Abstract

The quantum radiation through the multilayer structures containing the left-handed materials is investigated based on the Green-function approach to the quantization of the phenomenological Maxwell theory. Emphasis is placed on the effect of randomness on the generation and transmission of entangled-states. It is shown that some unusual properties appear for the present systems in comparison with those of the conventional dielectric structures. The quantum relative entropy is always enhanced with the increase of random degree due to the existence of nonlocalized mode in the present systems, while the maximal entanglement can be observed only at some certain randomness for the conventional dielectric structures. In contrast to exponential decrease in the conventional systems, the entanglement degrades slowly with the increase of disorder and thickness of the sample near the nonlocalized mode after transmission through the present systems. This will benefit the quantum communication for long distances.

©2008 Optical Society of America

1. Introduction

In the last decade a significant effort has been devoted to the study on the quantum information and communication [1, 2]. One of the problems of quantum communication is to generate nearly perfect entangled-states between distant sites. Such states can be used, for example, to implement secure quantum cryptography or faithfully transfer quantum states via quantum teleportation [37]. Many realistic schemes for quantum communication are at present based on the use of photonic channels. Dielectric four-port devices as basic elements for constructing optical quantum channels have been widely discussed and the multilayer dielectric structures may serve as a model for such devices [814]. The generation and transformation of entanglement through the multilayer structure have been investigated in recent years [13]. It is shown that the degree of entanglement decreases exponentially with the increase of the channel length, because of optical absorption and other channel noise. This limits largely the efficiency of quantum communication for long distances. Thus, how to realize robust quantum communication for long distances becomes another important problem in the field of quantum information.

Recently, left-handed materials (LHMs) have attracted a great deal of attention from both theoretical and experimental sides [1520]. These materials, which are characterized by simultaneous negative permittivity and permeability, possess a number of unusual electromagnetic effects [1520]. Multilayer structures that include the LHMs have also been analyzed [2128]. It is found that one-dimensional stack of layers with alternating positive and negative refraction materials displays some unusual transmission properties of classical wave [2128]. It is natural to ask whether these unusual transmission properties can play positive roles in the generation of entangled-states and realization of quantum communication for long distances? That is to say, what kind of phenomenon will occur when the entangled-states transport through the multilayer structures containing the LHMs?

Motivated by these problems, in this paper we will investigate quantum radiation through the multilayer structures containing the LHMs. Our studies are based on the quantization of the phenomenological Maxwell theory. We first extend the Green function approach, which has been developed in Ref. [11] for the multilayer dielectric plates, to the multilayer structures containing the LHMs. The generation and transformation of the entanglement in these structures will be studied in detail. Because nonuniformities inevitably occur in the fabrication of the microstructures, especially when the structures are of micrometer and submicrometer sizes, the effect of randomness on the efficiency of entanglement generation and transformation is emphasized. Some unusual properties are found in these systems in comparison with the conventional dielectric multilayer structures.

2. Theory of quantum state transformation

We consider a multilayer structure composed of different materials with various frequency-dependent permittivity (ε(ω)) and permeability (µ(ω)), as shown in Fig. 1. The LHMs are such a kind of materials, which ε(ω) and µ(ω) are both negative in a certain frequency region and have the following forms [19]:

ε(ω)=1ωp2ω(ω+iγ),

and

μ(ω)=1Fω2ω2ω02+iωΓ,

where ωp is plasma frequency, γ and Γ are the respective electric and magnetic loss terms. ω 0 is the magnetic resonance frequency. Thus, the multilayer structure containing the

LHMs is a special case of the present structure. In order to study quantum state and entanglement transformation through the structures, we first need to obtain input-output relations for quantum radiation at these systems.

 figure: Fig. 1.

Fig. 1. Scheme of the multilayer configuration with different frequency-dependent permittivity (ε(ω)) and permeability (µ(ω)). The arrows together with the amplitude operators indicate incoming and outgoing fields.

Download Full Size | PPT Slide | PDF

2.1 Basic equations for operator input-output relations

The input-output relations of quantized radiation through a pure dielectric multilayer structure with absorption have been given in Ref. [11]. Here we generalize them to the present systems. Let us first focus on linearly polarized radiation propagating in homogeneous media with frequency-dependent permittivity and permeability along the x direction. Introducing the vector potential Â(x,ω), the Maxwell equation in the frequency domain can be written as

x(κ(x,ω)xÂ(x,ω))ω2c2ε(x,ω)Â(x,ω)=μ0ĵN(x,ω),

with κ(x,ω)=µ-1(x,ω). According to the Green function scheme of the electromagnetic field quantization in the causal permeable dielectric background media [20], the “current” operator ĴN(x,ω) is expressed in the following form:

ĵN(x,ω)=ωε0πAεI(ω)f̂e(x,ω)xπμ0AκI(ω)f̂m(x,ω).

Here superscript I means the imaginary part of the variables. In Eq. (4), e(x,ω) and m(x,ω) are bosonic field operators for noise polarization and magnetization, respectively [20].

The solution of the Eq. (3) can be written as [11]

Â(x,ω)=μ0dxG(x,x,ω)ĵN(x,ω)+H.c.,

where G(x,x,ω) is the classical Green function obeying the following equation

[xκ(x,ω)x+ω2c2ε(x,ω)]G(x,x,ω)=δ(xx).

