Abstract

Optical frequency at 1542 nm was coherently transferred over a 120-km-long installed telecom fiber network between two cities (Tsukuba and Tokyo) in Japan separated by more than 50 km. The phase noise induced by the fiber length fluctuations was actively reduced by using a fiber stretcher and an acousto-optic modulator. The fractional frequency instability of the one-way transmitted light was reduced down to less than 8.0×10-16 at an averaging time of 1s, which is limited by the theoretical limit deduced from the length and the intrinsic noise of the fiber.

©2008 Optical Society of America

1. Introduction

Dissemination of ultra-stable frequency references by using optical fiber networks plays an important role for communication, metrology, fundamental physics, and is also applied to phased-array antennas [1] or a linear accelerator [2] for timing synchronization. The optical length fluctuations of the delivering fibers caused from mechanical vibrations or temperature variations result in an additional phase noise, and hence, degrade the frequency stability of the transmitted signal. Therefore active phase noise cancellation has been studied for the precision signal transmissions [3].

Microwave frequency has been transferred as a modulated optical wave through low-loss optical fibers [4-7]. Optical frequency transfer instead of microwave frequency is promising for its high potential frequency resolution [6-11], where the optical frequency comb can bridge microwave or various optical frequencies to telecommunication optical frequencies [12]. Recently, results on coherent optical frequency transfer with residual frequency instabilities of 1×10-17 through a 32-km fiber [9] and 2×10-16 through 251-km fibers [10] at 1s were reported. One of the challenging applications of such a coherent optical frequency transfer is the precision frequency comparison between two ultra-stable atomic clocks at different laboratories located in different cities. Compared with the GPS link, which has been commonly used for frequency comparison, direct optical link reduces measurement uncertainty and measurement time. In general, in order to connect two different laboratories with an optical link, the urban-installed fiber networks and commercial local area networks are used. In the previous studies [6-12], the physical distance between fiber ends are less than 15 km, and most part of the fibers are the stable exclusive fiber network including spooled fibers in the laboratory, whose loss and intrinsic noise are relatively small compared with the urban-install fiber networks.

In the present paper, we report the coherent transfer of the optical frequency of a 1542-nm laser from National Metrology Institute of Japan (NMIJ) at Tsukuba to the University of Tokyo (UT) at Tokyo via a 120-km telecom fiber network with the fractional frequency instability of below 10-15. The physical distance between UT and NMIJ is more than 50 km. It is, to our knowledge, a first precision coherent optical carrier transfer over physical distance of more than 50 km with relatively lossy and noisy urban-installed fiber network.

2. Experiment

The optical fiber network used in our study consists of a pair of dark parallel fibers from UT to NMIJ, whose schematic diagram and optical time-delay reflectometer (OTDR) measurements are shown in Fig. 1. The main part of the fiber network from Tsukuba to Tokyo was provided by Japan Gigabit Network 2 (JGN2) operated by National Institute of Information and Communications Technology (NICT), Japan. This is a pair of 100-km-long dark fibers with total loss of about 30dB, and Kashiwa relay station is located at the middle point of the JGN2 fibers. Local commercial fibers were used to connect NMIJ and Tsukuba (5 km, 7dB loss), and UT and Tokyo (15 km, 15dB loss), respectively. The additional phase fluctuations of the round-trip light through the same fiber were optically measured, and suppressed for the precision transmission of the carrier frequency.

 figure: Fig. 1.

Fig. 1. Schematic diagram and optical time-delay reflectometer (OTDR) measurements of the optical fiber network: red line indicates round-trip-scheme fiber network between NMIJ-Kashiwa-NMIJ

