Abstract

The chirp effect on a X-ray emission intensity from a CsCl aqueous solution jet irradiated by femtosecond pulses was systematically studied. The p-polarized chirped pulses were more efficient as compared with the shortest pulses determined by the spectral bandwidth. The negatively-chirped pulses of approximately 240 fs duration produced up to 10 times larger X-ray intensity as compared with the transform-limited 160 fs pulses. The angular dependence of X-ray generation can be explained by the resonant absorption. Numerical simulations of electron density evolution due to the avalanche and multi-photon absorption supports qualitatively well the experimental observations.

© 2008 Optical Society of America

1. Introduction

Generation of X-rays by femtosecond pulses can become effective and practical with appearance of table-top lasers with high average power >10W at high repetition rate >10 kHz with applications ranging from X-ray lithography to imaging, monitoring of ultra-fast ionic dynamics, etc. [1–8]. Creation of high plasma densities (>1022 cm-3) and temperatures (>1 keV) is required for efficient X-ray sources. Selection of the characteristic emission lines of elements can be used for monochromatic X-ray light sources of nanometer wavelengths’ for future lithography. Hard-X-rays are also prospective for bio-medical applications since the same quality X-ray images can be obtained by a much shorter exposure of living cells when ultra-short pulses of high brillance are utilized causing a smaller cumulative exposure dose.

When surfaces of solid targets are irradiated at high irradiance of TW-to-PW/cm2 typically used in X-ray generation the ablation and debris formation occurs [9]. The liquid jets of metals (e.g., Ga) or water solutions doped with metal ions are prospective candidates for realization of practical hard X-ray sources where the exposed region is refreshed before irradiation [10–14].

Here, we demonstrate the dependence of X-ray emission on chirp of fs-pulses at s- and p-polarizations. A systematic study was carried out by measuring X-ray generation using pulses of the same duration with and without positive or negative chirp at the same pulse energy. The pulse duration was independently measured by frequency resolved optical gating (FROG). It is shown that chirp effect can enhance the hard X-ray emission by more than a magnitude, a considerably larger effect than that observed for shorter pulses [15].

 

Fig. 1. (color online/final size) Setup used to chirp fs-pulses: XD is the X-ray detector, OL - objective lens, GR1,2 - gratings, S - sample, RM - retro-mirror, SL - slit defining the spectral width, and RNG - regenerative amplifier of fs-pulses. The incoming and outgoing pulses are separated by a slight off-plane angle of mirror (RM).

Download Full Size | PPT Slide | PDF

2. Experimental

The experimental setup on hard X-ray generation by femtosecond pulses is described in details elsewhere [16]. It consists of femtosecond amplified laser system (CPA2001, Clark MXR with Positive Light Evolution X) delivering 160 fs pulses at 780 nm wavelength with pulse energy up to 1 mJ, focusing optics, a liquid jet sample, and X-ray detector. The fs-pulses were focused on the target, a jet of aqueous solution of CsCl (at 4 mol/dm3 concentration) using a lens of numerical aperture NA=0.28 (focusing cone angle is 32 ° in air). The angle of incidence onto the jet was changed from 0° to 90° and the flow rate of solution was 4 mm/ms ensuring complete refresh of the irradiation spot at 1 kHz laser repetition rate. A Geiger-Mueller counter was set at an angle to avoid a specular reflection and to monitor the X-ray emission at 5–10 cm out of the irradiation spot.

Chirp of fs-pulses was controlled by an auxiliary compressor (Fig. 1). The fs-laser output pulses were set to a spectral bandwidth limited length and introduced into the auxiliary compressor comprised of two 1800-lines/mm gratings and a mirror. The chirp was introduced by changing the distance between two parallel gratings (no spatial chirp was introduced [17]).

The length of compressor defines the second order dispersion, the strongest effect in the chirp control. The compressor position for the shortest pulse corresponded to the chirp-free or Fourier transform limited bandwidth pulses with the chirp parameter β=0 fs-2; the precision of pre-chirpingwas approximately 5×10-6 fs-2. The pulses were measured by FROG (Swamp Optics, GRENOUILLE) and second harmonic auto-correlation. The pulse duration (at FWHM) was determined using a FROG algorithm numerical retrieval. The slit was set to symmetrically limit the spectrum around the central frequency and to obtain chirp-free pulses of the same duration as the chirped fs-pulses (Fig. 1). This allowed to separate the pulse duration and chirp effects when pulses of the same energy were used in X-ray generation.