In the homogeneous materials where the permeability and permittivity are independent on the space, the solution of the Eq. (6) is given by

G(x,x,ω)=μ(ω)2iωcn(ω)exp[iωcn(ω)xx],

with n(ω)=ε(ω)μ(ω)=β(ω)+iγ(ω) being the complex refractive index of the medium.

Using Eqs. (4), (5), and Eq. (7), the vector potential can be written as

Â(x)=0dωÂ(x,ω)+H.c.
=0dωζ(ω)4πωε0cΑμ(ω)n(ω)×[eiβ(ω)ωxcâ+(x,ω)+eiβ(ω)ωxcâ(x,ω)]+H.c.,

where the amplitude operators

â×(x,ω)=i2γ(ω)ωceγ(ω)ωxc±xdxin(ω)ωxcεI(ω)f̂e(±x,ω)in(ω)κI(ω)f̂m(±x,ω)εI(ω)κI(ω)n(ω)2

and

ζ(ω)=εI(ω)κI(ω)n(ω)22γ(ω).

Here + and - represent the waves propagating to the right and the left, respectively. The operators â±(x,ω) obey the following quantum Langevin equations in the space domain,

xâ±(x,ω)=γ(ω)ωcâ(x,ω)+F̂(x,ω),

where

F̂(x,ω)=i2γ(ω)ωceiβ(ω)ωxcεI(ω)f̂e(x,ω)in(ω)κI(ω)f̂m(x,ω)εI(ω)κI(ω)n(ω)2.

Now we turn to the problem of propagation of quantized radiation through multilayer structure as shown in Fig. 1. The vector potential Âj(x) for the jth layer (xj-1≤x≤xj) can be obtained from Eq. (8) by replacing ζ(ω), µ(ω), n(ω) and β(ω) with the corresponding parameters ζj(ω), µj(ω), nj(ω) and βj(ω) in the jth layer

Â(x)=0dωζj(ω)4πωε0cΑμj(ω)nj(ω)[eiβj(ω)ωxcâj+(x,ω)+eiβj(ω)ωxcâj(x,ω)]+H.c.,

so that â(x,ω) can be represented in the form of Eq. (9) as

âj±(x,ω)=âj±(x,ω)eγj(ω)ω(xx)c+xxdyF̂j±(y,ω)eγj(ω)ω(xy)c,

with

F̂j±(x,ω)=±i2γj(ω)ωceiβj(ω)ωx/cεjI(ω)f̂e(x,ω)inj(ω)κjI(ω)f̂m(x,ω)εjI(ω)κjI(ω)nj(ω)2.

The relations between âj+1±(xj,ω) and â (xj-1,ω) are determined by Eq. (14) and the boundary continuity conditions of the vector potential Â(x) at the interface x=xj. Successive application of Eq. (14) and the continuity conditions, the input-output relations for the amplitude operators through the multilayer structure shown in Fig. 1 can be obtained as [11]

(â1(x1,ω)âN+(xN1,ω))=T(N2)(ω)(â1+(x1,ω)âN(xN1,ω))+A(N2)(ω)(ĝ+(N2)(ω)ĝ(N2)(ω)).

The Eq. (16) can be written in a compact form as

b̂(ω)=T(ω)â(ω)+A(ω)ĝ(ω),

where T(ω) and A(ω) are transformation and absorption matrices, which can be obtained exactly, and b̂(ω)=(b̂1(ω)b̂2(ω))(â1(x1,ω)âN+(xN1,ω)) corresponds to amplitude operators of the output fields, â(ω)=(â1(ω)â2(ω))(â1+(x1,ω)âN(xN1,ω)) to amplitude operators of the input fields from the two sides and ĝ(ω)=(ĝ1(ω)ĝ2(ω))(ĝ+(N2)(ω)ĝ(N2)(ω)) represents the noise operators owing to absorption. The definitions of the noise operators ĝ(N-2)±(ω) are different from those in the Ref. [11] because of the introduction of the noise magnetic losses. For example, for a single-slab structure with N=3, ĝ(1)±(ω) is expressed as

ĝ±(1)(ω)=[2c±(l2,ω)]12[ĝ(ω)±ĝ+(ω)],

where

ĝ±(ω)=iωcein2(ω)ωl2(2c)x3x1dxein2(ω)ωxcε2I(ω)f̂e(x,ω)in2(ω)κ2I(ω)f̂m(x,ω)ε2I(ω)κ2I(ω)n2(ω)2,

and

c±(l2,ω)=eγ2(ω)ωl2cγ2(ω)sinh[γ2(ω)ωl2c]±ε2I+κ2In22ε2Iκ2In22eγ2(ω)ωl2cβ2(ω)sin[β2(ω)ωl2c].

For the multilayer structure with N>3, ĝ(N-2)±(ω) can be obtained similar to the derivation in Ref [11] based on Eqs. (18), (19) and (20).

