Abstract

We present a design for a novel carrier to envelope phase stable optical parametric chirped pulse amplification source in the mid-infrared. We calculate the amplification of a 3.1µm seed pulse, generated via DFG from a two-colour fibre laser, using a fully three dimensional OPCPA code. We combine this with a ray-tracing code to model pulse compression using a grating compressor and a deformable mirror for programmable phase compensation. The simulation models the complete system based on FROG measurements of the commercially available fibre laser, ensuring the simulation is realistic. The obtained results indicate energetic pulses of 56 fs duration, corresponding to 5.2 cycles, can be produced with calculated pulse energies of up to 9.6µJ at a central wavelength of 3.3µm.

©2008 Optical Society of America

1. Introduction

Ultrashort pulsed light sources in the mid-IR are currently sought for numerous different fields ranging from strong field physics to medical and industrial applications, while the production of intense, few-cycle laser pulses with stable carrier-envelope phase (CEP) has also become a topic of much interest in recent years. Generating such few-cycle, CEP stable pulses in the mid-IR should result in shorter attosecond pulses [1, 2], and allow improved discrimination between tunnelling and multi-photon processes [3]. The broad bandwidths of such pulses are beneficial to spectroscopy since they cover many vibrational transitions in important molecules, and the intrinsic potential CEP stability opens a wide range of applications [4] such as breath monitoring for medical purposes [5]; the identification of bio-marker molecules [6]; monitoring the concentration of green house gases [7] or explosive detection via LIBS [8].

In general, the current generation of energetic few-cycle laser sources is limited to the NIR, normally based on Ti:Sapphire CPA lasers combined with a nonlinear broadening stage and post-compression [9, 10, 11]. These sources are then fitted with feedback systems to ensure CEP stability of the few-cycle pulses, typically giving CEP stable operation for up to a few hours. For some proposed experiments the limitations of such Ti:Sapphire based systems are becoming apparent, as the experimental requirements such as data collection times and long-term stability far exceed the performance of even the best systems. Optical parametric chirped pulse amplification (OPCPA) [12, 13] has been identified as a possible alternative route to few-cycle pulse generation, as it supports extremely high repetition rates, is in principle CEP-preserving, and offers the possibility of direct amplification of few-cycle pulses. Current VIS-NIR OPCPA systems show promising performance as direct alternatives to Ti:Sapphire based lasers, with sub 10 fs durations and mJ level energies [14, 15]. In this paper we investigate the extension of OPCPA to a completely new regime of operation by taking advantage of its inherent wavelength flexibility to design a few-cycle pulse source operating at mid-infrared (mid-IR) wavelengths.

 

Fig. 1. Mid-IR OPCPA design concept: a commercial fibre laser provides pulses at 1050 and 1550 nm, which are combined through DFG to generate 3.4 µm radiation (HNLF - highly non-linear fibre). The mid-IR DFG output is downchirped in a bulk stretcher and amplified in an OPCPA stage, using a commercial 100 kHz Nd:YVO4 laser as a pump. Finally, the amplified pulse is compressed by a grating compressor (R1 - retro-reflector).

Download Full Size | PPT Slide | PDF

OPCPA has already been used to produce promising results near 2 µm region [16] and by extending this to the wavelength regime above 3 µm we can begin to access this important wavelength range for spectroscopic applications. In the field of strong field physics, e.g. in high harmonic generation, the ponderomotive energy depends on the square of the wavelength of the driving laser [3, 17], and using the mid-IR we can greatly increase the kinetic energy of the recolliding electron, extending the harmonic cut-off to the keV level [18, 2]. The investigation of strong field physics using NIR drive lasers also unavoidably introduces experimental ambiguities due to a mixture of tunnelling and multiphoton ionisation, which can be avoided by using mid-IR wavelengths, where the lower photon energy ensures we are fully in the regime of tunnelling ionisation.