 

Fig. 2. (color online/final size) The dependence of X-ray intensity on the pulse duration at different values of chirp for s-pol. (a) and p-pol. (b) in aqueous solution of CsCl (please, note the shortest pulse is at the center of the figure). Pulse energy was Ep=0.38 mJ at focus; the pulse duration was measured before the objective lens. Angle of incidence was 58 degrees. For comparison, X-ray emission by non-chirped transform-limited pulses (controlled by slit SL (Fig. 1)) is also plotted. Arrow (a) marks the shortest pulse duration at the focus.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 2 summarizes experimental data on the intensity of X-ray at different pulse durations obtained by pre-chirping of 160 fs pulses. There was low efficiency of X-ray generation for s-pol. and chirp-free pulses obtained by limiting of spectral width by the slit (Fig. 1). The small increase of X-ray generation for s-pol. was observed for the negative pre-chirp which corresponded to the shortest pulses at the irradiation spot due to the dispersion in the lens (marked by arrow in Fig. 2(a)). As expected, the p-pol. with component of incident electric field perpendicular to the target’s surface enhances approximately tenfold the X-ray emission at the optimized chirp. This is a considerably larger enhancement as observed from Fe targets [15]. The enhancement was observed for the positive and negative chirp (Fig. 2(b)). The highest emission of hard X-rays was observed at negative chirp when pulse duration was approximately 240±10 fs. The origin of the chirp effect is discussed below together with results of numerical simulations.

The pulses with optimized negative chirp were then used to irradiate target at different incident angles (Fig. 3). The strongest X-ray emission was observed at the angle θ=58 ° ±10°. The Fresnel reflection Rp=0 would be expected at the Brewster angle of θB=54° for irradiation of water solution. Due to low refractive index contrast between solution and air the Fresnel reflection is small and cannot account alone for the strong angular dependence in X-ray emission observed experimentally. The resonant absorption [18] can explain the observation as discussed below.

At large incidence angles of the focused laser pulses, the resonant absorption becomes important. The resonance absorption [18], the main mechanism for plasma heating in the case of nanosecond pulses, depends on focusing and the depth position of the plasma region with critical density where the most efficient absorption takes place. The theoretical limit of irradiance achievable via the resonance absorption is 0.5Ii. The effective absorption of the incident irradiation, Ii, at the oblique angle of incidence, θ, is given [19]:

 

Fig. 3. (color online/final size) Laser incident angle dependence of the X-ray emission from the CsCl aqueous solution (4 mol/dm3) for s- and p-pol. Superimposed are the Fresnel reflection coefficients R p,s (left axis) for the corresponding polarizations at the air-CsCl aqueous solution interface (the refractive indices are nair=1, nsol.=1.38; the Brewster angle θB=54°). Pulse energy was 0.30 mJ; X-ray detector was at 10 cm distance for the p-pol. and at 5 cm for s-pol.

Download Full Size | PPT Slide | PDF

IiIrIi=τ(θ)2(2.31exp(2τ(θ)3)3)2,

where Ir is the reflected intensity with τ(θ)=ωzcc3×sinθ where zc is the depth position (axial) of the critical plasma density, c and ω are the speed of light and cyclic frequency, respectively.

The eqn. 1 implies that there is an optimum angle of incidence for the most efficient plasma heating by resonant absorption: sin(θopt)0.8cωzc3 with the angular width of Δθoptcωzc3 [18, 19]. One would find that the θopt ⋍58° with Δθ opt⋍49° for zc⋍0.2 µm at λ⋍0.8 µm wavelength (θ opt and Δθ opt decreases for larger zc). This would correspond to the plasma emission from a pre-surface layer comparable with the skin depth of a fully ionized water and explains qualitatively well the experimental observation. Due to the focusing cone of 32° (NA=0.28) the experimental angular dependence (Fig. 3) is a convolution and explains broad peak centered around the 58°. It is noteworthy, that more shallow location of critical plasma (zc→0), when Brunel mechanism could play an important role, would correspond to θoptπ/2. Hence, the resonance absorption is not compatible which the Brunel mechanism (also, called a vacuum heating) for which a distinct material-air boundary is necessary [20–22]. Since the Brunel mechanism is not angularly dependent, the resonance absorption can explain best the experimental observation.