2.2 Quantum-state transformation and entanglement measure

After the operator input-output relations are obtained, the transformations of quantum-state and entanglement can be obtained directly according to Ref. [12, 13]. The process is summarized in the following. In order to calculate the density operator of the outgoing field for the absorbing devices, we combine the two-dimensional vector operators â(ω) and b̂(ω) to define four-dimensional input vectors α̂(ω)=â(ω)ĝ(ω) and β̂(ω)=b̂(ω)ĥ(ω), where ĥ(ω) is auxiliary two-vector operator. Then the input-output relations (Eq. (17)) can be extended to the four-dimensional transformation [12, 13]

β̂(ω)=Λ(ω)α̂(ω)

with Λ(ω)Λ(ω)=I. Here, Λ(ω)∈SU(4), which can be expressed in terms of the 2×2 matrices T(ω) and A(ω). The SU(4) group transformation (Eq. 21) implies the unitary operator transformation [12, 13]

β̂(ω)=Û(ω)α̂(ω)Û(ω),

where the unitary operator Û(ω), which corresponds to the 4×4 unitary matrix Λ(ω), can be given by

Û=exp[i0dω[α̂(ω)]TΦ(ω)α̂(ω)]

Here Φ(ω) is a 4×4 Hermitian matrix which is related to the matrix Λ(ω) by [12, 13]

exp[-iΦ(ω)]=Λ(ω).

Let the density operator of the input quantum state be a function of α^ (ω) and α^(ω), ρ^in=ρ^in[α^ (ω),α^(ω)]. The density operator of the quantum state for the outgoing fields can be given by [12]

ρ̂out(F)=Tr(D){Ûρ̂inÛ+}=Tr(D){ρ̂in[Λ+(ω)α̂(ω),ΛT(ω)α̂(ω)]},

where Tr(D) means trace with respect to the structure variables. Equation (24) can be used when knowledge of the transformed quantum state as a whole is required, for example, to calculate the total correlation and entanglement transformation. The total correlation Ic is defined by [29]

Ic=S1+S2S12,

where Si is the von Neumann entropy of the ith single-channel output state ρ^(F)out,

Si=Tr[ρ̂out(F)log2(ρ̂out(F))],

and S 12 is the entropy of the density matrix of the two-channel output state,

S12=Tr[ρ̂out(F)log2(ρ̂out(F))].

The entanglement measure which can be used is the quantum relative entropy defined by [30, 31]

E(ρ̂out(F))=minσ̂STr[ρ̂out(F)(log2ρ̂out(F)log2σ̂)],

with σ̂ and S being, respectively, the bipartite quantum state under study and the set of all separable quantum states. For the system where the absorption is sufficiently weak, the output state is almost pure, the von Neumann entropy of the composite two-channel output state S 12=0 and E(ρ^(F)out)≈Si. This means that the total correlation is two times of the quantum entanglement (Ic=S1+S2=2E(ρ^(F)out))

3. Generation of photon entangled-state by multilayer system

Now let us first discuss the generation of photon entangled-states at the above multilayer systems. We consider the radiation prepared in a single-photon Fock state

|Ψin=|1,0

travels through the multilayer structure (Structure I) which consists of the alternate layer of air (ε=1.0,µ=1.0) and the LHMs with ε(ω) and µ(ω) given by Eqs. (1) and (2), respectively. Here, we take ω 0=0.4ω p for the magnetic resonance frequency [19]. For the damping parameters, the values γ=0.003ωp and Γ=0.003ω 0 are assumed and F=0.8[28]. The material is negative-n between 0.9 and 2.4 (ω/ω 0). In order to make a comparison, we also consider the multilayer structure consisting of the air and the pure dielectric materials (Structure II). That is to say, the negative-n layers in the Structure I are replaced by the dielectric layers with ε=3.4. [28] The transmission coefficients for two kinds of structure with N=22 are plotted as solid lines in Fig. 2(a) and Fig. 3(a), respectively. The band-gap features are shown clearly for both of them.

The total correlation Ic and the quantum relative entropy E(ρ^(F)out) can be obtained from Eq. (13) and (16), because the output density operator for Fock state can be obtained by Eq. (24) as

ρ̂out(F)=v0000+T2120101+T11*T210110+T21*T111001+T1121010,

with

v=1T112T212,

where the complex transmission coefficients T 11 and T 21 are the matrix elements of T(ω).

Solid lines in Fig. 2(b) and Fig. 3(b) represent the calculated results of Ic for two kinds of structure, respectively. They exhibit similar features. The output states are not correlated at gap regions because the input photons are reflected completely and there is no mixing of their states in the structure. At the same time, the correlation is weak in the band region because the input photons are transmitted and the mixing of states is weak in the structure. The maximal entanglement only appears in the vicinity of the band edge. However, the situation becomes different with the introduction of disorder.