The generation of low energy radiation in the mid-IR using DFG is an established technique, with the frequency mixing of diode lasers commonly used to create CW beams [19] with close to a mW of power. Using this approach combined with OPA to generate pulses with high energies in the mid-IR requires a complex and costly high energy CPA laser (usually Ti:Sapphire) to drive the DFG process, and thus inherits the limited repetition rates and instabilities of such systems. Using a 30 fs Ti:Sapphire CPA system and OPA, pulses of 50 fs duration with 2 µJ energy (~1.5% conversion efficiency) have been produced in the mid-IR [20], but without the CEP stability essential for many applications and with low efficiency. Few-cycle CEP stable pulses have been generated in the 1–2 µm spectral range via CPA driven OPA [21], however this result already required a few-cycle NIR driving laser and cannot reach the mid-IR spectral range above 3 µm. The only few-cycle mid-IR source demonstrated to date is based on four wave mixing in a filament [22], but this is not scalable to high energies, and as is common to all the systems above, it requires a complex Ti:Sapphire CPA system, with the associated limitations of cost, repetition rate and long term stability. All of the Ti:Sapphire based sources mentioned above are limited in repetition rate by thermal deposition, while OPCPA does not involve storage of energy in the amplifying medium, and so is limited in repetition rate only by the available pump laser, with e.g. 100 kHz pumps commercially available. Certain proposed experiments, such as the measurement of double ionisation [23], where the cross section is three orders of magnitude lower than single ionisation, are simply intractable using current few-kHz lasers, making the drive to raise the repetition rate all the more urgent.

2. Concept

When designing the mid-IR OPCPA source shown in Fig.1 we have used parameters of off-the shelf components to ensure the design is relevant. For the seed source we have chosen a single cavity, dual-output fibre laser oscillator (see [24] for details) producing 1 and 1.5 µm beams, combined with difference frequency generation (DFG) to shift the wavelength to the mid-IR. The fibre laser oscillator offers a compact and highly stable source with turn-key operation, while the use of DFG between two pulses from a common oscillator cavity ensures the generation of a CEP stable seed pulse for the OPCPA [25]. The use of broadband 1 and 1.55 micron beams from the fibre laser together with the DFG process ensures that we generate both a mid-IR centre wavelength and also a broad bandwidth pulse capable of supporting ultrashort pulse durations.

A simple bulk stretcher is used to chirp the seed pulse, ensuring that beam pointing variations do not impose fluctuations on the CEP stability. The choice of stretcher pulse duration is optimised for overlap with a commercially available 100 kHz repetition rate laser, suitable for use as an OPCPA pump, with a ~10 ps FWHM transform limited pulse duration. The relatively modest stretch factor also eases recompression of the amplified pulse. This is followed by a single OPCPA stage in the current feasibility study, though multiple stages are completely possible. OPCPA can amplify the mid-IR pulse, while also maintaining the broad bandwidth and CEP stability that are crucial advantages for strong field physics. At the same time OPCPA offers the possibility of much increased repetition rates, with a 100 kHz repetition rate envisaged in this design. The parametric amplication simulations are based on a full three-dimensional (3D) model [26] of the coupled wave equations that includes parasitic second harmonic generation (SHG) and takes walk-off and dispersion to all orders into account. The crystal length and poling period are set by choosing a pump intensity close to the damage threshold, then optimising the balance between broadband phasematching and high gain. Though we only model a single OPCPA stage here, the principle of using multiple stages has been successfully demonstrated in many systems [15, 27, 28], implying that our results can easily be scaled to higher energy by the addition of further OPCPA stages. Compression of the pulse requires careful design, as the use of a prism compressor would require a large prism separation to compensate the induced stretch, a major problem in the mid-IR where the detection of beam location is extremely difficult. We have chosen to use a grating compressor, with our configuration corresponding to a simple Martinez-type grating stretcher in a normal, up-chirped CPA system. Even with this simple design, we achieve almost perfect compensation up to the third order of spectral phase, with the residual phase well within the compensation abilities of a simple deformable mirror based programmable phase moduator [29].

 

Fig. 2. The retrieved spectral phase and intensity from a FROG measurement of the two arms of a Erbium doped fibre laser. The pulse durations of the 1070 nm arm (left) and 1550 nm arm (right) are 34 and 65 fs respectively. This data is used to create the input pulses for our OPCPA simulation.