Download Full Size | PPT Slide | PDF

A schematic diagram of the precision optical transmission system with active noise cancellation is shown in Fig. 2. The light source was a commercial fiber DFB laser (Koheras Adjastek) at 1542 nm. The 10-mW output from the fiber DFB laser was divided by a 10-dB optical coupler, the weaker part of which served as a reference light. After passing through an optical circulator (OC1), a piezo-driven fiber stretcher and an acousto-optic modulator (AOM) whose center frequency was 55 MHz, the stronger part of the light from the 10dB coupler was transmitted through a delivering fiber. At the remote end of the fiber, a transmitted light power was lower than 50 nW which was limited by stimulated Brillouin scattering (SBS). The transmitted light was mixed with the light from a homemade external-cavity laser diode (ECLD), and the ECLD was phase locked to the transmitted light with an offset frequency of 40 MHz. The signal to noise ratio of the beat note was more than 35 dB which is enough for stable phase locking. A part of the light from the phase-locked ECLD was entered into the remote end of the fiber through an optical circulator (OC2) to return to the local end, which is called an optical repeater. The offset frequency of 40 MHz at the optical repeater distinguishes the round-trip light from the stray reflection in the fiber. The round-trip light was combined with the reference light by a 3-dB optical coupler at the local end. A heterodyne beat note at 70 MHz was detected from the combined light by two In-Ga-As photo detectors because the frequency of the round-trip light was doubly-shifted by the AOM (55 MHz×2) and also shifted at −40 MHz by the optical repeater. The detected heterodyne beat note at 70 MHz was mixed with a local oscillator at 70 MHz, which was generated by a direct digital synthesizer (DDS1). In order to obtain the optical phase signal, a digital phase-frequency discriminator (DPFD) was used as a frequency mixer. The DPFD consists of 12-bit up- and down- counters and a frequency adder, and generates phase discrimination signal whose linear phase discrimination range is 4096 times wider than that obtained by an ordinary double-balanced mixer. The wide linear dynamic range of discrimination signal obtained by the DPFD can track the large phase fluctuations of much more than 2π radian, and it makes the system stable in cycle-slip-free operation against the large and sudden perturbations. Details of the usage of the DPFD are described in our previous paper [13]. Compared with the frequency prescaler which is widely used for expanding the dynamic range of phase discrimination signal [10], the DPFD can expand the phase discrimination signal without any degradation of the phase resolution. The linewidth of the fiber DFB laser is less than 10 kHz whose coherent length is much longer than the fiber length, and hence the phase jitter of the light source gives little contribution to the error signal from the DPFD. The optical phase error signal obtained from DPFD was fedback to the piezo-driven fiber stretcher to suppress the optical phase fluctuations of the round-trip light. A lower frequency part of the error signal was applied to another direct digital synthesizer (DDS2) via an analog-to-digital converter (ADC) to vary the driving frequency of the AOM, which expanded the dynamic range of the phase actuator. 30 MHz signals from a signal generator (SG1: Agilent E4420B) drove DDS1, DDS2 and DDS3, which were synchronized to each other. The bandwidth of the phase noise suppression servo was 300 Hz which was limited by the round-trip traveling time through the optical fiber network. The additional phase and frequency noise applied in the round-trip fiber were evaluated from the 70 MHz beat signal, which is called an in-loop signal. An H-maser (NMIJ_HM2) supplied a 10-MHz reference signal to all signal generators (SG1, SG2) and frequency counters (Agilent 53132A) as a time base. The short-term stability of NMIJ_HM2 was 6×10-13 at 1s.

 figure: Fig. 2.

Fig. 2. The experimental set-up of the coherent transfer system. Transmitted light at the remote end (*) is mixed with the reference light at local end (*) for evaluation of the phase noise of the one-way transmitted light. OC: optical circulator, SG: signal generator, FS: fiber stretcher, DPFD: digital phase-frequency discriminator, DDS: direct digital synthesizer

Download Full Size | PPT Slide | PDF

3. Results and discussions

As an initial experiment, the optical transmission test has been done with the 110-km round-trip fiber network between NMIJ-Kashiwa-NMIJ, where parallel fibers are connected at the Kashiwa relay station as shown in Fig. 1 as a bold line. The round-trip fiber network enabled us to access both local and remote ends of the fiber in the same laboratory so as to evaluate the frequency stability of the one-way transmitted light. The one-way transmitted light at the remote end of the fiber was mixed with the reference light at the local end, and the obtained heterodyne beat note at 55 MHz was utilized for evaluating the additional frequency noise of the one-way light, which is called an out-of-loop signal. The length and optical loss of the NMIJ-Kashiwa-NMIJ fiber network are 110 km and 47 dB, respectively. Figure 3(a) shows typical temporal optical length variations of the round-trip fiber network measured in the morning (upper trace) and in the afternoon (lower trace), which changed more than 1000 mm during 1 hour. Figure 3(b) shows the power spectrum density of the phase fluctuations of the optical carrier. Thin (black) and bold (red) traces in Fig. 3(b) indicate the phase fluctuations of the round-trip light in free running and stabilized, respectively, which were evaluated from the in-loop signal. The one-way light at the remote end of the fiber was combined with the reference light, and the 55-MHz heterodyne beat note was mixed with the local oscillator from DDS3 by using another DPFD (out-of-loop signal), which is also shown in Fig. 3(b) as a dotted trace. Though the phase noise of the in-loop signal was suppressed down to 9×10-6 rad2/Hz at 1Hz, the phase noise of the out-of-loop signal was like white noise with a level of 9×10-2 rad2/Hz.

 figure: Fig. 3.