In general, there are two typical kinds of randomness in the multilayer structures, the thickness variations of the layers (thickness randomness) and varied dielectric constants of the layers (dielectric randomness). Here, we consider the case of thickness randomness. Such a disordered system can be produced by varying the width of layer randomly. That is to say, the width li of the ith layer (negative-n or dielectric) is taken to be random variable in the interval [l0(1-δ),l0(1+δ)], where δ is a random number between (-1.0, 1.0) and the reduced width ω0l0/c=0.5 (c is the speed of the light in the vacuum) is taken. Therefore, the value of δ represents the degree of the random. The transmission coefficients and the total correlation for two kinds of random structure with different δ are plotted in Figs. 2 and 3, respectively. All results are obtained by averaging 1000 different configurations for each frequency. Dashed lines correspond to the case with δ=0.2 and dotted line to that with δ=1.0 (complete random). Because we aim at the transformation of quantum state, in the following we focus our discussion on the band region. It can be seen from the figures that the transmittances decrease with the increase of random degree for two kinds of structure in the band regions. In contrast, the total correlations increase. It is interesting that the change feature of total correlation as a function of disorder degree is different for two kinds of structure. For the Structure I, the total correlations always increase with the increase of δ, while it can appear maximal value for the Structure II at some random degree. For example, the total correlations are bigger at δ=0.2 than those at δ=1.0. These features can be seen more clearly from Fig. 4.

 figure: Fig. 2.

Fig. 2. The transmission coefficients (a) and the total correlations (b) through the multilayer structure containing the LHMs with N=22 as a function of the reduced frequency with different random strengths. Solid line, dashed line and dotted line correspond to the case withδ=0.0,0.2,1.0, respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. The transmission coefficients (a) and the total correlations (b) through the multilayer structure consisting of the air and the pure dielectric material with ε=3.4 and N=22 as a function of the frequency with different random strengths. Solid line, dashed line and dotted line correspond to the case withδ=0.0,0.2,1.0, respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. The entanglement measure E(ρ(F)out) as a function of the random strength for structure I (a) and structure II (b) at different frequencies which are marked in the figures. The other parameters are identical to those in Figs. 2 and 3.

Download Full Size | PPT Slide | PDF

Figures 4(a) and 4(b) display the entanglement measure E(ρ(F)out) as a function of the random strength at different frequencies for Structure I and Structure II, respectively. The results are obtained by the average of 200 random configurations. It is shown clearly that the maximal values at some random degrees are always observed at different frequencies on the band region for the Structure II. In contrast, E(ρ(F)out) always increases monotonously with the increase of δ for the Structure I. That is to say, the randomness always enhances the quantum relative entropy for the structure I at different frequencies on the band region. These results are only for the case of thickness randomness. In fact, similar phenomena can be found for the case of dielectric randomness. The reason to appear such a phenomenon is due to the unusual transmission feature of photon in the random multilayer structure containing the LHMs [28]. The previous research [28] has shown that the nonlocalized modes exist for the wave transmission through the multilayer structures containing the LHMs. Such a nonlocalized mode is originated from the zero reflection of wave on the interface of the dielectric and negative-n layers, and it is insensitive to the disorder. The high-transmission peak at ω/ω 0=2.58 in Fig. 2(a) corresponds to such a case. The total correlation and quantum relative entropy at such a frequency do not change with the change of the disorder. However, they are always enhanced for other frequencies in the band region due to the existence of such a point. Such a nonlocalized state can not only play an important role in the generation of the entanglement, it can also have important influence on the transmission of entangled-state.

4. Transformation of entangled-state by random multilayer structures

In this part, we discuss the question of entanglement degradation during the propagation through the above two kinds of random multilayer structure. Two modes, each of which propagates through the structures, are considered. Assuming the incoming modes are prepared in a maximally entangled Bell-type states

|Ψ±=12(|01±|10),

the outgoing modes of the quantum states can be obtained from Eq. (24) as [13]

ρ̂out(F)=u|0000|+12(T21(1)2|1010|+T21(2)2|0101|±T21(1)T21(2)*|1001±T21(1)*T21(2)1010|)

with

u=12(2T21(1)2T21(2)2),

where the complex transmission coefficients T(1) 21 and T(2) 21 are the elements of matrices T (1)(ω) and T(2)(ω), respectively. Here T(1)(ω) and T(2)(ω) represent the transformation matrices of the random multilayer structures for two modes. Then the quantum relative entropy of the output state can be calculated in a straightforward way.

The calculated results for the quantum relative entropy of the output state by two kinds of structure with N=22 as a function of the random degree are plotted in Fig. 5. Here the quantum relative entropy at ω/ω 0=2.58 (corresponding to the nonlocalized mode) for the Structure I is only shown. It is seen clearly that E(ρ(F)out) is insensitive to the randomness and it keeps nearly constant for the entangled Bell-type state transmitting through the structure. In fact, the entanglement transmissions at other frequencies near the nonlocalized mode posses the similar property. However, such a property can not be found in the Structure II. The quantum relative entropies for all frequencies in the Structure II always decrease exponentially with the increase of the random degree as shown in Fig. 5 for the case at ω/ω 0=3.0.

 figure: Fig. 5.

Fig. 5. Comparison of entanglement degradation of entangled Bell-type state as a function of the random strength for two kinds of structure. The parameters are identical to those in Fig. 4.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Comparison of entanglement degradation of entangled Bell-type state as a function of the number of layer with δ=1.0. The other parameters are identical to those in Fig. 4.