Download Full Size | PPT Slide | PDF

3. Mid-IR seed generation

We have previously demonstrated [24] generation of a suitable mid-IR seed pulse via difference frequency generation (DFG) between two arms of an amplified fibre laser oscillator. Using a mode locked Erbium doped fiber oscillator running at 100MHz two output arms are amplified and compressed to achieve about 4nJ per pulse with a pulse duration of 65 fs full width half maximum (FWHM) and a central wavelength of 1575 nm. One of these arms is then propagated through a highly nonlinear fiber (HNLF) that shifts the wavelength to a central wavelength of 1075 nm with a bandwidth of 150 nm. This pulse is then recompressed to obtain 34 fs with 0.12 nJ per pulse, and DFG between the two arms can then be achieved in an appropriate non-linear crystal. The use of DFG between two pulses from the same oscillator automatically ensures the phase stability of the mid-IR seed [25], and this has been confirmed experimentally [30] to produce CEP stable pulses, with stability maintained over timescales of days [31]. To ensure the modelling corresponds to a physically meaningful result, the phase and amplitude of this fibre source were measured using Frequency resolved optical gating (FROG), and this data, together with the spatial profile, was used as the input for our full 3D simulation code (Fig. 2). The 3D model was applied to the DFG of the mid-IR seed using a 16×19 transverse grid with 256 points in the time domain. It showed that optimum phase matching conditions for DFG (1050-1550→3255 nm) are obtained in collinear geometry using a 2mm thick periodically poled LiNbO3 (PPLN) crystal with a poling period of 31 µm, assuming a nonlinear coefficient d33 of 25.33 pm/V. QPM is handled in the bulk approximation, i.e. the phase mismatch is simply taken to be zero for the specified phase-matched wavelengths. The 1050 and 1550 nm beams were both focussed to 21 µm diameter, giving an intensity of 1 and 18 Gw/cm2 respectively. Figure 3 shows the spectrum of generated mid-IR pulse, which spans from 2.6 µm to 3.8 µm, corresponding to a transform limited pulse duration of 33.4 fs, or 3.1 cycles of the electric field. The fine details of the generated spectrum are highly sensitive to the input pulse parameters, and further bandwidth optimisation may be possible during an experimental setup. The actual output pulse is down-chirped, and has an energy of 94 pJ.

4. OPCPA and compression

The ouptut of the DFG stage is then numerically propagated through a stretcher in order to match its duration with the that of the chosen pump pulse for the OPCPA. A simple, efficient and stable option for pulse stretching is to use a 10 cmlong bulk Sapphire rod, further increasing the down-chirp to produce a 6.8 ps duration, measured at 30% of the peak intensity to include the low wavelength spectral peak. From commonly available materials which are transparent in the mid-IR, Sapphire presented the best balance between high dispersion in a short length and low absorption. This matches well with the 10 ps pulse duration available from a commercially available, high repetition rate and high energy Nd:YVO4 pump laser, and ensures that a realistic timing jitter of ~200 fs between pump and seed pulses does not affect the OPCPA process. It is worthwhile to highlight the use of a transform limited pulse from the Nd:YVO4 pump laser. As has been shown by Schlup et al [32], the energy extraction efficiency in OPCPA using a transform limited pump pulse is higher than from a broadband pump pulse stretched to match the seed pulse. The use of a broadband pump pulse with a precisely tailored chirp rate in theory provides the highest efficiency amplification, but unless the chirp matches exactly the optimum profile, the efficiency will be lower than in the case of using a transform limited pump pulse. We have chosen the latter, “second-best” case as in practice it is the easiest to realise. To amplify the DFG output we use an OPCPA stage consisting of another collinear geometry PPLN crystal, identical to the DFG stage, with a 40 µm seed beam diameter. Here we use a 32×15 point spatial grid and and 2048 points temporally. This gives appropriate phasematching for optical parametric amplification using a 1.064 µm Nd:YVO4 pump, where the 3.3 µm seed beam is technically the idler wave, and a signal wave is produced at 1.55 µm. Using 35 µJ of pump energy over a 40 µm diameter beam, we pump at 70 GW/cm2, close to the damage threshold for the PPLN, and calculate an OPA gain for single pass amplification of 1.1×105. The parasitic second-harmonic generation (SHG), which can reduce the OPCPA efficiency and distort the spectrum is also included in the model. The OPCPA simulation indicates ~10 µJ can be extracted into the 3.3 µm amplified idler. The broad bandwidth spectrum of the DFG seed is mostly maintained, covering 2.8 µm to 3.5 µm, corresponding to an 56 fs transform limited pulse duration, or 5.2 cycles of the electric field at 3.3 µm (Fig. 4). This mid-IR pulse is then recompressed using a double-pass grating compressor. The compressor consists of two gold gratings with a blaze angle of 17.5° and a density of 190 lines per mm. The ray tracing code is used to optimise compression by iteratively adjusting the incident angle and the grating separation to precisely compensate the second and third order dispersion. At a tilt of 4.5° from the Littrow angle and a grating separation of 5.9 mm, perfect compensation can be found for the first two orders, while the residual phase has a magnitude of less than 0.1 rad across the full bandwidth. This is within the range of programmable phase compensation using a deformable mirror, and the slope of the residual phase does not exceed the constraints for this type of device. The calculated compressed pulse is shown in Fig. 5, and has a duration of 73 fs when using the compressor only and 56fs if programmable compensation is used to remove the residual phase. The residual phase is less than 0.06 radian across the entire spectrum and is well within the capabilities of a deformable mirror phase modulator. The shortest pulse duration corresponds only 5.2 cycles of the electric field.

