).
  43. V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys 67, 433–512 (2004).
    [Crossref]

2007 (6)

C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett 32, 187–189 (2007).
[Crossref]

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

S. T. Cundiff, “Attosecond Physics: better by half,” Nature. Phys 3, 16–18 (2007).
[Crossref]

X. M. Tong and C. D. Lin, “Dynamics of light–field control of molecular dissociation at the few-cycle limit,” Phys. Rev. Lett 98, 123002 (2007).
[Crossref] [PubMed]

C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett 98, 167404 (2007).
[Crossref] [PubMed]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

2006 (4)

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrashort four-wave mixing in a polar molecule medium,” Opt. Express 14, 7216–7223 (2006).
[Crossref] [PubMed]

Y. Loiko and C. Serrat, “Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level Λ type systems studied with the finite-difference time-domain method,” Phys. Rev. A 73, 063809 (2006).
[Crossref]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

2005 (3)

M. Drescher and F. Krausz, “Attosecond physics: facing the wave-particle duality,” J. Phys. B: At. Mol. Opt. Phys 38, 727–740 (2005).
[Crossref]

G. L. Kamta and A. D. Bandrauk, “Phase dependence of enhanced ionization in asymmetric molecules,” Phys. Rev. Lett 94, 203003 (2005).
[Crossref] [PubMed]

X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005).
[Crossref]

2004 (4)

V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys 67, 433–512 (2004).
[Crossref]

X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
[Crossref]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

2003 (4)

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

L. Zhang and H. J. Xie, “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells,” Phys. Rev. B 68, 235315 (2003).
[Crossref]

2002 (2)

J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002).
[Crossref]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

2001 (4)

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

A. V. Tarasishin, S. A. Magnitskii, V. A. Shuvaev, and A. M. Zheltikov, “Evolution of ultrashort light pulses in a two-level medium visualized with the finite-difference time domain technique,” Opt. Express 8, 452–457 (2001).
[Crossref] [PubMed]

2000 (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys 72, 545–591 (2000).
[Crossref]

H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000).
[Crossref]

1999 (1)

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett 83, 544–547 (1999).
[Crossref]

1998 (2)

L. W. Casperson, “Few-cycle pulses in two-level media,” Phys. Rev. A 57, 609–621 (1998).
[Crossref]

S. Hughes, “Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett 81, 3363–3366 (1998).
[Crossref]

1995 (1)

R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995).
[Crossref] [PubMed]

1993 (2)

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

K. X. Guo and S. W. Gu, “Nonlinear optical rectification in parabolic quantum wells with an applied electric field,” Phys. Rev. B 47, 16322–16325 (1993).
[Crossref]

1991 (1)

M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
[Crossref] [PubMed]

1986 (1)

A. C. Gossard, “Growth of microstructures by molecular beam epitaxy,” IEEE J. Quantum Electron 22, 1649–1655 (1986).
[Crossref]

1985 (2)

R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985).
[Crossref]

S. Adachi, “GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys 58, 1–29 (1985).
[Crossref]

1984 (1)

R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[Crossref]

1975 (1)

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE. Trans. Microwave. Theory. Tech 23, 623–630 (1975).
[Crossref]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys 58, 1–29 (1985).
[Crossref]

Altucci, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Arnold, J. M.

R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995).
[Crossref] [PubMed]

Avaldi, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Axt, V. M.

V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys 67, 433–512 (2004).
[Crossref]

Baltuška, A.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

Bandrauk, A. D.

G. L. Kamta and A. D. Bandrauk, “Phase dependence of enhanced ionization in asymmetric molecules,” Phys. Rev. Lett 94, 203003 (2005).
[Crossref] [PubMed]

Benedetti, E.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Bewley, W. W.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys 72, 545–591 (2000).
[Crossref]

Brodwin, M. E.

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE. Trans. Microwave. Theory. Tech 23, 623–630 (1975).
[Crossref]

Calegari, F.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Casperson, L. W.

L. W. Casperson, “Few-cycle pulses in two-level media,” Phys. Rev. A 57, 609–621 (1998).
[Crossref]

Chalmers, S. A.

M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
[Crossref] [PubMed]

Chen, C. Y.

H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000).
[Crossref]

Cheng, Y.

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

Chipperfield, L. E.