Download Full Size | PPT Slide | PDF

The entanglement transmission not only exhibits different feature as a function of δ for two kinds of structure, it also appears some difference for the case as a function of the sample thickness. Figure 6 shows the comparison of entanglement degradation for two kinds of structure as a function of the sample thickness (total layer number N) at complete random (δ=1.0). As can be seen from the figure, the entanglement of the output state almost disappears for the structure II when the number of the layer reaches 40 due to the localization of the photon. In contrast, the quantum relative entropy near the nonlocalized mode in the Structure I decrease slowly with the increasing of the layers even in the presence of the absorption. The above results are for a kind of incoming Bell-type state. For other Bell-type states such as (|00〉±|nn〉)/√2, similar phenomena can be observed. This means that a good result can be obtained by using the Structure I instead of the Structure II for robust quantum communication of long distances.

5. Summary

Based on the Green-function approach to the quantization of the phenomenological Maxwell theory, we have investigated the quantum radiation through the random multilayer structures containing the LHMs. The total correlation of the quantum state and the quantum relative entropy of the entanglement have been discussed in detail. We have found that some unusual properties in the generation and transmission of entangled-state can appear for the Structure I in comparison with those of the Structure II. Although the randomness can enhance the entanglement of the output state for both structures, the change feature for them is different. The maximal entanglements at some random degrees can be always observed at different frequencies on the band region for the Structure II, while the quantum relative entropy always increases monotonously with the increase of the random degree due to the existence of the nonlocalized mode in the Structure I. Such a nonlocalized mode not only plays an important role in the generation of the entanglement, it can also influence largely the transmission of the entangled-state. The quantum relative entropy decreases exponentially with the increase of the sample thickness after the entangled-state transmits through the Structure II. In contrast, the entanglement degrades slowly with the increase of disorder and thickness of the sample near the nonlocalized mode after transmission through the Structure I, which benefits the quantum communication for long distances.

Acknowledgments

We wish to thank Dr. S. Scheel for help in the numerical calculations. This work was supported by the National Natural Science Foundation of China (Grant No. 10674017) and the National Key Basic Research Special Foundation of China under Grant 2007CB613205.

References and links

1. M. A. Nielsen and I.L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, Cambridge (2000).

2. D. Bouwmeester, A. Ekert, and A. Zeilinger, “The physics of quantum information,” (Springer, 2000).

3. A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991). [CrossRef]   [PubMed]  

4. C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993). [CrossRef]   [PubMed]  

5. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998). [CrossRef]  

6. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998). [CrossRef]   [PubMed]  

7. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000). [CrossRef]   [PubMed]  

8. J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993). [CrossRef]   [PubMed]  

9. R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997). [CrossRef]  

10. M. Artoni and R. Loudon, “Quantum theory of optical pulse propagation through an absorbing and dispersive slab,” Phys. Rev. A 55, 1347 (1997). [CrossRef]  

11. T. Gruner and D. G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661 (1996). [CrossRef]   [PubMed]  

12. L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999). [CrossRef]  

13. S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000). [CrossRef]  

14. M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003). [CrossRef]  

15. V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006). [CrossRef]  

16. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε. and µ.,” Sov. Phys. Usp. 10, 509 (1968). [CrossRef]  

17. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001). [CrossRef]   [PubMed]  

18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]   [PubMed]  

19. R. Ruppin, “Extinction properties of a sphere with negative permittivity and permeability,” Solid State Communications , 116, 411 (2000). [CrossRef]  

20. H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003). [CrossRef]  

21. Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002). [CrossRef]  

22. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001). [CrossRef]  

23. I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002). [CrossRef]  

24. I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004). [CrossRef]  

25. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004). [CrossRef]  

26. I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003). [CrossRef]  

27. Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003). [CrossRef]   [PubMed]  

28. Yunxia Dong and Xiangdong Zhang, “Unusual transmission properties of wave in one-dimensional random system containing left-handed-material,” Phys.Lett. A 359, 542 (2006). [CrossRef]  

29. S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404 (1989). [CrossRef]   [PubMed]  

30. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997). [CrossRef]  

31. V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619 (1998). [CrossRef]  

References

  • View by:

  1. M. A. Nielsen and I.L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, Cambridge (2000).
  2. D. Bouwmeester, A. Ekert, and A. Zeilinger, “The physics of quantum information,” (Springer, 2000).
  3. A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
    [Crossref] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
    [Crossref] [PubMed]
  5. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
    [Crossref]
  6. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
    [Crossref] [PubMed]
  7. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
    [Crossref] [PubMed]
  8. J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993).
    [Crossref] [PubMed]
  9. R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
    [Crossref]
  10. M. Artoni and R. Loudon, “Quantum theory of optical pulse propagation through an absorbing and dispersive slab,” Phys. Rev. A 55, 1347 (1997).
    [Crossref]
  11. T. Gruner and D. G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661 (1996).
    [Crossref] [PubMed]
  12. L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
    [Crossref]
  13. S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
    [Crossref]
  14. M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003).
    [Crossref]
  15. V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
    [Crossref]
  16. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε. and µ.,” Sov. Phys. Usp. 10, 509 (1968).
    [Crossref]
  17. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
    [Crossref] [PubMed]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref] [PubMed]
  19. R. Ruppin, “Extinction properties of a sphere with negative permittivity and permeability,” Solid State Communications,  116, 411 (2000).
    [Crossref]
  20. H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
    [Crossref]
  21. Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
    [Crossref]
  22. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
    [Crossref]
  23. I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
    [Crossref]
  24. I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
    [Crossref]
  25. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
    [Crossref]
  26. I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003).
    [Crossref]
  27. Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
    [Crossref] [PubMed]
  28. Yunxia Dong and Xiangdong Zhang, “Unusual transmission properties of wave in one-dimensional random system containing left-handed-material,” Phys.Lett. A 359, 542 (2006).
    [Crossref]
  29. S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404 (1989).
    [Crossref] [PubMed]
  30. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
    [Crossref]
  31. V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619 (1998).
    [Crossref]