 

Fig. 3. The calculated output of the DFG stage. The left column shows the temporal intensity (I, blue) and instantaneous frequency (wInst, green) for, from top to bottom, the idler, signal and pump pulses. The right hand column shows the corresponding spectral intensity (S, blue) and phase (green). The generated idler lies in the mid-IR with spectral coverage from 2.8–3.6 µm. The idler intensity is strongly modulated, but as can be seen in Fig 4, this modulation is reduced in the OPCPA process.

Download Full Size | PPT Slide | PDF

 

Fig. 4. The calculated output after the OPCPA stage. The left column shows the temporal intensity (I, blue) and instantaneous frequency (wInst, green) for the idler, signal and pump pulses. The right hand column shows the corresponding spectral intensity (S, blue) and phase (green). The amplified mid-IR idler wave now has a smoother spectral profile, with spectral coverage from 2.8–3.5 µm. The spectral phase indicates a strong, mainly second order down-chirp after the stretching process. The broad bandwidth and opposite chirp of the signal wave are as expected from the OPA interaction between a narrowband pump and broadband idler.

Download Full Size | PPT Slide | PDF

 

Fig. 5. The left graph shows the pulse in the temporal domain, after compression to 56 fs with (green) the deformable mirror. The blue line shows the 73 fs FWHMcompressed pulse without the deformable mirror compensation. The right hand graph shows the spectrum and residual spectral phase that must be corrected by the deformable mirror, which is less than 0.06 radians across the entire spectrum.

Download Full Size | PPT Slide | PDF

5. Conclusion

We have modeled a completely new mid-IR few cycle CEP stable source based on OPCPA, including the full dispersion and full three dimensional interactions in the OPCPA stages. The simulation confirms the OPCPA can amplify few-cycle bandwidths in the mid-IR, with the simulations predicting energies of 10 µJ per pulse with 35 fs duration after only one stage of amplification. We have based the simulation on parameters of commercially available technology, ensuring that the result is not purely theoretical, but rather that it conforms to a physically realisable system. Furthermore, the selection of a fibre-based laser as a template for the seed pulses ensure that design takes advantage of the inherent stability and turn-key operation available from this technology.

The energy produced from this system is already relevant for spectroscopic applications due to the high repetition rate, but would need to be scaled to higher energies for use in strong field physics. This is possible simply by adding amplifier stages to the above system and increasing the beam size at each new stage to allow higher pump energy while maintaining the same pump intensity. Up to the mJ level, the scalability of such a system is limited only by the availability of an appropriate high energy pump laser, as the components described above (crystals, compressor) are readily available in the aperture sizes needed. Further scaling depends on the identification of suitable large aperture crystals but extremely high energies could be feasible, as demonstrated by the successful use of OPCPA for amplification to multi-Joule levels [27, 28].

Acknowledgments

We acknowledge partial support from the Spanish Ministry of Education and Science through its Consolider Program Science (SAUUL - CSD 2007-00013), “Participation in ELI” (CAC-2007-37), as well as through “Plan Nacional” (FIS2008-06368-C02-01). This work is also part of a Collaborative Research Program between ICFO and the Ontario Centres of Excellence, Canada, and funding from ICFO and OCE is gratefully acknowledged.