Fig. 3. (a). Temporal optical length variation of the 110-km fiber (b). The additional phase noise of the round-trip light of 110-km fiber between NMIJ-Kashiwa-NMIJ. In-loop signal of round-trip light in free running (thin-black) and stabilized (bold-red). The dotted (blue) trace is out-of-loop signal from one-way light

Download Full Size | PPT Slide | PDF

Figure 4 shows the Allan standard deviation of the measured beat frequency signals. The gate time of the counter was kept at 10 second in all measuring except for averaging time of 1s. The crosses in Fig. 4 indicate the fractional frequency noise of the one-way light in free-running state, which was evaluated from the 55 MHz beat note using the out-of-loop signal at the remote end. The fractional frequency instability of the free-running one-way light of 8×10-13 at 1s was suppressed down to 8×10-16 when the servo circuit was activated, which is indicated in Fig. 4 by open circles. Solid circles in Fig. 4 indicate the additional fractional frequency instabilities of the round-trip light in activating servo circuit, which was evaluated from the in-loop signal at the local end.

 figure: Fig. 4.

Fig. 4. Allan standard deviations of the fractional frequency instability. Out-of-loop signal from one-way light in free running (crosses), stabilized (open circles) and in-loop signal from round-trip light (close circles) through 110-km fiber. Triangles indicates in-loop signal from round-trip light through 120-km fiber between NMIJ and UT. The dotted trace indicates the additional frequency noise at the optical repeater

Download Full Size | PPT Slide | PDF

The frequency instability of the in-loop signal from the round-trip light is lower than that of the out-of-loop signal from the one-way light. The discrepancy of the frequency instability between the round-trip light (in-loop) and the one-way light (out-of-loop) comes from the uncompensated residual-fiber-induced phase noise of the one-way light due to traveling delay. According to Ref. 10, the power spectrum density of the phase noise of the one-way light, S(f)locked, is written as

S(f)locked13(2πfτ)2S(f)free[rad2Hz]

when the phase noise was suppressed by servo with sufficiently high servo gain.

Here, S(f)free is the power spectrum density of the phase noise of the fiber in free-running state, and τ is the one-way traveling time of the signal. In the case that the phase noise of the fiber is inversely proportional to f 2as S(f)free=h/f 2, S(f)locked becomes

S(f)locked=13(2πτh)2[rad2Hz].

Seen from Fig. 3(b), the phase noise of our 110-km fiber is measured to be 2.0×104/f 2 rad2/Hz (h=2.0×104), and the traveling time τ is 6×10-4 s. Introducing h and τ of our 110-km fiber into the Eq. (2), we find the theoretical limit of the one-way phase noise as S(f)limit=9×10-2 rad2/Hz, which agrees with the measured phase noise of the one-way light in Fig. 3(b). Supposing that the phase noise spectrum is white and written as Eq. (2), the fractional frequency instability of the one-way light is

σν=8h3τνt32

where t is the gate time. In our 110-km fiber network, σν is calculated to be 6.9×10-16 t-3/2. At an averaging time of 1s, the fractional frequency instability of the one-way light shown in Fig. 4 is 8×10-16, which is almost equal to the calculated value of 6.9×10-16.

From the result above, it is said that the fractional frequency instability of the one-way light reaches the theoretical limit which is determined by the fiber intrinsic noise and fiber length, and cannot be further improved by increasing the servo gain.

The phase noise level, h, and the traveling time, τ, are proportional to L, where L is the fiber length, and therefore the theoretical limit of σν is proportional to L 3/2. When the fiber is divided into n and each fiber length is stabilized at the theoretical limited level, the fractional frequency instability at each fiber is σi=σν/n 3/2. In case that these stabilized fiber links are connected into one by using optical repeaters, total fractional frequency instability becomes

σtotal=n12×(σνn32)=1nσν

because the fractional frequency instability at each fiber links has no correlation to each other. Therefore, the theoretical limit of the fractional frequency instability is decreased by n supposing that the optical repeater gives no additional frequency noise to the transmitted light. As the additional frequency noise of the phase locking at the optical repeater is much lower than that of the round-trip light (dotted line in Fig. 4), the fractional frequency instability of the transmitted light would be improved by this configuration.