The qualitative simulation of the chirp effect was carried out by evaluating the multi-photon and avalanche rates for ionization of liquid sample by the linearly polarized pulse at right angle incidence. The ionisation potential of the target was taken J=8 eV, which is an estimate considering the first orbital excitation of water molecules at 6.5 eV augmented by the quiver energy ~1.5 in the case of fs-pulses as required by conservation laws [23].

The spectrally broad X-rays continuum is emitted from high temperature regions of plasma on the surface of target or departing overheated clusters via bremsstrahlung and the characteristic elemental transition are superimposed on the continuum [24]. Hence, the emission of X-rays is determined by the electron density and temperature. The modeling of temporal evolution of electron-ion density was made taking into account chirp of the femtosecond pulses. The electric field of a Gaussian pulse was taken in the form: E(t)=E0e2ln2(tτp)2cos(ωt+βt2) , where ω is the light’s cyclic frequency, t is the time, τp is the pulse duration at a full-width at half maximum (FWHM), β [1/fs2], is the chirp, and E0=2I0cε0n is the electric field amplitude expressed via irradiance amplitude, I 0, light velocity, c, vacuum permittivity, ε 0, and refractive index, n (n=1 for setting the focal spot from air onto surface of a water jet).

Evolution of the electron-ion generation rate during the pulse is modeled by simultaneously occurring multi-photon and avalanche (impact) ionization which have the probabilities wmpi(ωins(t)) and wimp(ωins(t)), respectively; here ωins(t)=ω+2β t is the instantaneous cyclic frequency of laser pulse in presence of the linear chirp. The positive chirp, β>0, corresponds to the pulse where the frequency increases towards the pulse end and vice versa. Below a ~1 PW/cm2 irradiance the contribution of a tunneling mechanism in a free electron generation is small, since the tunneling becomes dominant only when Keldysh parameter, γ=2meJω(eE0)1 [19], here me and e are the mass and charge of electron, respectively. Hence, the ~PW/cm2 irradiance is required for tunneling to overcome the avalanche in multi-photon breakdown (the consideration given above is valid for the multi-photon process when J/(h̄ω) ~nph≫1 [19, 25]).

Temporal evolution of the electron density was calculated as in the case of breakdown of dielectrics [26]:

ne(ωins(t))=(ne0+nawmpiwimp[1ewimpt])ewimpt,

where ne 0 is the initial free electron density, which is ~1012 cm-3 in dielectrics. The ionization probabilities depends on the instantaneous irradiance and frequency. The probabilities of impact and multi-photon ionization were taken in the form [27]: wmpi=ωinsnph32(1.36εoscJq)nph , wimp=εoscJq2ωins2veffωins2+veff2 , where εosc=q2E024mωins2 is the electron quiver energy in the electrical field of strength E 0, q and m are the electron charge and mass, respectively, nph is the number of photons necessary for ionization, νeff⋍6×1014 Hz is an effective collision frequency in the breakdown plasma [26].

The results of simulation are shown in Fig. 4 for different chirp values. The positive and negative chirp resulted in faster electron generation rate than that of a transform-limited (chirp-free) pulse at irradiance ~TW/cm2. The positively chirped pulse with longer wavelength at the earlier times of light-solution interaction favors the avalanche over the multiphoton ionization since the electron quiver energy, εosc2 (see, dependencies of wεosc). Indeed, the wmpi⋍42 THz and wimp⋍228 THz at the irradiance of 30 TW/cm2 with electron quiver energy of 1.64 eV. It should be noted that at much higher irradiance the multi-electron ionization should be considered with ionization potentials corresponding to the deeper electronic shells of ions. Hence, we limit discussion to a single ionization relevant to our experiments.