2006 (2)

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Yunxia Dong and Xiangdong Zhang, “Unusual transmission properties of wave in one-dimensional random system containing left-handed-material,” Phys.Lett. A 359, 542 (2006).
[Crossref]

2004 (2)

I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
[Crossref]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[Crossref]

2003 (4)

I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003).
[Crossref]

Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
[Crossref] [PubMed]

M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

2002 (2)

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[Crossref]

I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

2001 (2)

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

2000 (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

R. Ruppin, “Extinction properties of a sphere with negative permittivity and permeability,” Solid State Communications,  116, 411 (2000).
[Crossref]

S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
[Crossref]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

1999 (1)

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

1998 (3)

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619 (1998).
[Crossref]

1997 (3)

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
[Crossref]

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

M. Artoni and R. Loudon, “Quantum theory of optical pulse propagation through an absorbing and dispersive slab,” Phys. Rev. A 55, 1347 (1997).
[Crossref]

1996 (1)

T. Gruner and D. G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661 (1996).
[Crossref] [PubMed]

1993 (2)

J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

1991 (1)

A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

1989 (1)

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404 (1989).
[Crossref] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε. and µ.,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Agranovich, V. M.

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[Crossref]

Artoni, M.

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

M. Artoni and R. Loudon, “Quantum theory of optical pulse propagation through an absorbing and dispersive slab,” Phys. Rev. A 55, 1347 (1997).
[Crossref]

Barnett, S. M.

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404 (1989).
[Crossref] [PubMed]

Baughman, R. H.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Bouwmeester, D.

D. Bouwmeester, A. Ekert, and A. Zeilinger, “The physics of quantum information,” (Springer, 2000).

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Braunstein, S. L.

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Buhmann, S. Y.

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

Chan, C. T.

Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
[Crossref] [PubMed]

Chizhov, A.V.

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

Chuang, I.L.

M. A. Nielsen and I.L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, Cambridge (2000).

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Dong, Yunxia

Yunxia Dong and Xiangdong Zhang, “Unusual transmission properties of wave in one-dimensional random system containing left-handed-material,” Phys.Lett. A 359, 542 (2006).
[Crossref]

Dung, H. T.

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

Ekert, A.

A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

D. Bouwmeester, A. Ekert, and A. Zeilinger, “The physics of quantum information,” (Springer, 2000).

Fu, C. J.

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[Crossref]

Fuchs, C. A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Furusawa, A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Gartstein, Y. N.

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Gruner, T.

T. Gruner and D. G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661 (1996).
[Crossref] [PubMed]

Heyman, E.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

Imoto, N.

J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993).
[Crossref] [PubMed]

Jeffers, J.

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

Jeffers, J. R.

J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993).
[Crossref] [PubMed]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

Josza, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Kastel, J.

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

Khanbekyan, M.

M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003).
[Crossref]

Kimble, H. J.

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Kivshar, Y. S.

I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
[Crossref]

Kivshar, Yu. S.

I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003).
[Crossref]

Knight, P. L.

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
[Crossref]

Knöll, L.

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003).
[Crossref]

S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
[Crossref]

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

Li, Jensen

Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
[Crossref] [PubMed]

Loudon, R.

M. Artoni and R. Loudon, “Quantum theory of optical pulse propagation through an absorbing and dispersive slab,” Phys. Rev. A 55, 1347 (1997).
[Crossref]

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993).
[Crossref] [PubMed]

Matloob, R.

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

Nefedov, I. S.

I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I.L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, Cambridge (2000).

Opatrný, T.

S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Phoenix, S. J. D.

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404 (1989).
[Crossref] [PubMed]

Plenio, M. B.

V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619 (1998).
[Crossref]

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
[Crossref]

Polzik, E. S.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Rippin, M. A.

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
[Crossref]

Ruppin, R.

R. Ruppin, “Extinction properties of a sphere with negative permittivity and permeability,” Solid State Communications,  116, 411 (2000).
[Crossref]

Scheel, S.

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
[Crossref]

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

Schmidt, E.

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Shadrivov, I. V.

I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
[Crossref]

I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Shen, Y. R.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[Crossref]

Sheng, P.

Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
[Crossref] [PubMed]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Sørensen, J. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Sukhorukov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003).
[Crossref]

Tretyakov, S. A.

I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

Vedral, V.

V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619 (1998).
[Crossref]

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε. and µ.,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

Welsch, D. G.

M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
[Crossref]

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

T. Gruner and D. G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661 (1996).
[Crossref] [PubMed]

Wooters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Zakhidov, A. A.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[Crossref]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

D. Bouwmeester, A. Ekert, and A. Zeilinger, “The physics of quantum information,” (Springer, 2000).

Zhang, Xiangdong

Yunxia Dong and Xiangdong Zhang, “Unusual transmission properties of wave in one-dimensional random system containing left-handed-material,” Phys.Lett. A 359, 542 (2006).
[Crossref]

Zhang, Z. M.