References and links

1. P. B. Corkum and F. Krausz. “Attosecond science,” Nature Phys 3, 381–387 (2007). [CrossRef]  

2. T. Popmintchev, M. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M.M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33, 2128–2130 (2008). [CrossRef]   [PubMed]  

3. B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999). [CrossRef]  

4. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy” Appl. Phys. B 91, 397–414 (2008). [CrossRef]  

5. P. Mazzone, “Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer,” J. Thoracic Oncology 3, 774–780 (2008). [CrossRef]  

6. K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006). [CrossRef]  

7. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid State Mid-Infrared Laser Sources 89, 445–510 (2003).

8. D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008). [CrossRef]  

9. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998). [CrossRef]  

10. C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004). [CrossRef]  

11. M. Kling and F. Krausz, “Attoscience: An attosecond stopwatch” Nature Phys. 4, 515–516 (2008). [CrossRef]  

12. A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992). [CrossRef]  

13. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997). [CrossRef]  

14. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13, 4903–4908 (2005). [CrossRef]   [PubMed]  

15. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett. 30, 567–569 (2005). [CrossRef]   [PubMed]  

16. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 mu m,” Opt. Lett. 31, 1103–1105 (2006). [CrossRef]   [PubMed]  

17. A. Gordon and F. Kaertner, “Scaling of keV HHG photon yield with drive wavelength,” Opt. Express 13, 2941–2947 (2005). [CrossRef]   [PubMed]  

18. J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007). [CrossRef]   [PubMed]  

19. D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, L. Goldberg, and J. Koplow, “High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy,” Opt. Lett. 24, 1744–1746 (1999) [CrossRef]  

20. F. Rotermund, V. Petrov, F. Noack, M. Wittmann, and G. Korn, “Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 µm,” J. Opt. Soc. Am. B 16, 1539–1545 (1999). [CrossRef]  

21. C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source,” Opt. Lett. 32, 2957–2959 (2007). [CrossRef]   [PubMed]  

22. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330–3332 (2007). [CrossRef]   [PubMed]  

23. T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000). [CrossRef]  

24. C. Erny, K. Moutzouris, J. Biegert, D. Khlke, F. Adler, A. Leitensdorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007). [CrossRef]   [PubMed]  

25. A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88, 133901 (2002). [CrossRef]   [PubMed]  

26. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999). [CrossRef]  

27. O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006). [CrossRef]   [PubMed]  

28. V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005). [CrossRef]  

29. J. Garduno-Mejia, A. H. Greenaway, and D. T. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express 11, 2030–2040 (2003) [CrossRef]   [PubMed]  

30. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er : fiber laser,” Opt. Lett. 32, 3504–3506 (2007). [CrossRef]   [PubMed]  

31. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hansch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005). [CrossRef]   [PubMed]  

32. P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum and F. Krausz. “Attosecond science,” Nature Phys 3, 381–387 (2007).
    [Crossref]
  2. T. Popmintchev, M. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M.M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33, 2128–2130 (2008).
    [Crossref] [PubMed]
  3. B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
    [Crossref]
  4. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy” Appl. Phys. B 91, 397–414 (2008).
    [Crossref]
  5. P. Mazzone, “Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer,” J. Thoracic Oncology 3, 774–780 (2008).
    [Crossref]
  6. K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
    [Crossref]
  7. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid State Mid-Infrared Laser Sources 89, 445–510 (2003).
  8. D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008).
    [Crossref]
  9. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
    [Crossref]
  10. C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
    [Crossref]
  11. M. Kling and F. Krausz, “Attoscience: An attosecond stopwatch” Nature Phys. 4, 515–516 (2008).
    [Crossref]
  12. A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992).
    [Crossref]
  13. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
    [Crossref]
  14. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13, 4903–4908 (2005).
    [Crossref] [PubMed]
  15. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett. 30, 567–569 (2005).
    [Crossref] [PubMed]
  16. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 mu m,” Opt. Lett. 31, 1103–1105 (2006).
    [Crossref] [PubMed]
  17. A. Gordon and F. Kaertner, “Scaling of keV HHG photon yield with drive wavelength,” Opt. Express 13, 2941–2947 (2005).
    [Crossref] [PubMed]
  18. J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
    [Crossref] [PubMed]
  19. D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, L. Goldberg, and J. Koplow, “High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy,” Opt. Lett. 24, 1744–1746 (1999)
    [Crossref]
  20. F. Rotermund, V. Petrov, F. Noack, M. Wittmann, and G. Korn, “Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 µm,” J. Opt. Soc. Am. B 16, 1539–1545 (1999).
    [Crossref]
  21. C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source,” Opt. Lett. 32, 2957–2959 (2007).
    [Crossref] [PubMed]
  22. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330–3332 (2007).
    [Crossref] [PubMed]
  23. T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
    [Crossref]
  24. C. Erny, K. Moutzouris, J. Biegert, D. Khlke, F. Adler, A. Leitensdorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
    [Crossref] [PubMed]
  25. A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88, 133901 (2002).
    [Crossref] [PubMed]
  26. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [Crossref]
  27. O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
    [Crossref] [PubMed]
  28. V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
    [Crossref]
  29. J. Garduno-Mejia, A. H. Greenaway, and D. T. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express 11, 2030–2040 (2003)
    [Crossref] [PubMed]
  30. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er : fiber laser,” Opt. Lett. 32, 3504–3506 (2007).
    [Crossref] [PubMed]
  31. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hansch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005).
    [Crossref] [PubMed]
  32. P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
    [Crossref]