At the full breakdownconditions, the generation rate of electrons is faster on the earlier stages (at t/τp<1 in Fig. 4) for a positively chirped pulse. However, the largest electron density is predicted for the negatively chirped pulses when the multi-photon ionization efficiently contributes to generation of seeding electrons while the avalanche (wimp>wmpi at the irradiance ≤50 TW/cm2;) creates high plasma density (Fig. 4). This qualitative explanation is corroborated experimentally (see, Fig. 2). The electron generation dynamics is very sensitive to the actual irradiance and chirp parameters; the electron generation rate would change significantly at different irradiance, pulse duration, and chirp parameters. Since the experimentally observed X-ray emission dependencies (Fig. 2) can be qualitatively well explained by the presented model, the influence of suprathermal electrons can be considered not significant at our experimental conditions. The electrons of high energy can escape from the surface of target and they will not contribute to X-ray generation due to reduced collisions in surrounding atmosphere. Also, the absorption cross-section of hot electrons decreases with temperature. The temperature of the hard X-rays was approximately same for the negatively and positively chirped pulses of 240 fs as well as for the transform-limited 160 ps pulses of the same energy (as can be judged from comparable slopes in log-lin plot; see, Supplement material). Hence, the experimentally observed scaling of the X-ray intensity depends mostly on the electron-ion concentration. Indeed, the emitted power via bremsstrahlung can be estimated as [28]:

 

Fig. 4. (color online/final size) Evolution of ionisation rate dne/dt [cm-3s-1](calculated by eqn. 2) during the pulse of τp=160 fs duration at the positive and negative chirp |β|=6×10-5 fs-2, at which the pulse duration is 255 fs (see, Fig. 2(b)). Material has ionization potential J=8 eV and the irradiance was I=30 TW/cm2.

Download Full Size | PPT Slide | PDF

Pbr~Z2neniTe[Wm3],

where Z is the ionization number, ne,i [m-3] are the electron and ion densities, respectively, and Te is the electron temperature in electronvolts. The experimental data (Fig. 2) and the spectra (see, Supplement) show that the enhancement of X-ray emission was mostly determined by the electron concentration rather than by their temperature. Hence, the electron generation analysis was adequate for description of the observed X-ray generation enhancement.

4. Conclusions

The tenfold enhanced hard X-ray emission was observed for p-polarization and for negatively chirped fs-pulses. The dominant mechanism of X-ray generation is via the resonant absorption. This conclusion was supported by the experimentally measured angular dependence of X-ray generation. This study of chirp and angular dependence on X-ray emission could be useful for practical designs of X-ray sources. Combination of space and frequency chirps with tailored multi-pulse exposure of optimized duration, intra-pulse separation, and nano-plasma enhancement effects [29] are expected to further increase efficiency of X-ray generation in fs-plasma.

 

Fig. 5. (Supplement figure) Hard X-ray emission spectra for the negatively-chirped 240 fs, (β<0) positively-chirped 240 fs (β>0), and transform-limited 160 fs (β=0) p-pol. pulses, respectively. Spectra are not corrected for the transmission in a 15-cm-long path in air; the transmission is shown on the right axis. The experimental conditions of X-ray generation are the same as those for Fig. 2 only the pulse energy was Ep=0.30 mJ (at focus). The spectra were detected by the Si(Li) detector (Rontek, XFlash Detector Type 1100). The following lines of Cs and Cl can be recognized: the line at 2.55 keV (Cl at 2.62 keV), 4.26 keV (Cs at 4.28 keV), 4.60 keV (Cs 1 at 4.61 keV), and 4.89 keV (Cs 2 at 4.93 keV) according to the Ref. [X-ray data booklet, 2nd Edition, Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory, 2001].

Download Full Size | PPT Slide | PDF

Acknowledgments

This work was supported by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas “Control of Molecules in Intense Laser Fields (No. 419, 14077202)” and “Strong Photon-Molecule Coupling Fields (No. 470, 20043002)” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. S.J. is grateful for support provided by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan No.19360322.

References and links

1. M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991). [CrossRef]   [PubMed]  

2. J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997). [CrossRef]  

3. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995). [CrossRef]   [PubMed]  

4. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999). [CrossRef]   [PubMed]  

5. P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005). [CrossRef]   [PubMed]  

6. J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995). [CrossRef]  

7. C. Bressler and M. Chergui, “Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104, 1781–1812, (2004). [CrossRef]   [PubMed]  

8. D. Mathur, “Structure and dynamics of molecules in high charge states,” Phys. Rep. 391(1–2), 1–118, (2004). [CrossRef]  

9. H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997). [CrossRef]  

10. C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998). [CrossRef]  

11. M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005). [CrossRef]  

12. G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, and T. Elsaesser, “Ultrashort 1-khz laser plasma hard x-ray source,” Opt. Lett. 27, 866–868, (2002). [CrossRef]  

13. K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004). [CrossRef]  

14. K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002). [CrossRef]  

15. M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007). [CrossRef]  

16. H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9. [CrossRef]  

17. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–200, (2007).