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

Cundiff, S. T.

S. T. Cundiff, “Attosecond Physics: better by half,” Nature. Phys 3, 16–18 (2007).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

De Silvestri, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Drescher, M.

M. Drescher and F. Krausz, “Attosecond physics: facing the wave-particle duality,” J. Phys. B: At. Mol. Opt. Phys 38, 727–740 (2005).
[Crossref]

Drobizhev, M.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Eickemeyer, F.

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

Elsaesser, T.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

Felix, C. L.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

Flammini, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Gibbs, H. M.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

Gogny, D. M.

R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995).
[Crossref] [PubMed]

Gohle, Ch.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Gong, S.

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrashort four-wave mixing in a polar molecule medium,” Opt. Express 14, 7216–7223 (2006).
[Crossref] [PubMed]

X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005).
[Crossref]

X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
[Crossref]

Gossard, A. C.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
[Crossref] [PubMed]

A. C. Gossard, “Growth of microstructures by molecular beam epitaxy,” IEEE J. Quantum Electron 22, 1649–1655 (1986).
[Crossref]

R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985).
[Crossref]

R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[Crossref]

Goulielmakis, E.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

Grasbon, F.

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Gu, S. W.

K. X. Guo and S. W. Gu, “Nonlinear optical rectification in parabolic quantum wells with an applied electric field,” Phys. Rev. B 47, 16322–16325 (1993).
[Crossref]

Guo, K. X.

K. X. Guo and S. W. Gu, “Nonlinear optical rectification in parabolic quantum wells with an applied electric field,” Phys. Rev. B 47, 16322–16325 (1993).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Haworth, C. A.

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

Hentschel, M.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Herrmann, J.

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett 83, 544–547 (1999).
[Crossref]

Hey, R.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

Holzwarth, R.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Hopkins, P. F.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
[Crossref] [PubMed]

Hughes, S.

C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett 98, 167404 (2007).
[Crossref] [PubMed]

C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett 32, 187–189 (2007).
[Crossref]

S. Hughes, “Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett 81, 3363–3366 (1998).
[Crossref]

Jin, S.

X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Kalosha, V. P.

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett 83, 544–547 (1999).
[Crossref]

Kamta, G. L.

G. L. Kamta and A. D. Bandrauk, “Phase dependence of enhanced ionization in asymmetric molecules,” Phys. Rev. Lett 94, 203003 (2005).
[Crossref] [PubMed]

Kärtner, F. X.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

Khitrova, G.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

Kleinman, D. A.

R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985).
[Crossref]

R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[Crossref]

Knight, P. L.

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

Krausz, F.

M. Drescher and F. Krausz, “Attosecond physics: facing the wave-particle duality,” J. Phys. B: At. Mol. Opt. Phys 38, 727–740 (2005).
[Crossref]

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys 72, 545–591 (2000).
[Crossref]

Kuhn, T.

V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys 67, 433–512 (2004).
[Crossref]

Lezius, M.

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

Lin, C. D.

X. M. Tong and C. D. Lin, “Dynamics of light–field control of molecular dissociation at the few-cycle limit,” Phys. Rev. Lett 98, 123002 (2007).
[Crossref] [PubMed]

Lindner, F.

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

Loiko, Y.

Y. Loiko and C. Serrat, “Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level Λ type systems studied with the finite-difference time-domain method,” Phys. Rev. A 73, 063809 (2006).
[Crossref]

Luo, C. W.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

Ma, B. K.

H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000).
[Crossref]

Magnitskii, S. A.

Marangos, J. P.

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

Meng, F.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Miller, R. C.

R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985).
[Crossref]

R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[Crossref]

Morgner, U.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

Mücke, O. D.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

Munteanu, O.

R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[Crossref]

Nickel, E.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Nisoli, M.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Paulus, G. G.

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Plombon, J. J.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

Ploog, K. H.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

Poletto, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Priori, E.

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Rebane, A.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Reimann, K.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

Robinson, J. S.

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

Sansone, G.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Scrinzi, A.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Serrat, C.

Y. Loiko and C. Serrat, “Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level Λ type systems studied with the finite-difference time-domain method,” Phys. Rev. A 73, 063809 (2006).
[Crossref]

Sherwin, M. S.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

Shik, A.