2008 (5)

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

P. Mazzone, “Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer,” J. Thoracic Oncology 3, 774–780 (2008).
[Crossref]

T. Popmintchev, M. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M.M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33, 2128–2130 (2008).
[Crossref] [PubMed]

D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008).
[Crossref]

M. Kling and F. Krausz, “Attoscience: An attosecond stopwatch” Nature Phys. 4, 515–516 (2008).
[Crossref]

2007 (6)

2006 (3)

2005 (5)

2004 (2)

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

2003 (2)

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid State Mid-Infrared Laser Sources 89, 445–510 (2003).

J. Garduno-Mejia, A. H. Greenaway, and D. T. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express 11, 2030–2040 (2003)
[Crossref] [PubMed]

2002 (1)

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88, 133901 (2002).
[Crossref] [PubMed]

2000 (1)

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

1999 (4)

1998 (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

1997 (1)

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

1992 (1)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992).
[Crossref]

Adel, P.

Adler, F.

Afaneh, F.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Agostini, P.

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Arisholm, G.

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
[Crossref]

Auguste, T.

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

Baltuska, A.

Bates, P. K.

Benedetti, E.

Biegert, J.

C. Erny, K. Moutzouris, J. Biegert, D. Khlke, F. Adler, A. Leitensdorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
[Crossref] [PubMed]

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

Butkus, R.

Calegari, F.

Camp, M.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

Cerullo, G.

Chalus, O.

D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008).
[Crossref]

Charukhchev, A. V.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Chekhlov, O. V.

Chen, M.

Cheng, Z.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Cocke, C.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Cohen, O.

Collier, J. L.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[Crossref] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

Corkum, P. B.

P. B. Corkum and F. Krausz. “Attosecond science,” Nature Phys 3, 381–387 (2007).
[Crossref]

Couairon, a.

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Curl, R. F.

D. J.-C.,

D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008).
[Crossref]

Danielius, R.

Danson, C. N.

De Silvestri, S.

C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source,” Opt. Lett. 32, 2957–2959 (2007).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

DiMauro, L. F.

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Dorner, R.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Dubietis, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992).
[Crossref]

Eikema, K. S. E.

Erny, C.

Forget, N.

Freidman, G. I.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Fried, A.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid State Mid-Infrared Laser Sources 89, 445–510 (2003).

Fuji, T.

Gaarde, M.

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Galvanauskas, A.

Garanin, S. G.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Garduno-Mejia, J.

Gasilov, S.

Gerke, R. R.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Ginzburg, V. N.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Goldberg, L.

Gonzalez, a.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Gordon, A.

Greenaway, A. H.

Grisham, M. E.

Grosche, G.

Gu, X.

Hancock, S.

Hansch, T. W.

Hauri, C.

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Hauri, C. P.

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

Heinrich, a.

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Helbing, F.

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Hernandez-Gomez, C.

Hogervorst, W.

Holzwarth, R.

Huber, R.

Ishii, N.

Jagutzki, O.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Jeffers, J.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

Jonusauskas, G.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992).
[Crossref]

Kaertner, F.

Kaplan, D.

Kapteyn, H. C.

Katin, E. V.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Keller, U.