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[Crossref]

Zharov, A. A.

I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
[Crossref]

Zharova, N. A.

I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
[Crossref]

Zhou, Lei

Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
[Crossref] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

Appl. Phys. Lett. (2)

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[Crossref]

I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820 (2003).
[Crossref]

Phys. Rev. A (10)

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404 (1989).
[Crossref] [PubMed]

V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619 (1998).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346 (1993).
[Crossref] [PubMed]

R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in amplifying dielectrics,” Phys. Rev. A 55, 1623 (1997).
[Crossref]

M. Artoni and R. Loudon, “Quantum theory of optical pulse propagation through an absorbing and dispersive slab,” Phys. Rev. A 55, 1347 (1997).
[Crossref]

T. Gruner and D. G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661 (1996).
[Crossref] [PubMed]

L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716 (1999).
[Crossref]

S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, “Entanglement transformation at absorbing and amplifying four-port devices,” Phys. Rev. A 62, 043803 (2000).
[Crossref]

M. Khanbekyan, L. Knöll, and D. G. Welsch, “Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components,” Phys. Rev. A 67, 063812 (2003).
[Crossref]

Phys. Rev. B (1)

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004).
[Crossref]

Phys. Rev. E (3)

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, “Defect modes and transmission properties of left-handed bandgap structures,” Phys. Rev. E 70, 046615 (2004).
[Crossref]

Phys. Rev. Lett. (6)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
[Crossref]

A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000).
[Crossref] [PubMed]

Phys. Usp. (1)

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Phys.Lett. A (1)

Yunxia Dong and Xiangdong Zhang, “Unusual transmission properties of wave in one-dimensional random system containing left-handed-material,” Phys.Lett. A 359, 542 (2006).
[Crossref]

Phys.Rev.Lett. (1)

Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys.Rev.Lett. 90, 083901(2003).
[Crossref] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Solid State Communications (1)

R. Ruppin, “Extinction properties of a sphere with negative permittivity and permeability,” Solid State Communications,  116, 411 (2000).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε. and µ.,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Other (2)