As the final step, the optical carrier was transmitted from NMIJ to UT by using one of the parallel fibers, whose total fiber length and optical loss were 120km and 52.5dB, respectively. The fiber DFB laser was phase locked to a mode-locked fiber laser developed by NMIJ [14]. The additional frequency noise of the round-trip light evaluated from the in-loop error signal is shown in Fig. 4 as open triangles. At the local end in NMIJ, all the signal generators were synchronized by the 10-MHz reference signal from the H-maser (NMIJ_HM2), and the signal generator at the remote end in UT was synchronized to another H-maser (NMIJ_HMKV). When the additional frequency instability in the one-way light is suppressed to a level of lower than 10-15, the frequency stability of the independent rf references supplied to the phase noise suppression system should be better than 10-8 because the optical carrier frequency of 200 THz is 2×107 times higher than that of the rf signal at 10 MHz. Therefore the frequency stability of the H-masers was high enough for our optical carrier transmission system. In order to simplify the system, the H-masers can be replaced with the reference signal from the global positioning system (GPS) whose frequency stability is better than 10-11 at 1s.

The fiber intrinsic noise of the 120-km fiber between NMIJ to UT is little less than that of the 110-km fiber through Tsukuba-Kashiwa-Tsukuba because the in-loop frequency stability of the round-trip light through the 120-km fiber (open triangles) is better than that of the 110-km fiber (solid circles). Therefore the theoretical limit of 120-km fiber is lower than that of the 110-km fiber, and we conclude that the optical carrier frequency was transmitted through the 120-km fiber network from NMIJ to UT with the additional frequency instability at the same level or less than that obtained by the 110-km one-way light (open circles in Fig. 4). The fractional frequency instabilities reported by other groups [9,10] also reach the theoretical limit, and are better than that of our results because large parts of their fibers are spooled fibers in the laboratory, and their frequency instability level of the transmitted light through passive fiber network (free run) is lower than that of our fiber network by more than 15dB.

One of our motivations for establishing the present precision optical link is to measure the absolute frequency of the Sr optical lattice clock developed by Katori group at UT [15] by using the microwave frequency standards at NMIJ as a reference. In the previous study, the absolute frequency of the Sr lattice clock has been measured by using GPS links between UT and NMIJ [16]. Even with the GPS carrier phase link, it took more than 9 days to determine the absolute frequency of the Sr lattice clock with the frequency uncertainty of 1×10-14. The fractional frequency uncertainty of our fiber link below 10–15 is sufficient for Sr lattice clock measurement, and will further reduce the measurement uncertainty and measurement time.

4. Conclusions

Optical frequency at 1542 nm was transmitted through a 120-km fully-urban-installed optical fiber. The fractional frequency instability of the one-way light was reduced down to 8×10-16 at τ=1 s when the active phase noise cancellation was activated. The obtained fractional frequency level reaches the theoretical limit of the installed fiber network used in our study, which results from the length and intrinsic noise of the fiber. The coherent transmission of the signal through the 120-km fiber between UT and NMIJ satisfies the requirement of an optical link for absolute frequency measurement of the Sr optical lattice clock at UT by using microwave frequency standards at NMIJ. The fiber link will also be utilized for direct comparison of optical clocks with a fractional uncertainty below 10–15 level.

Acknowledgments

We thank H. Katori and M. Takamoto for their technical discussions and optical fibers in the campus of UT. We are also grateful to K. Kobayashi of AIST for his support in the arrangement of the optical fiber link. We appreciate the help provided by K. Nakamura and K.Tanaka of National Institute of Information and Communications Technology (NICT), and T.Higo of NTT East in using the fiber link. We thank M. Kourogi of Opt. Comb Inc., Y. Sato of JAXA and A. Onae of NMIJ for their technical supports, and also NICT for providing the optical fiber under the Japan Gigabit Network 2 (JGN2) project (project no.JGN2-A18031).