C. Erny, K. Moutzouris, J. Biegert, D. Khlke, F. Adler, A. Leitensdorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
[Crossref] [PubMed]

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

Khayyat, K.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Khazanov, E. A.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Khlke, D.

Kirsanov, A. V.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Kling, M.

M. Kling and F. Krausz, “Attoscience: An attosecond stopwatch” Nature Phys. 4, 515–516 (2008).
[Crossref]

Kobayashi, T.

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88, 133901 (2002).
[Crossref] [PubMed]

Koplow, J.

Korn, G.

Kornelis, W.

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Krausz, F.

M. Kling and F. Krausz, “Attoscience: An attosecond stopwatch” Nature Phys. 4, 515–516 (2008).
[Crossref]

P. B. Corkum and F. Krausz. “Attosecond science,” Nature Phys 3, 381–387 (2007).
[Crossref]

T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 mu m,” Opt. Lett. 31, 1103–1105 (2006).
[Crossref] [PubMed]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett. 30, 567–569 (2005).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Kubina, P.

Kulander, K. C.

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Lancaster, D. G.

Landers, A.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Langley, A. J.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

Leitensdorfer, A.

Leitenstorfer, A.

Lipphardt, B.

Lozhkarev, V. V.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Luchinin, G. A.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Mal’shakov, A. N.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Mart’yanov, M. A.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Martin, J.

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Matousek, P.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[Crossref] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

Mazzone, P.

P. Mazzone, “Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer,” J. Thoracic Oncology 3, 774–780 (2008).
[Crossref]

McCann, P.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

McMillen, G.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

Mergel, V.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Metzger, T.

Mirell, D.

D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008).
[Crossref]

Moutzouris, K.

Muller, H. G.

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

Murnane, M.M.

Mysyrowicz, a.

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Namjou, K.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

Neely, D.

Nisoli, M.

C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source,” Opt. Lett. 32, 2957–2959 (2007).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Noack, F.

Notley, M.

Palashov, O. V.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Peterson, K.

D. Mirell, O. Chalus, K. Peterson, and D. J.-C., “Remote sensing of explosive using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, (2008).
[Crossref]

Petrov, V.

Piskarskas, A.

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett. 30, 567–569 (2005).
[Crossref] [PubMed]

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992).
[Crossref]

Popmintchev, T.

Poteomkin, A. K.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Reich, T.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

Reid, D. T.

Richter, D.

Rocca, J. J.

Roller, C.

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

Ross, I. N.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[Crossref] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

Rotermund, F.

Rukavishnikov, N. N.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Salieres, P.

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

Sansone, G.

Sartania, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Schafer, K. J.

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Schlup, P.

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

Schmidt, L.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Schmidt-bocking, H.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Schnatz, H.

Sell, A.

Sergeev, A. M.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Shaikh, W.

Shaikin, A. A.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Sheehy, B.

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

Smilgevicius, V.

Sotier, F.

Spielmann, C.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Stagira, S.

C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source,” Opt. Lett. 32, 2957–2959 (2007).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Sukharev, S. A.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Suzuki, T.

Svelto, O.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Tate, J.

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

Teisset, C. Y.

Tempea, G.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

Thorpe, M. J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

Tittel, F.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid State Mid-Infrared Laser Sources 89, 445–510 (2003).

Tittel, F. K.

Towrie, M.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

Turi, L.

Veitas, G.

Vozzi, C.

Weber, T.

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

Witte, S.

Wittmann, M.

Yakovlev, I. V.

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Yakovlev, V. S.

Ye, J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

Zinkstok, R. T.

Appl. Phys. B (4)

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

K. Namjou, C. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[Crossref]

C. Hauri, W. Kornelis, F. Helbing, a. Heinrich, a. Couairon, a. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79, 285–288 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

T. Weber, K. Khayyat, R. Dorner, V. Mergel, O. Jagutzki, L. Schmidt, F. Afaneh, a. Gonzalez, C. Cocke, A. Landers, and H. Schmidt-bocking, “Kinematically complete investigation of momentum transfer for single ionization in fast proton-helium collisions,” J. Phys. B 33, 3331–3344 (2000).
[Crossref]

J. Thoracic Oncology (1)

P. Mazzone, “Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer,” J. Thoracic Oncology 3, 774–780 (2008).
[Crossref]

JETP Lett. (1)

