Abstract

We numerically investigate the tunneling of spatial solitons through a focusing Kerr nonlinear optical lattice with longitudinal potential barrier, and find that the position of input beams apparently affects the tunneling behaviors of spatial solitons, which exhibit compression or splitting when passing through the barrier, and that the transverse modulation frequency of lattice and the intensity of input beams strongly affect the ability of tunneling. Based on these properties, we present a scheme for compressing soliton and splitting soliton into stable twin beams. The obtained results may have promising applications in all-optical devices based on spatial solitons.

©2008 Optical Society of America

1. Introduction

Optical solitons have played an important role in the field of high-bit data transmission systems and in fundamental studies of modern nonlinear science. A variety of research on optical solitons in fibers, bulk materials, film waveguides and arrays of waveguides has been conducted and led to the observation of spatial, temporal and spatiotemporal solitons [15]. The concept of nonlinear tunneling of solitons was firstly proposed by Newell in 1978 [6]. Subsequently, soliton tunneling was investigated, theoretically and experimentally, in hydrodynamics, BEC and optics [716]. In optics, the tunneling of solitons has been studied in the temporal domain through a longitudinal junction [9], and in the frequency domain across a forbidden normal-dispersion barrier [10, 11]. The process of nonlinear tunneling of optical solitons through a strong nonlinear organic thin film exhibits jumplike nonadiabatic evolution, which eventually leads to the soliton “fission reactions” [12]. Optical soliton tunneling through dispersion and nonlinear barrier (or well) has been studied in detail [13, 14]. More recently, spatial soliton tunneling and ejection through a potential barrier have been observed experimentally [15] and multisoliton ejection from an amplifying potential trap has been investigated theoretically [16]. These studies on soliton tunneling have opened up an exciting area in the applications.

During the past years, a great deal of attention has been devoted to light propagation in periodic nonlinear lattices because of potential applications in optical information processing [1728]. Optical lattices with periodic modulation of the refractive index strongly affect the diffraction properties of light beams and, in combination with nonlinearity, lead to the localization of light in the form of spatial solitons. Spatial solitons in optical lattices exhibit a number of interesting propagation scenarios including oscillation, switching and routing [2023]. Recently, optical lattices with longitudinal refractive index modulation have received significant attention [2935]. Nonlinear lattices built of the properly designed segments support diffraction-managed solitons [29, 30]. Fading optical lattices can give rise to soliton steering and soliton fission [31]. The parametric amplification of spatial soliton steering can be achieved in harmonic nonlinear lattices with longitudinal modulation [32], and controllable soliton dragging occurs in dynamical lattices produced by three imbalanced interfering plane waves [33,34]. Variation of the lattice shape in longitudinal direction offers more opportunities for the applications in all-optical devices based on spatial solitons.

In the present paper, we focus on the spatial soliton tunneling through a steep potential barrier created by an exponential rising lattice followed by a decaying lattice. By performing extensively numerical simulations, we show that spatial solitons can exhibit different behaviors such as compression and splitting when passing through the barrier under proper barrier height and input soliton parameters. Based on the properties, we propose a lattice system for compressing soliton and splitting soliton into twin beams. The obtained results are useful in developing novel all-optical devices based on the soliton signals.

2. Model

The propagation of light beams in the focusing Kerr nonlinear medium with the linear refractive index modulation in both transverse x and longitudinal z directions is described by the nonlinear Schrödinger equation [31, 32]:

iqξ=122qη2qq2pR(η,ξ)q.

Here q(η,ξ)=(L dif/L nl)1/2 A(η,ξ)I-1/2 0, where A(η,ξ) is the slowly varying envelope, I 0 is the input peak intensity, η=x/r 0,r 0 is the input beam width, ξ=z/L dif, L dif=n 0 ω r 2 0/c is the diffraction length, L nl=2c/ωn 2 I 0 is the nonlinear length, ω is the carrying frequency, p=L dif/L ref, L ref=c/δnω is the linear refraction length and δn is the refractive index modulation depth. R(η,ξ) describes the profile of the refractive index along the transverse and longitudinal axes. Here we consider an optical lattice with the profile:

R(η,ξ)={cos2(Ωηη)exp[δ(ξξB)]0ξ<ξBcos2(Ωηη)exp[δ(ξξB)]ξBξ<2ξB,

where Ωη denotes the transverse modulation frequency and δ is the rise (or decay) rate along the longitudinal direction. For a large δ>0, the lattice given by Eq. (2) can describe a steep lattice potential barrier at ξ=ξ B, as shown in Fig. 1. Such kind of lattice with high longitudinal barrier can be realized by an exponential rising lattice followed by a decaying lattice, which can be technologically fabricated or induced optically in photorefractive crystals [36, 37]. The lattice parameters, such as the transverse frequency and rise (or decay) rate, can be experimentally tuned by changing intensities, intersection angles, carrying wavelength of lattice-forming plane waves and the crystal temperature [31,33,36,37]. The value of parameter p in Eq. (1) can be estimated according to the experimental parameters of Ref. [38]. For a beam width 5 µm and wavelength 532nm, a lattice period ~5µm, the parameter p=1 corresponds to a refractive index variation δn≈0.0002 and ξ=1 corresponds to a lattice length z≈0.7mm. Therefore, the modulation depth of the refractive index can be considered small for a short lattice (e.g.ξ=5) and is of the order of the nonlinear correction to the refractive index due to the Kerr effect.

 figure: Fig. 1.

Fig. 1. Profile of a steep lattice potential barrier described by Eq. (2) with Ωη=4,δ=1 and ξB=5.

Download Full Size | PPT Slide | PDF

It should be noted that Eq. (1) is known in physics and mathematics as the nonautonomous model with varying in space and time external potential [13, 39, 40]. Based on Eq. (1) with complex and nonuinform potentials, exact analytic solutions to the problem of optimal soliton amplification and soliton management have been investigated in detail [13, 39]. Recently, novel soliton solutions for the nonautonomous model [Eq. (1)] with linear and harmonic oscillator potentials under exact integrability condition have been found [40]. However, for the potential presented in Eq. (3), it is difficult to obtain the exact solution of Eq. (1). In order to study the tunneling of spatial solitons through a steep lattice barrier given by Eq.(2), we adopt the split-step Fourier method to perform direct evolution of Eq.(1) with the typical sechtype beam q(η,ξ=0)=Asec h[A(η-η 0)], where A is the amplitude or inverse beam width and η 0 the center position, respectively. In the subsequent analysis, we assume the parameters of the lattice δ=1.0 and ξ B=5, respectively.

3. Numerical results and discussion

3.1 Soliton tunneling

The propagation dynamics of spatial solitons with A=1 and η 0=0 in the lattice with longitudinal barrier given by Eq. (2) are illustrated in Fig. 2. In this case the input soliton width is comparable with the transverse modulation period πΩη and the soliton center is located at the lattice high-index site. For lower potential barrier p=6, as shown in Fig. 2 (a) and 2(c), the tunneling occurs and the soliton recovers its original shape after it passes through the barrier, where the beam is modulated and presents a main peak and two side peaks. When the potential exceeds the value of p=6, the soliton starts to spread rapidly after passing through the barrier due to the imbalance between the diffraction and the nonlinear effect. The higher the potential barrier is, the more seriously the soliton broadens. Figure 2(b) and 2(d) present the evolution scenarios of the soliton across the barrier with higher potential p=36. Form it one can clearly see that the soliton spreads and radiates rapidly after passing through the barrier. When we increase the transverse frequency of the lattice to Ωη=8, which corresponds to the case that input soliton width is much larger than the transverse modulation period of the lattice, the soliton can easily pass through the barrier with p=36 and then recover its initial shape, as shown in Fig. 3(a) and 3(c). This result clearly shows that for the same modulation depth, the modulation period of the refractive index strongly affects the diffraction properties of light beams. Naturally, for high enough potentials, for example p=150, the soliton is also difficult to tunnel through the barrier with large transverse frequency Ωη=8 [see Fig. 3(b) and 3(d)].

 figure: Fig. 2.

Fig. 2. Propagation of spatial solitons with A=1and η 0=0 across the barrier given by Eq. (2) with Ωη=4, (a) p=6; (b) p=36; (c) and (d) corresponding to the cases of (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. Propagation of spatial solitons with A=1 and η 0=0 across the barrier given by Eq. (2) with Ωη=8, (a) p=36; (b) p=150; (c) and (d) corresponding to the cases of (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Tunneling of spatial solitons with A=2 and η 0=0 through the barrier given by Eq.(2) with (a) Ωη=4, p=36; (b) Ωη=8, p=150; (c) and (d) corresponding to the cases of (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

Next, we consider the cases of spatial solitons with A=2 and η 0=0, as shown in Fig. 4. In contrast with Fig. 2(b), 2(d), Fig. 3(b) and 3(d), we find that the solitons with A=2 can easily overcome and tunnel through the lattice potential barriers which the solitons with A=1 can not pass through, respectively. The result means that for a certain potential, the larger the transverse frequency of the lattice is and the higher peak intensity the soliton possesses, the easier the soliton will tunnel through.