A. Shik, Quantum Well: Physics and Electronics of Two-Dimensional Systems (World Scientific, Singapore, 1997).

Shuvaev, V. A.

Silvestri, S. D.

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Song, X.

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005).
[Crossref]

X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
[Crossref]

Spangler, C. W.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Stagira, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Stepanenko, Y.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Sundaram, M.

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
[Crossref] [PubMed]

Taflove, A.

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE. Trans. Microwave. Theory. Tech 23, 623–630 (1975).
[Crossref]

Tarasishin, A. V.

Tisch, J. W. G.

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

Tong, X. M.

X. M. Tong and C. D. Lin, “Dynamics of light–field control of molecular dissociation at the few-cycle limit,” Phys. Rev. Lett 98, 123002 (2007).
[Crossref] [PubMed]

Tritschler, T.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

Udem,

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Uiberacker, M.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Van Vlack, C.

C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett 32, 187–189 (2007).
[Crossref]

C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett 98, 167404 (2007).
[Crossref] [PubMed]

Velotta, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Villoresi, P.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Vozzi, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Walther, H.

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Wang, Z.

J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002).
[Crossref]

Wegener, M.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

Weiner, A. M.

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Woerner, M.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

Xiao, J.

J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002).
[Crossref]

Xie, H. J.

L. Zhang and H. J. Xie, “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells,” Phys. Rev. B 68, 235315 (2003).
[Crossref]

H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000).
[Crossref]

Xu, Z.

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrashort four-wave mixing in a polar molecule medium,” Opt. Express 14, 7216–7223 (2006).
[Crossref] [PubMed]

X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005).
[Crossref]

X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
[Crossref]

J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002).
[Crossref]

Yakovlev, V. S.

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

Yang, W.

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrashort four-wave mixing in a polar molecule medium,” Opt. Express 14, 7216–7223 (2006).
[Crossref] [PubMed]

Zhang, L.

L. Zhang and H. J. Xie, “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells,” Phys. Rev. B 68, 235315 (2003).
[Crossref]

Zheltikov, A. M.

Ziolkowski, R. W.

R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995).
[Crossref] [PubMed]

Appl. Phys. Lett (1)

F. Eickemeyer, M. Woerner, A. M. Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, “Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,” Appl. Phys. Lett 79, 165–167 (2001).
[Crossref]

IEEE J. Quantum Electron (1)

A. C. Gossard, “Growth of microstructures by molecular beam epitaxy,” IEEE J. Quantum Electron 22, 1649–1655 (1986).
[Crossref]

IEEE. Trans. Microwave. Theory. Tech (1)

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE. Trans. Microwave. Theory. Tech 23, 623–630 (1975).
[Crossref]

J. Appl. Phys (1)

S. Adachi, “GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys 58, 1–29 (1985).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys (1)

M. Drescher and F. Krausz, “Attosecond physics: facing the wave-particle duality,” J. Phys. B: At. Mol. Opt. Phys 38, 727–740 (2005).
[Crossref]

J. Phys. Chem. B (1)

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted Porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B 110, 9802–9814 (2006).
[Crossref] [PubMed]

Nature (2)

A. Baltuška, Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[Crossref] [PubMed]

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. D. Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[Crossref] [PubMed]

Nature. Phys (2)

C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nature. Phys 3, 52–57 (2007).
[Crossref]

S. T. Cundiff, “Attosecond Physics: better by half,” Nature. Phys 3, 16–18 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett (2)

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett 29, 2160–2162 (2004).
[Crossref] [PubMed]

C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett 32, 187–189 (2007).
[Crossref]

Opt. Spectrosc (1)

X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc 99, 517–521 (2005).
[Crossref]

Phys. Rev. A (5)

Y. Loiko and C. Serrat, “Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level Λ type systems studied with the finite-difference time-domain method,” Phys. Rev. A 73, 063809 (2006).
[Crossref]

X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69, 015801 (2004).
[Crossref]

R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995).
[Crossref] [PubMed]

L. W. Casperson, “Few-cycle pulses in two-level media,” Phys. Rev. A 57, 609–621 (1998).
[Crossref]

J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65, 031402(R) (2002).
[Crossref]

Phys. Rev. B (6)

L. Zhang and H. J. Xie, “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells,” Phys. Rev. B 68, 235315 (2003).
[Crossref]