V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, G. I. Freidman, E. A. Khazanov, A. V. Charukhchev, A. A. Shaikin, and I. V. Yakovlev, “100-TW femtosecond laser based on parametric amplification,” JETP Lett. 82, 178–180 (2005).
[Crossref]

Nature Phys (1)

P. B. Corkum and F. Krausz. “Attosecond science,” Nature Phys 3, 381–387 (2007).
[Crossref]

Nature Phys. (1)

M. Kling and F. Krausz, “Attoscience: An attosecond stopwatch” Nature Phys. 4, 515–516 (2008).
[Crossref]

Opt. Commun. (2)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful Femtosecond Pulse Generation By Chirped And Stretched Pulse Parametric Amplification In Bbo Crystal,” Opt. Commun. 88, 437–440 (1992).
[Crossref]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, L. Goldberg, and J. Koplow, “High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy,” Opt. Lett. 24, 1744–1746 (1999)
[Crossref]

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er : fiber laser,” Opt. Lett. 32, 3504–3506 (2007).
[Crossref] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Khlke, F. Adler, A. Leitensdorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
[Crossref] [PubMed]

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006).
[Crossref] [PubMed]

C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source,” Opt. Lett. 32, 2957–2959 (2007).
[Crossref] [PubMed]

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330–3332 (2007).
[Crossref] [PubMed]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett. 30, 567–569 (2005).
[Crossref] [PubMed]

T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 mu m,” Opt. Lett. 31, 1103–1105 (2006).
[Crossref] [PubMed]

T. Popmintchev, M. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M.M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33, 2128–2130 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

B. Sheehy, J. Martin, L. F. Dimauro, P. Agostini, K. J. Schafer, M. Gaarde, and K. C. Kulander, “High harmonic generation at long wavelengths,” Phys. Rev. Lett. 83, 5270 (1999).
[Crossref]

J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).
[Crossref] [PubMed]

A. Baltuska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88, 133901 (2002).
[Crossref] [PubMed]

Solid State Mid-Infrared Laser Sources (1)

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid State Mid-Infrared Laser Sources 89, 445–510 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Mid-IR OPCPA design concept: a commercial fibre laser provides pulses at 1050 and 1550 nm, which are combined through DFG to generate 3.4 µm radiation (HNLF - highly non-linear fibre). The mid-IR DFG output is downchirped in a bulk stretcher and amplified in an OPCPA stage, using a commercial 100 kHz Nd:YVO4 laser as a pump. Finally, the amplified pulse is compressed by a grating compressor (R1 - retro-reflector).
Fig. 2.
Fig. 2. The retrieved spectral phase and intensity from a FROG measurement of the two arms of a Erbium doped fibre laser. The pulse durations of the 1070 nm arm (left) and 1550 nm arm (right) are 34 and 65 fs respectively. This data is used to create the input pulses for our OPCPA simulation.
Fig. 3.
Fig. 3. The calculated output of the DFG stage. The left column shows the temporal intensity (I, blue) and instantaneous frequency (wInst, green) for, from top to bottom, the idler, signal and pump pulses. The right hand column shows the corresponding spectral intensity (S, blue) and phase (green). The generated idler lies in the mid-IR with spectral coverage from 2.8–3.6 µm. The idler intensity is strongly modulated, but as can be seen in Fig 4, this modulation is reduced in the OPCPA process.
Fig. 4.
Fig. 4. The calculated output after the OPCPA stage. The left column shows the temporal intensity (I, blue) and instantaneous frequency (wInst, green) for the idler, signal and pump pulses. The right hand column shows the corresponding spectral intensity (S, blue) and phase (green). The amplified mid-IR idler wave now has a smoother spectral profile, with spectral coverage from 2.8–3.5 µm. The spectral phase indicates a strong, mainly second order down-chirp after the stretching process. The broad bandwidth and opposite chirp of the signal wave are as expected from the OPA interaction between a narrowband pump and broadband idler.
Fig. 5.
Fig. 5. The left graph shows the pulse in the temporal domain, after compression to 56 fs with (green) the deformable mirror. The blue line shows the 73 fs FWHMcompressed pulse without the deformable mirror compensation. The right hand graph shows the spectrum and residual spectral phase that must be corrected by the deformable mirror, which is less than 0.06 radians across the entire spectrum.

Metrics