It should be noted in Fig. 2(c), 2(d), 3(c) and 3(d) that whether spatial solitons with A=1 and η 0=0 can tunnel through the potential barrier or not, they exhibit odd number of peaks at ξ=ξB. Physically, these peaks are caused by the mutual interaction between the high lattice potentials and the solitons. The larger the transverse frequency of the lattice is, the more waveguides the input beam covers, and the more peaks the solitons exhibit at ξ=ξB. Also, the higher the lattice potential, the more serious the mutual interaction, hence, the deeper dips solitons appear. Interestingly, for solitons with A=2, the side peaks can be effectively suppressed and the energy is collected in the centric peak when they cross the barriers [see Fig. 4(c) and 4(d)]. This property may provide the possibility for realizing the soliton compression.

Furthermore, we investigate the tunneling of spatial solitons with initial shift η0=π2Ωη through the longitudinal lattice barrier described by Eq. (2). In this case, the soliton is centered in between two lattice high-index sites. Similar to the case of η 0=0, for lower potential barrier, the soliton with A=1 can successfully pass through the barrier and then revive without changing its shape, as shown in Fig. 5(a) and 5(d). For high enough potential barrier, the intensity of the soliton with A=1 is insufficient to overcome the potential barrier, hence it broadens rapidly, which is illustrated in Fig. 5(b) and 5(e). By increasing the soliton peak intensity we find that the soliton with A=2 successfully passes through the barrier and recovers its shape [see Fig. 5(c) and 5(f)]. However, it is worth noticing in Fig. 5(d), 5(e) and 5(f) that the solitons with η0=π2Ωη exhibit different behaviors from the case of η 0=0. These solitons experience the strong interaction with the potential barriers at ξ=ξ B and appear even number of peaks owing to the property that the beams are symmetrically attracted towards the higher refractive index lattice sites. From Fig. 5(d), 5(e) and 5(f), we can clearly see that at ξ=ξ B, higher potential results in more energy concentration in the left and right adjacent waveguides and the soliton with A=2 can be clearly divided into twin beams accompanied by compression. These results provide the possibility for spliting soliton and achieving twin beams with high intensity and narrow width.

 figure: Fig. 5.

Fig. 5. Propagation of spatial solitons with η0=π2Ωη across the barrier given by Eq. (2) with Ωη=4, (a) A=1, p=10; (b) A=1, p=50; (c) A=2, p=50; (d), (e) and (f) corresponding to the cases of (a), (b) and (c), respectively

Download Full Size | PPT Slide | PDF

3.2 Soliton compression and splitting

As mentioned above, the tunneling properties of spatial solitons through the lattice with longitudinal barrier given by Eq. (2) imply that it is possible to compress and split the spatial solitons. In what follows, we demonstrate a scheme that spatial solitons can be effectively compressed and clearly split by a lattice system with the profile:

R(η,ξ)={cos2(Ωηη)exp[δ(ξξB)]0ξ<ξBcos2(Ωηη)ξBξ<2ξB

Here Ωη,δ and ξB stand for the same physical meanings as denoted in Eq. (2), respectively. This lattice system (3) can be built by a segment of exponential increasing lattice followed by a segment of harmonic lattice. Also, we assume Ωη=4,δ=1.0 and ξB=5. Figure 6(a) displays the evolution scenarios of spatial soltion with A=2,η 0=0 in the lattice system (3).

 figure: Fig. 6.

Fig. 6. Compression of spatial solitons with A=2 and η 0=0 through the lattice system given by Eq. (3) with Ωη=4 (a) δ=1, p=30; (b) δ=0 (i.e. harmonic lattice), p=30. (c) and (d) corresponding to the beam shapes of (a) and (b) at different distances and different potentials, respectively.

Download Full Size | PPT Slide | PDF

From it one can clearly see that the spatial soliton is effectively compressed and stably travels along the lattice. Figure 6(c) shows the compressed beam shapes corresponding to the input soliton shape for different potentials. It can be seen from it that in this lattice system (3), higher lattice potential results in more efficient compression for the same input soliton. However, in harmonic lattice without longitudinal barrier, it is difficult to achieve the compression as effective as that in Fig. 6(c) due to large radiative loss at the start stage, as shown in Fig. 6(b). When we further increase the potential to p=60, the compression ratio decreases instead of increasing due to much more radiative loss [see Fig. 6(d)]. The results presented here may have promising applications in soliton compression.

Also, we are interested in the results shown in Fig. 5 that even though spatial solitons with η0=π2Ωη can not tunnel through the barrier, it is also split and compressed at ξ=ξB. To further explore this point, we study the transmission of the soliton with η0=π2Ωη in the lattice system (3), as shown in Fig. 7(a) and 7(c). Form these two figures, one can see that the soliton is gradually attracted towards the neighboring waveguides and forms stable twin beams with much narrower width and higher peak intensity than the input soliton. This effect is difficult to achieve in harmonic lattice. For comparing, Figure 7(b) and 7(d) present the cases in the harmonic lattice. At p=50, the input soliton is strongly attracted to the neighboring waveguides and rapidly split into two beams, which is accompanied by too large radiative loss to form two stable beams in harmonic lattice [see Fig. 7(b)]. Numerical simulations show that in harmonic lattice, even if the potential is increased to p=100, spatial solitons can not be efficiently split without radiative loss [see Fig. 7(d)]. These results can be used to obtain twin beams with high peak intensity and narrow width by splitting the input soliton.

 figure: Fig. 7.