M. A. Nielsen and I.L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, Cambridge (2000).

D. Bouwmeester, A. Ekert, and A. Zeilinger, “The physics of quantum information,” (Springer, 2000).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Scheme of the multilayer configuration with different frequency-dependent permittivity (ε(ω)) and permeability (µ(ω)). The arrows together with the amplitude operators indicate incoming and outgoing fields.
Fig. 2.
Fig. 2. The transmission coefficients (a) and the total correlations (b) through the multilayer structure containing the LHMs with N=22 as a function of the reduced frequency with different random strengths. Solid line, dashed line and dotted line correspond to the case withδ=0.0,0.2,1.0, respectively.
Fig. 3.
Fig. 3. The transmission coefficients (a) and the total correlations (b) through the multilayer structure consisting of the air and the pure dielectric material with ε=3.4 and N=22 as a function of the frequency with different random strengths. Solid line, dashed line and dotted line correspond to the case withδ=0.0,0.2,1.0, respectively.
Fig. 4.
Fig. 4. The entanglement measure E(ρ(F) out) as a function of the random strength for structure I (a) and structure II (b) at different frequencies which are marked in the figures. The other parameters are identical to those in Figs. 2 and 3.
Fig. 5.
Fig. 5. Comparison of entanglement degradation of entangled Bell-type state as a function of the random strength for two kinds of structure. The parameters are identical to those in Fig. 4.
Fig. 6.
Fig. 6. Comparison of entanglement degradation of entangled Bell-type state as a function of the number of layer with δ=1.0. The other parameters are identical to those in Fig. 4.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = 1 ω p 2 ω ( ω + i γ ) ,
μ ( ω ) = 1 F ω 2 ω 2 ω 0 2 + i ω Γ ,
x ( κ ( x , ω ) x A ̂ ( x , ω ) ) ω 2 c 2 ε ( x , ω ) A ̂ ( x , ω ) = μ 0 j ̂ N ( x , ω ) ,
j ̂ N ( x , ω ) = ω ε 0 π A ε I ( ω ) f ̂ e ( x , ω ) x π μ 0 A κ I ( ω ) f ̂ m ( x , ω ) .
A ̂ ( x , ω ) = μ 0 dx G ( x , x , ω ) j ̂ N ( x , ω ) + H . c . ,
[ x κ ( x , ω ) x + ω 2 c 2 ε ( x , ω ) ] G ( x , x , ω ) = δ ( x x ) .
G ( x , x , ω ) = μ ( ω ) 2 i ω c n ( ω ) exp [ i ω c n ( ω ) x x ] ,
A ̂ ( x ) = 0 d ω A ̂ ( x , ω ) + H . c .
= 0 d ω ζ ( ω ) 4 π ω ε 0 c Α μ ( ω ) n ( ω ) × [ e i β ( ω ) ω x c a ̂ + ( x , ω ) + e i β ( ω ) ω x c a ̂ ( x , ω ) ] + H . c . ,
a ̂ × ( x , ω ) = i 2 γ ( ω ) ω c e γ ( ω ) ω x c ± x d x in ( ω ) ω x c ε I ( ω ) f ̂ e ( ± x , ω ) in ( ω ) κ I ( ω ) f ̂ m ( ± x , ω ) ε I ( ω ) κ I ( ω ) n ( ω ) 2
ζ ( ω ) = ε I ( ω ) κ I ( ω ) n ( ω ) 2 2 γ ( ω ) .
x a ̂ ± ( x , ω ) = γ ( ω ) ω c a ̂ ( x , ω ) + F ̂ ( x , ω ) ,
F ̂ ( x , ω ) = i 2 γ ( ω ) ω c e i β ( ω ) ω x c ε I ( ω ) f ̂ e ( x , ω ) in ( ω ) κ I ( ω ) f ̂ m ( x , ω ) ε I ( ω ) κ I ( ω ) n ( ω ) 2 .
A ̂ ( x ) = 0 d ω ζ j ( ω ) 4 π ω ε 0 c Α μ j ( ω ) n j ( ω ) [ e i β j ( ω ) ω x c a ̂ j + ( x , ω ) + e i β j ( ω ) ω x c a ̂ j ( x , ω ) ] + H . c . ,
a ̂ j ± ( x , ω ) = a ̂ j ± ( x , ω ) e γ j ( ω ) ω ( x x ) c + x x dy F ̂ j ± ( y , ω ) e γ j ( ω ) ω ( x y ) c ,
F ̂ j ± ( x , ω ) = ± i 2 γ j ( ω ) ω c e i β j ( ω ) ω x / c ε j I ( ω ) f ̂ e ( x , ω ) in j ( ω ) κ j I ( ω ) f ̂ m ( x , ω ) ε j I ( ω ) κ j I ( ω ) n j ( ω ) 2 .
( a ̂ 1 ( x 1 , ω ) a ̂ N + ( x N 1 , ω ) ) = T ( N 2 ) ( ω ) ( a ̂ 1 + ( x 1 , ω ) a ̂ N ( x N 1 , ω ) ) + A ( N 2 ) ( ω ) ( g ̂ + ( N 2 ) ( ω ) g ̂ ( N 2 ) ( ω ) ) .
b ̂ ( ω ) = T ( ω ) a ̂ ( ω ) + A ( ω ) g ̂ ( ω ) ,
g ̂ ± ( 1 ) ( ω ) = [ 2 c ± ( l 2 , ω ) ] 1 2 [ g ̂ ( ω ) ± g ̂ + ( ω ) ] ,
g ̂ ± ( ω ) = i ω c e in 2 ( ω ) ω l 2 ( 2 c ) x 3 x 1 dx e in 2 ( ω ) ω x c ε 2 I ( ω ) f ̂ e ( x , ω ) in 2 ( ω ) κ 2 I ( ω ) f ̂ m ( x , ω ) ε 2 I ( ω ) κ 2 I ( ω ) n 2 ( ω ) 2 ,
c ± ( l 2 , ω ) = e γ 2 ( ω ) ω l 2 c γ 2 ( ω ) sinh [ γ 2 ( ω ) ω l 2 c ] ± ε 2 I + κ 2 I n 2 2 ε 2 I κ 2 I n 2 2 e γ 2 ( ω ) ω l 2 c β 2 ( ω ) sin [ β 2 ( ω ) ω l 2 c ] .
β ̂ ( ω ) = Λ ( ω ) α ̂ ( ω )
β ̂ ( ω ) = U ̂ ( ω ) α ̂ ( ω ) U ̂ ( ω ) ,
U ̂ = exp [ i 0 d ω [ α ̂ ( ω ) ] T Φ ( ω ) α ̂ ( ω ) ]
ρ ̂ out ( F ) = Tr ( D ) { U ̂ ρ ̂ in U ̂ + } = Tr ( D ) { ρ ̂ in [ Λ + ( ω ) α ̂ ( ω ) , Λ T ( ω ) α ̂ ( ω ) ] } ,
I c = S 1 + S 2 S 12 ,
S i = Tr [ ρ ̂ out ( F ) log 2 ( ρ ̂ out ( F ) ) ] ,
S 12 = Tr [ ρ ̂ out ( F ) log 2 ( ρ ̂ out ( F ) ) ] .
E ( ρ ̂ out ( F ) ) = min σ ̂ S T r [ ρ ̂ out ( F ) ( log 2 ρ ̂ out ( F ) log 2 σ ̂ ) ] ,
| Ψ in = | 1 , 0
ρ ̂ out ( F ) = v 00 00 + T 21 2 01 01 + T 11 * T 21 01 10 + T 21 * T 11 10 01 + T 11 2 10 10 ,
v = 1 T 11 2 T 21 2 ,
| Ψ ± = 1 2 ( | 01 ± | 10 ) ,
ρ ̂ out ( F ) = u | 00 00 | + 1 2 ( T 21 ( 1 ) 2 | 10 10 | + T 21 ( 2 ) 2 | 01 01 | ± T 21 ( 1 ) T 21 ( 2 ) * | 10 01 ± T 21 ( 1 ) * T 21 ( 2 ) 10 10 | )
u = 1 2 ( 2 T 21 ( 1 ) 2 T 21 ( 2 ) 2 ) ,

Metrics