References and links

1. J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE , 3357, 143–151 (1998). [CrossRef]  

2. A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005). [CrossRef]   [PubMed]  

3. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places; accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994). [CrossRef]   [PubMed]  

4. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000). [CrossRef]  

5. C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005). [CrossRef]   [PubMed]  

6. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Berquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003). [CrossRef]  

7. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007). [CrossRef]   [PubMed]  

8. B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998). [CrossRef]  

9. S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007). [CrossRef]   [PubMed]  

10. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007). [CrossRef]   [PubMed]  

11. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science , 319, 1805–1808 (2008). [CrossRef]   [PubMed]  

12. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007) [CrossRef]  

13. M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006). [CrossRef]  

14. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006). [CrossRef]   [PubMed]  

15. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature , 435, 321–324 (2005). [CrossRef]   [PubMed]  

16. M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
    [Crossref]
  2. A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
    [Crossref] [PubMed]
  3. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places; accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref] [PubMed]
  4. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
    [Crossref]
  5. C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
    [Crossref] [PubMed]
  6. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Berquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
    [Crossref]
  7. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
    [Crossref] [PubMed]
  8. B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
    [Crossref]
  9. S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
    [Crossref] [PubMed]
  10. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007).
    [Crossref] [PubMed]
  11. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
    [Crossref] [PubMed]
  12. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
    [Crossref]
  13. M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
    [Crossref]
  14. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
    [Crossref] [PubMed]
  15. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
    [Crossref] [PubMed]
  16. M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
    [Crossref]

2008 (1)

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

2007 (4)

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007).
[Crossref] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[Crossref] [PubMed]

2006 (3)

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

2005 (3)

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
[Crossref] [PubMed]

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

2003 (1)

2000 (1)

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

1998 (2)

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

1994 (1)

Acef, O.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Akre, R. A.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Als-Nielsen, J.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Asari, K.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

Barber, Z. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Beck, K. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Bergh, M.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Bergquist, J. C.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Berquist, J. C.

Biraben, F.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Bize, S.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Berquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

Blatt, S.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Blome, C.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Boyd, M. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Bucksbaum, P. H.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Cagnac, B.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Caleman, C.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Campbell, G. K.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Cavalieri, A. L.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Chapman, H. N.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Chardonnet, C.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Chmbon, D.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Clairon, A.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Coq, Y. L.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

D’Addario, L.

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

Daimon, Y.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Daussy, C.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

de Beauvoir, B.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

de Miranda, M. H. G.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

Diddams, S. A.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Berquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

Dusterer, S.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Emerson, D. T.

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

Falcone, R. W.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Feder, K. S.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Foreman, S. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[Crossref] [PubMed]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

Fortier, T. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Fritz, D. M.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Fujii, Y.

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

Fuoss, P. H.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Goncharov, A.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Guinet, M.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Hajdu, J.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Hall, J. L.

Hansen, T. N.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Hara, T.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

Hastings, J. B.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Higashi, R.

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
[Crossref] [PubMed]

Hignette, O.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Hilico, L.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Hirano, M.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Hollberg, L. W.

Holman, K. W.

Hong, F.-L.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
[Crossref] [PubMed]

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[Crossref] [PubMed]

Huldt, G.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Imae, M.

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

Inaba, H.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Ischebeck, R.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Ishiguro, M.

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

Jones, D. J.

Jones, R. J.

Julien, L.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Jungner, P.

Kao, C. C.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Katori, H.

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
[Crossref] [PubMed]

Kawano, N.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

Kerr, A. R.

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

Kitching, J.

-Klein, A. A.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Kuji, S.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

Larsson, J.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Le. Coq, Y.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Lee, R. W.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Lee, S. H.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Lemke, N. D.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Lopez, O.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Lorini, L.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Lours, M.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Lowney, D. P.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Ludlow, A. D.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

Luening, K.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Luiten, A. N.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Ma, L.-S.

MacPhee, A. G.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Martin, M. J.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Matsumoto, H.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Mills, D. M.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Minoshima, K.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Musha, M.

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

Nakagawa, K.

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

Nakazawa, M.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Narbonneau, F.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Newbury, N. R.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Nez, F.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Nicholson, J. W.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Nishino, M.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

Oates, C. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Okuno, T.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Onae, A.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Onishi, M.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Pahl, R.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Payne, J. M.

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

Peng, J.-L.

Poli, N.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Quraishi, Q.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Reis, D. A.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Robertsson, L.