Fig. 7. Splitting of spatial solitons with A=2 and η0=π2Ωη through the lattice system given by Eq. (3) with Ωη=4 (a) δ=1, p=50 ; (b) δ=0 (i.e. harmonic lattice), p=50 ; (c) beam shapes at different distances corresponding to the case of (a);(d) the parameters are the same as in (b) except p=100.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have numerically investigated the nonlinear tunneling of spatial solitons through a focusing Kerr nonlinear optical lattice with harmonic transverse refractive index modulation and steep longitudinal potential barrier. The results have shown that the position of input beams apparently affects the tunneling behaviors of spatial solitons, which exhibit compression or splitting when passing through the barrier. Moreover, the transverse modulation frequency of lattice and the intensity of input beam strongly affect the ability of tunneling. Based on these properties, we have discussed the feasibility of compressing solitons and splitting solitons into stable twin beams through a lattice system consisting of an exponential increasing lattice followed by a harmonic lattice. The results presented here offer a new scheme for implementation of soliton compression and splitting and may have promising applications in future all-optical devices based on soliton signals.

Acknowledgments

The authors would like to thank Profs. G. S. Zhou and L. Li for useful discussions. This work is supported by National Natural Science Foundation of China (Grant No. 60878008, 60771052).

References and links

1. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003.)

2. N.N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

3. S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).

4. G.I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286,1518–1523 (1999). [CrossRef]   [PubMed]  

5. B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005). [CrossRef]  

6. A.C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126–1133 (1978). [CrossRef]  

7. G. Kälbermann, “Soliton tunneling,” Phys. Rev . E 55, R6360–R6362 (1997).

8. G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

9. D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

10. V.N. Serkin, V.A. Vysloukh, and J.R. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993). [CrossRef]  

11. B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007). [CrossRef]  

12. V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001). [CrossRef]  

13. V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001). [CrossRef]  

14. G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006). [CrossRef]  

15. A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008). [CrossRef]   [PubMed]  

16. A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008). [CrossRef]   [PubMed]  

17. D. N. Christodoulides and R. I. Joseph, “Discrete self–focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988). [CrossRef]   [PubMed]  

18. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998). [CrossRef]  

19. D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003). [CrossRef]   [PubMed]  

20. T. Pertsch, U. Peschel, and F. Lederer. “All-optical Switching in Quadratically Nonlinear Waveguide Arrays,” Opt. Lett. 28, 102–104 (2003). [CrossRef]   [PubMed]  

21. Y.V. Kartashov, A.S. Zelenina, L. Torner, and V.A. Vysloukh. “Spatial Soliton Switching in Quasi-continuous Optical Arrays,” Opt. Lett. 29, 766–768 (2004). [CrossRef]   [PubMed]  

22. Q. Guo, “Optical Transmission, Switching, Subsystems,” Proc. SPIE 5281, 581–594 (2004). [CrossRef]  

23. Zhiyong Xu, Y.V. Kartashov, and L. Torner, “Soliton Mobility in Nonlocal Optical Lattices”, Phys. Rev. Lett. 95, 113901 (2005). [CrossRef]   [PubMed]  

24. Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and J. Yang, “Formation of discrete solitons in light-induced photonic lattices,” Opt. Express 13, 1816–1826 (2005). [CrossRef]   [PubMed]  

25. D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

26. Y. J. He and H. Z. Wang, “(1+1)-dimensional dipole solitons supported by optical lattice,” Opt. Express 14, 9832–9837 (2006). [CrossRef]   [PubMed]  

27. J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007). [CrossRef]  

28. H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

29. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000). [CrossRef]   [PubMed]  

30. M. J. Ablowitz and Z. H. Musslimani, “Discrete Diffraction Managed Spatial Solitons,” Phys. Rev. Lett. 87, 254102 (2001). [CrossRef]   [PubMed]  

31. Y. V. Kartashov, V. A. Vysloukh, and L. Torner. “Soliton Control in Fading Optical Lattices,” Opt. Lett. 31, 2181–2183 (2006). [CrossRef]   [PubMed]  

32. Y. V. Kartashov, L. Torner, and V. A. Vysloukh, “Parametric Amplification of Soliton Steering in Optical Lattices,” Opt. Lett. 29,1102–1104 (2004). [CrossRef]   [PubMed]  

33. Y. V. Kartashov and L. Torner, “Soliton Dragging by Dynamic Optical Lattices,” Opt. Lett. 30, 1378–1380 (2005). [CrossRef]   [PubMed]  

34. I. L. Garanovich, A. A. Sukhorukov, and Y. S. Kivshar, “Soliton Control in Modulated Optically-induced Photonic Lattices,” Opt. Express 13, 5704–5710 (2005). [CrossRef]   [PubMed]  

35. K. Staliunas and R. Herrero, “Nondiffractive Propagation of Light in Photonic Crystals,” Phys. Rev. E 73, 016601. (2006).