R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from special GaAs-AlxGa1-xAs quantum-well structures,” Phys. Rev. B 32, 5443–5446 (1985).
[Crossref]

W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second-harmonic generation in GaAs-AlxGa1-xAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376–2390 (1993).
[Crossref]

R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[Crossref]

K. X. Guo and S. W. Gu, “Nonlinear optical rectification in parabolic quantum wells with an applied electric field,” Phys. Rev. B 47, 16322–16325 (1993).
[Crossref]

H. J. Xie, C. Y. Chen, and B. K. Ma, “Bound polaron in a cylindrical quantum wire of a polar crystal,” Phys. Rev. B 61, 4827–4834 (2000).
[Crossref]

Phys. Rev. Lett (11)

G. L. Kamta and A. D. Bandrauk, “Phase dependence of enhanced ionization in asymmetric molecules,” Phys. Rev. Lett 94, 203003 (2005).
[Crossref] [PubMed]

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett 83, 544–547 (1999).
[Crossref]

S. Hughes, “Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett 81, 3363–3366 (1998).
[Crossref]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett 87, 057401 (2001).
[Crossref] [PubMed]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett 90, 217404 (2003).
[Crossref] [PubMed]

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett 92, 047402 (2004).
[Crossref] [PubMed]

C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett 98, 167404 (2007).
[Crossref] [PubMed]

W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett 99, 133602 (2007).
[Crossref] [PubMed]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett 89, 127401 (2002).
[Crossref] [PubMed]

X. M. Tong and C. D. Lin, “Dynamics of light–field control of molecular dissociation at the few-cycle limit,” Phys. Rev. Lett 98, 123002 (2007).
[Crossref] [PubMed]

G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett 91, 253004 (2003).
[Crossref]

Rep. Prog. Phys (1)

V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys 67, 433–512 (2004).
[Crossref]

Rev. Mod. Phys (1)

T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys 72, 545–591 (2000).
[Crossref]

Science (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

M. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, “New quantum structures,” Science 254, 1326–1335 (1991).
[Crossref] [PubMed]

Other (1)

A. Shik, Quantum Well: Physics and Electronics of Two-Dimensional Systems (World Scientific, Singapore, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Conduction-band profile of GaAs-AlGaAs symmetric QW (a) and asymmetric QW (b).
Fig. 2.
Fig. 2. (Color online) The spectra of few-cycle ultrashort pulses in symmetric QW with ω 0=0.4 fs-1 at z=120 µm.
Fig. 3(a).
Fig. 3(a). The spectra of few-cycle ultrashort pulses in asymmetric QW with ω0 =0.4 fs-1 at z=120 µm.
Fig. 3(b).
Fig. 3(b). The carrier of few-cycle ultrashort pulses Ω(fs-1) (solid line) and the population difference w (dotted line) at z=0 µm.
Fig. 4(a).
Fig. 4(a). As in Fig. 3(a) but for ω0 =0.5 fs-1.
Fig. 4(b).
Fig. 4(b). As in Fig. 3(b) but for ω0 =0.5 fs-1.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 + H 1 ,
H 1 = e r E ( r , t ) ,
H 0 = P 2 2 m * + p x 2 2 m * + V ( x ) ,
V ( x ) = 1 2 m * ω 0 2 x 2 ,  < x < ,
V ( x ) = { 1 2 m * ω 0 2 x 2 , x 0 , , x < 0 ,
E s = ( n 1 + 1 2 ) ω 0 + 2 2 m * k 2 , n 1 = 0 , 1 , 2 , ...
φ s = N s exp ( 1 2 β 2 x 2 ) H n 1 ( β x ) U c ( r ) exp ( i k r ) ,
β = m * ω 0 ,
E a = ( 2 n 2 + 3 2 ) ω 0 + 2 2 m * k 2 , n 2 = 0 , 1 , 2 , ...
φ a = N a exp ( 1 2 β 2 x 2 ) H 2 n 2 + 1 ( β x ) U c ( r ) exp ( i k r ) ,
Ω ( t = 0 , z ) = Ω m sec h [ 1.76 ( z c z 0 c ) τ p ] cos [ ω p ( z z 0 ) c + ϕ ] ,

Metrics