Rudati, J.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Santarelli, G.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Sato, K.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

Sato, Y.

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

Schibli, T. R.

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Schillue, B.

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

Schlarb, H.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Schneider, J.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Schulte-Schrepping, H.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Sette, F.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Sheppard, J.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Siddons, D. P.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Stalnaker, J. E.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

Stephenson, G. B.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Swann, W. C.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Synnergren, O.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Takamoto, M.

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
[Crossref] [PubMed]

Techert, S.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Thomsen, J. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Timneanu, N.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Tobar, M. E.

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Touahri, D.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Tschentscher, Th.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Ueda, A.

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

Ueda, K.

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

van der Spoel, D.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Wark, J. S.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Weinstei, D.

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Westbrook, P. S.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Williams, P. A.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007).
[Crossref] [PubMed]

Ye, J.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Berquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places; accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref] [PubMed]

Zelevinsky, T.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Zondy, J. J.

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

Appl. Phys. B (1)

M. Musha, Y. Sato, K. Nakagawa, K. Ueda, A. Ueda, and M. Ishiguro, “Robust and precise length stabilization of a 25-km long optical fiber using an optical interferometric method with a digital phase-frequency discriminator,” Appl. Phys. B 82, 555–559 (2006).
[Crossref]

Eur. Phys. J. D (1)

B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J. J. Zondy, D. Touahri, O. Acef, and A. Clairon, “Transmission of an optical frequency through a 3km long optical fiber,” Eur. Phys. J. D 1, 227–229 (1998).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishino, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control,” IEEE Trans. Instrum. Meas. 49, 19–24 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jap. (1)

M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope,” J. Phys. Soc. Jap. 75, 104302 (2006).
[Crossref]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hindreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1, 283 (2007)
[Crossref]

Nature (1)

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature,  435, 321–324 (2005).
[Crossref] [PubMed]

Opt. Express. (1)

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express. 14, 5223–5231 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt.Lett. (1)

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251km,” Opt.Lett. 32, 3056–3058 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

C. Daussy, O. Lopez, A. A. -Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chmbon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstei, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, K. Luening, and J. B. Hastings, “Clocking femtosecond X rays,” Phys. Rev. Lett. 94, 114801 (2005).
[Crossref] [PubMed]

Phys.Rev.Lett. (1)

S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1s instability at 10-17,” Phys.Rev.Lett. 99, 153601 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

J. M. Payne, L. D’Addario, D. T. Emerson, A. R. Kerr, and B. Schillue, “Photonic local oscillator system for the millimeter array,” Proc. SPIE,  3357, 143–151 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[Crossref] [PubMed]

Science (1)

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with Ca clock,” Science,  319, 1805–1808 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic diagram and optical time-delay reflectometer (OTDR) measurements of the optical fiber network: red line indicates round-trip-scheme fiber network between NMIJ-Kashiwa-NMIJ
Fig. 2.
Fig. 2. The experimental set-up of the coherent transfer system. Transmitted light at the remote end (*) is mixed with the reference light at local end (*) for evaluation of the phase noise of the one-way transmitted light. OC: optical circulator, SG: signal generator, FS: fiber stretcher, DPFD: digital phase-frequency discriminator, DDS: direct digital synthesizer
Fig. 3.
Fig. 3. (a). Temporal optical length variation of the 110-km fiber (b). The additional phase noise of the round-trip light of 110-km fiber between NMIJ-Kashiwa-NMIJ. In-loop signal of round-trip light in free running (thin-black) and stabilized (bold-red). The dotted (blue) trace is out-of-loop signal from one-way light
Fig. 4.
Fig. 4. Allan standard deviations of the fractional frequency instability. Out-of-loop signal from one-way light in free running (crosses), stabilized (open circles) and in-loop signal from round-trip light (close circles) through 110-km fiber. Triangles indicates in-loop signal from round-trip light through 120-km fiber between NMIJ and UT. The dotted trace indicates the additional frequency noise at the optical repeater

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( f ) locked 1 3 ( 2 π f τ ) 2 S ( f ) free [ rad 2 Hz ]
S ( f ) locked = 1 3 ( 2 π τ h ) 2 [ rad 2 Hz ] .
σ ν = 8 h 3 τ ν t 3 2
σ total = n 1 2 × ( σ ν n 3 2 ) = 1 n σ ν

Metrics