36. D. Neshev, E. Ostrovskaya, Y.S. Kivshar, and W. Krolikowski. “Spatial Solitons in Optically Induced Gratings,” Opt. Lett. 28,710–712 (2003). [CrossRef]   [PubMed]  

37. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003). [CrossRef]   [PubMed]  

38. Y.V. Kartashov, V.A. Vysloukh, and L. Torner, “Soliton percolation in random optical lattices,” Opt. Express 15, 12409–12417(2007). [CrossRef]   [PubMed]  

39. V. N. Serkin and A. Hasegawa, “Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management,” SPIE Proceedings 3927, 302–313 (2000) [CrossRef]  

40. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003.)
  2. N.N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).
  3. S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).
  4. G.I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286,1518–1523 (1999).
    [Crossref] [PubMed]
  5. B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005).
    [Crossref]
  6. A.C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126–1133 (1978).
    [Crossref]
  7. G. Kälbermann, “Soliton tunneling,” Phys. Rev.  E 55, R6360–R6362 (1997).
  8. G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).
  9. D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).
  10. V.N. Serkin, V.A. Vysloukh, and J.R. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
    [Crossref]
  11. B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
    [Crossref]
  12. V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
    [Crossref]
  13. V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001).
    [Crossref]
  14. G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
    [Crossref]
  15. A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
    [Crossref] [PubMed]
  16. A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008).
    [Crossref] [PubMed]
  17. D. N. Christodoulides and R. I. Joseph, “Discrete self–focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988).
    [Crossref] [PubMed]
  18. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
    [Crossref]
  19. D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
    [Crossref] [PubMed]
  20. T. Pertsch, U. Peschel, and F. Lederer. “All-optical Switching in Quadratically Nonlinear Waveguide Arrays,” Opt. Lett. 28, 102–104 (2003).
    [Crossref] [PubMed]
  21. Y.V. Kartashov, A.S. Zelenina, L. Torner, and V.A. Vysloukh. “Spatial Soliton Switching in Quasi-continuous Optical Arrays,” Opt. Lett. 29, 766–768 (2004).
    [Crossref] [PubMed]
  22. Q. Guo, “Optical Transmission, Switching, Subsystems,” Proc. SPIE 5281, 581–594 (2004).
    [Crossref]
  23. Zhiyong Xu, Y.V. Kartashov, and L. Torner, “Soliton Mobility in Nonlocal Optical Lattices”, Phys. Rev. Lett. 95, 113901 (2005).
    [Crossref] [PubMed]
  24. Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and J. Yang, “Formation of discrete solitons in light-induced photonic lattices,” Opt. Express 13, 1816–1826 (2005).
    [Crossref] [PubMed]
  25. D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).
  26. Y. J. He and H. Z. Wang, “(1+1)-dimensional dipole solitons supported by optical lattice,” Opt. Express 14, 9832–9837 (2006).
    [Crossref] [PubMed]
  27. J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
    [Crossref]
  28. H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).
  29. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
    [Crossref] [PubMed]
  30. M. J. Ablowitz and Z. H. Musslimani, “Discrete Diffraction Managed Spatial Solitons,” Phys. Rev. Lett. 87, 254102 (2001).
    [Crossref] [PubMed]
  31. Y. V. Kartashov, V. A. Vysloukh, and L. Torner. “Soliton Control in Fading Optical Lattices,” Opt. Lett. 31, 2181–2183 (2006).
    [Crossref] [PubMed]
  32. Y. V. Kartashov, L. Torner, and V. A. Vysloukh, “Parametric Amplification of Soliton Steering in Optical Lattices,” Opt. Lett. 29,1102–1104 (2004).
    [Crossref] [PubMed]
  33. Y. V. Kartashov and L. Torner, “Soliton Dragging by Dynamic Optical Lattices,” Opt. Lett. 30, 1378–1380 (2005).
    [Crossref] [PubMed]
  34. I. L. Garanovich, A. A. Sukhorukov, and Y. S. Kivshar, “Soliton Control in Modulated Optically-induced Photonic Lattices,” Opt. Express 13, 5704–5710 (2005).
    [Crossref] [PubMed]
  35. K. Staliunas and R. Herrero, “Nondiffractive Propagation of Light in Photonic Crystals,” Phys. Rev. E 73, 016601. (2006).
  36. D. Neshev, E. Ostrovskaya, Y.S. Kivshar, and W. Krolikowski. “Spatial Solitons in Optically Induced Gratings,” Opt. Lett. 28,710–712 (2003).
    [Crossref] [PubMed]
  37. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
    [Crossref] [PubMed]
  38. Y.V. Kartashov, V.A. Vysloukh, and L. Torner, “Soliton percolation in random optical lattices,” Opt. Express 15, 12409–12417(2007).
    [Crossref] [PubMed]
  39. V. N. Serkin and A. Hasegawa, “Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management,” SPIE Proceedings 3927, 302–313 (2000)
    [Crossref]
  40. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007).
    [Crossref] [PubMed]

2008 (2)

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008).
[Crossref] [PubMed]

2007 (6)

G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
[Crossref]

J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
[Crossref]

H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

Y.V. Kartashov, V.A. Vysloukh, and L. Torner, “Soliton percolation in random optical lattices,” Opt. Express 15, 12409–12417(2007).
[Crossref] [PubMed]

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007).
[Crossref] [PubMed]

2006 (5)

K. Staliunas and R. Herrero, “Nondiffractive Propagation of Light in Photonic Crystals,” Phys. Rev. E 73, 016601. (2006).

Y. V. Kartashov, V. A. Vysloukh, and L. Torner. “Soliton Control in Fading Optical Lattices,” Opt. Lett. 31, 2181–2183 (2006).
[Crossref] [PubMed]

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

Y. J. He and H. Z. Wang, “(1+1)-dimensional dipole solitons supported by optical lattice,” Opt. Express 14, 9832–9837 (2006).
[Crossref] [PubMed]

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

2005 (5)

2004 (3)

2003 (4)

D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

T. Pertsch, U. Peschel, and F. Lederer. “All-optical Switching in Quadratically Nonlinear Waveguide Arrays,” Opt. Lett. 28, 102–104 (2003).
[Crossref] [PubMed]

D. Neshev, E. Ostrovskaya, Y.S. Kivshar, and W. Krolikowski. “Spatial Solitons in Optically Induced Gratings,” Opt. Lett. 28,710–712 (2003).
[Crossref] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

2001 (3)

M. J. Ablowitz and Z. H. Musslimani, “Discrete Diffraction Managed Spatial Solitons,” Phys. Rev. Lett. 87, 254102 (2001).
[Crossref] [PubMed]

V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
[Crossref]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001).
[Crossref]

2000 (2)

V. N. Serkin and A. Hasegawa, “Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management,” SPIE Proceedings 3927, 302–313 (2000)
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

1999 (1)

G.I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286,1518–1523 (1999).
[Crossref] [PubMed]

1998 (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

1997 (1)

G. Kälbermann, “Soliton tunneling,” Phys. Rev.  E 55, R6360–R6362 (1997).

1994 (1)

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

1993 (1)

V.N. Serkin, V.A. Vysloukh, and J.R. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[Crossref]

1988 (1)

1978 (1)

A.C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126–1133 (1978).
[Crossref]

Ablowitz, M. J.

M. J. Ablowitz and Z. H. Musslimani, “Discrete Diffraction Managed Spatial Solitons,” Phys. Rev. Lett. 87, 254102 (2001).
[Crossref] [PubMed]

Agrawal, G.P.

Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003.)

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Akhmediev, N.N.

N.N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

Anderson, D.

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

Ankiewicz, A.

N.N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

Barak, A.

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008).
[Crossref] [PubMed]

Belyaeva, T. L.

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007).
[Crossref] [PubMed]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001).
[Crossref]

Belyaeva, T.L.

V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
[Crossref]

Boyd, A. R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Carmon, T.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

Chapela, V.M.

V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
[Crossref]

Chen, Z.

Christodoulides, D. N.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

D. N. Christodoulides and R. I. Joseph, “Discrete self–focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988).
[Crossref] [PubMed]

Courvoisier, F.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
[Crossref]

Crasovan, L.-C.

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

Dekel, G.

G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

Dudley, J. M.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
[Crossref]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Eugenieva, E. D.

Fang, Y.T.

J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
[Crossref]

Fleischer, J. W.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

Fleurov, V.

G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

Fu, X.Q.

H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

Garanovich, I. L.

Guo, Q.

Q. Guo, “Optical Transmission, Switching, Subsystems,” Proc. SPIE 5281, 581–594 (2004).
[Crossref]

Hao, R.Y.

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

Hasegawa, A.

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007).
[Crossref] [PubMed]

V. N. Serkin and A. Hasegawa, “Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management,” SPIE Proceedings 3927, 302–313 (2000)
[Crossref]

He, Y. J.

Herrero, R.

K. Staliunas and R. Herrero, “Nondiffractive Propagation of Light in Photonic Crystals,” Phys. Rev. E 73, 016601. (2006).

Hu, Y.H.

H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

Joseph, R. I.

Kälbermann, G.

G. Kälbermann, “Soliton tunneling,” Phys. Rev.  E 55, R6360–R6362 (1997).

Kartashov, Y. V.

Kartashov, Y.V.

Kibler, B.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
[Crossref]

Kivshar, Y. S.

Kivshar, Y.S.

D. Neshev, E. Ostrovskaya, Y.S. Kivshar, and W. Krolikowski. “Spatial Solitons in Optically Induced Gratings,” Opt. Lett. 28,710–712 (2003).
[Crossref] [PubMed]

Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003.)

Krolikowski, W.

Lacourt, P.-A.

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
[Crossref]

Lederer, F.

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

T. Pertsch, U. Peschel, and F. Lederer. “All-optical Switching in Quadratically Nonlinear Waveguide Arrays,” Opt. Lett. 28, 102–104 (2003).
[Crossref] [PubMed]

Li, L.

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

Li, Z.H.

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

Lisak, M.

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

Lou, S.Y.

J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
[Crossref]

Malomed, B.

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

Malomed, B. A.

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

Malomed, B.A.

B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005).
[Crossref]

Martin, H.

Mazilu, D.

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

Mihalache, D.

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005).
[Crossref]

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Musslimani, Z. H.

M. J. Ablowitz and Z. H. Musslimani, “Discrete Diffraction Managed Spatial Solitons,” Phys. Rev. Lett. 87, 254102 (2001).
[Crossref] [PubMed]

Neshev, D.

Newell, A.C.

A.C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126–1133 (1978).
[Crossref]

Ostrovskaya, E.

Peleg, O.

A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008).
[Crossref] [PubMed]

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

Percino, J.

V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
[Crossref]

Pertsch, T.

Peschel, U.

Qi, Y.H.

J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
[Crossref]

Quiroga-Teixeiro, M.

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

Segev, M.

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008).
[Crossref] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

G.I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286,1518–1523 (1999).
[Crossref] [PubMed]

Serkin, V. N.

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007).
[Crossref] [PubMed]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001).
[Crossref]

V. N. Serkin and A. Hasegawa, “Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management,” SPIE Proceedings 3927, 302–313 (2000)
[Crossref]

Serkin, V.N.

V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
[Crossref]

V.N. Serkin, V.A. Vysloukh, and J.R. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[Crossref]

Silberberg, Y.

D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Soffer, A.

A. Barak, O. Peleg, A. Soffer, and M. Segev, “Multisoliton ejection from an amplifying potential trap,” Opt. Lett. 33, 1798–1800 (2008).
[Crossref] [PubMed]

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

Staliunas, K.

K. Staliunas and R. Herrero, “Nondiffractive Propagation of Light in Photonic Crystals,” Phys. Rev. E 73, 016601. (2006).

Stegeman, G.I.

G.I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286,1518–1523 (1999).
[Crossref] [PubMed]

Stucchio, C.

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

Sukhorukov, A. A.

Taylor, J.R.

V.N. Serkin, V.A. Vysloukh, and J.R. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[Crossref]

Torner, L.

Torruellas, W. E.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).

Trillo, S.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).

Vysloukh, V. A.

Vysloukh, V.A.

Wang, H. Z.

Wen, S.C.

H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

Wise, F.

B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005).
[Crossref]

Xu, J.

Xu, Zhiyong

Zhiyong Xu, Y.V. Kartashov, and L. Torner, “Soliton Mobility in Nonlocal Optical Lattices”, Phys. Rev. Lett. 95, 113901 (2005).
[Crossref] [PubMed]

Xue, C.H.

J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
[Crossref]

Yang, G.Y.

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

Yang, J.

Zelenina, A.S.

Zhou, G.S.

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

Zhou, J.

J. Zhou, Y.H. Qi, C.H. Xue, S.Y. Lou, and Y.T. Fang, “Different discrete soliton states in periodic optical induced waveguide lattice,” Opt. Express 14, 6232–6240(2007).
[Crossref]

Zhuo, H.

H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

Electron. Lett. (2)

V.N. Serkin, V.A. Vysloukh, and J.R. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[Crossref]

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett. 43, 967–968 (2007).
[Crossref]

J. Math. Phys. (1)

A.C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126–1133 (1978).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005).
[Crossref]

J. Opt. Soc. Am. (2)

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994).

H. Zhuo, X.Q. Fu, Y.H. Hu, and S.C. Wen, “Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice,” J. Opt. Soc. Am. B 24, 2208–2212(2007).

JETP Lett. (1)

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001).
[Crossref]

Nature (1)

D. N. Christodoulides, F. Lederer , and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, and G.S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282–287 (2006).
[Crossref]

V.N. Serkin, V.M. Chapela, J. Percino, and T.L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237–244 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

Phys. Rev (1)

G. Kälbermann, “Soliton tunneling,” Phys. Rev.  E 55, R6360–R6362 (1997).

Phys. Rev. (3)

G. Dekel, V. Fleurov, A. Soffer, and C. Stucchio, “Temporal dynamics of tunneling: Hydrodynamic approach,” Phys. Rev. A 75, 043617 (2007).

K. Staliunas and R. Herrero, “Nondiffractive Propagation of Light in Photonic Crystals,” Phys. Rev. E 73, 016601. (2006).

D. Mihalache, D. Mazilu, F. Lederer, L.-C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Stable solitons of even and odd parities supported by competing nonlocal nonlinearities,” Phys. Rev. E 74, 066614 (2006).

Phys. Rev. Lett. (7)

Zhiyong Xu, Y.V. Kartashov, and L. Torner, “Soliton Mobility in Nonlocal Optical Lattices”, Phys. Rev. Lett. 95, 113901 (2005).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. “Diffraction Management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

M. J. Ablowitz and Z. H. Musslimani, “Discrete Diffraction Managed Spatial Solitons,” Phys. Rev. Lett. 87, 254102 (2001).
[Crossref] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Distrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of Soliton Tunneling Phenomena and Soliton Ejection,” Phys. Rev. Lett. 100, 153901 (2008).
[Crossref] [PubMed]

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva “Nonautonomous Solitons in External Potentials,” Phys. Rev. Lett. 98, 074102 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

Q. Guo, “Optical Transmission, Switching, Subsystems,” Proc. SPIE 5281, 581–594 (2004).
[Crossref]

Science (1)

G.I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286,1518–1523 (1999).
[Crossref] [PubMed]

SPIE Proceedings (1)

V. N. Serkin and A. Hasegawa, “Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management,” SPIE Proceedings 3927, 302–313 (2000)
[Crossref]

Other (3)

Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003.)

N.N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Profile of a steep lattice potential barrier described by Eq. (2) with Ω η =4,δ=1 and ξB=5.
Fig. 2.
Fig. 2. Propagation of spatial solitons with A=1and η 0=0 across the barrier given by Eq. (2) with Ω η =4, (a) p=6; (b) p=36; (c) and (d) corresponding to the cases of (a) and (b), respectively.
Fig. 3.
Fig. 3. Propagation of spatial solitons with A=1 and η 0=0 across the barrier given by Eq. (2) with Ω η =8, (a) p=36; (b) p=150; (c) and (d) corresponding to the cases of (a) and (b), respectively.
Fig. 4.
Fig. 4. Tunneling of spatial solitons with A=2 and η 0=0 through the barrier given by Eq.(2) with (a) Ω η =4, p=36; (b) Ω η =8, p=150; (c) and (d) corresponding to the cases of (a) and (b), respectively.
Fig. 5.
Fig. 5. Propagation of spatial solitons with η 0 = π 2 Ω η across the barrier given by Eq. (2) with Ω η =4, (a) A=1, p=10; (b) A=1, p=50; (c) A=2, p=50; (d), (e) and (f) corresponding to the cases of (a), (b) and (c), respectively
Fig. 6.
Fig. 6. Compression of spatial solitons with A=2 and η 0=0 through the lattice system given by Eq. (3) with Ω η =4 (a) δ=1, p=30; (b) δ=0 (i.e. harmonic lattice), p=30. (c) and (d) corresponding to the beam shapes of (a) and (b) at different distances and different potentials, respectively.
Fig. 7.
Fig. 7. Splitting of spatial solitons with A=2 and η 0 = π 2 Ω η through the lattice system given by Eq. (3) with Ω η =4 (a) δ=1, p=50 ; (b) δ=0 (i.e. harmonic lattice), p=50 ; (c) beam shapes at different distances corresponding to the case of (a);(d) the parameters are the same as in (b) except p=100.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i q ξ = 1 2 2 q η 2 q q 2 p R ( η , ξ ) q .
R ( η , ξ ) = { cos 2 ( Ω η η ) exp [ δ ( ξ ξ B ) ] 0 ξ < ξ B cos 2 ( Ω η η ) exp [ δ ( ξ ξ B ) ] ξ B ξ < 2 ξ B ,
R ( η , ξ ) = { cos 2 ( Ω η η ) exp [ δ ( ξ ξ B ) ] 0 ξ < ξ B cos 2 ( Ω η η ) ξ B ξ < 2 ξ B

Metrics