18. D. Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applications, (Cambridge, Cambridge University Press, 1999).

19. N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation, (Moscow, Nauka (in Russ.), 1991).

20. F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55, (1987). [CrossRef]   [PubMed]  

21. A. V. Getz and V. P. Krainov, “Vacuum heating of large atomic clusters by superintense femtosecond laser pulse,” J. Exper. & Theor. Phys. 101, 80–87, (2005). [CrossRef]  

22. V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002). [CrossRef]  

23. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005). [CrossRef]  

24. N. Vogel and V. Skvortsov, “The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages,” IEEE Trans. Plasma Sci. 27, 122–123, (1999). [CrossRef]  

25. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006). [CrossRef]  

26. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003). [CrossRef]  

27. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002). [CrossRef]  

28. R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).

29. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. doi: 10.1007/12-2007-122 (2007), published on line Oct. 27).

References

  • View by:
  • |
  • |
  • |

  1. M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
    [CrossRef] [PubMed]
  2. J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
    [CrossRef]
  3. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
    [CrossRef] [PubMed]
  4. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
    [CrossRef] [PubMed]
  5. P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, "Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas," Phys. Rev. Lett. 94, 025004/1-4 (2005).
    [CrossRef] [PubMed]
  6. J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
    [CrossRef]
  7. C. Bressler and M. Chergui, "Ultrafast x-ray absorption spectroscopy," Chem. Rev. 104, 1781 - 1812 (2004).
    [CrossRef] [PubMed]
  8. D. Mathur, "Structure and dynamics of molecules in high charge states," Phys. Rep. 391, 1 - 118 (2004).
    [CrossRef]
  9. H. Nakano, T. Nishikawa, and N. Uesugi, "Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target," Appl. Phys. Lett. 70, 16-18 (1997).
    [CrossRef]
  10. C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
    [CrossRef]
  11. M. Anand, C. P. Safvan, and M. Krishnamurthy, "Hard X-ray generation from microdroplets in intense laser fields," Appl. Phys. B 81, 469-477 (2005).
    [CrossRef]
  12. G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, and T. Elsaesser, "Ultrashort 1-khz laser plasma hard x-ray source," Opt. Lett. 27, 866 - 868 (2002).
    [CrossRef]
  13. K. Hatanaka, T. Miura, and H. Fukumura, "White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number," Chem. Phys. 299, 265-270 (2004).
    [CrossRef]
  14. K. Hatanaka, T. Miura, and H. Fukumura, "Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride," Appl. Phys. Lett. 80, 3925-3927 (2002).
    [CrossRef]
  15. M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
    [CrossRef]
  16. H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9.
    [CrossRef]
  17. S. Juodkazis, K. Nishimura, and H. Misawa, "Three-dimensional laser structuring of materials at tight focusing," Chin. Opt. Lett. 5, S198 - 200 (2007).
  18. D. Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applications (Cambridge, Cambridge University Press, 1999).
  19. N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation (Moscow, Nauka (in Russ.), 1991).
  20. F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
    [CrossRef] [PubMed]
  21. A. V. Getz and V. P. Krainov, "Vacuum heating of large atomic clusters by superintense femtosecond laser pulse," J. Exper. & Theor. Phys. 101, 80-87 (2005).
    [CrossRef]
  22. V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
    [CrossRef]
  23. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  24. N. Vogel and V. Skvortsov, "The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages," IEEE Trans. Plasma Sci. 27, 122 - 123 (1999).
    [CrossRef]
  25. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
    [CrossRef]
  26. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
    [CrossRef]
  27. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
    [CrossRef]
  28. R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).

2007 (2)

M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, "Three-dimensional laser structuring of materials at tight focusing," Chin. Opt. Lett. 5, S198 - 200 (2007).

2006 (1)

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

2005 (3)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

A. V. Getz and V. P. Krainov, "Vacuum heating of large atomic clusters by superintense femtosecond laser pulse," J. Exper. & Theor. Phys. 101, 80-87 (2005).
[CrossRef]

M. Anand, C. P. Safvan, and M. Krishnamurthy, "Hard X-ray generation from microdroplets in intense laser fields," Appl. Phys. B 81, 469-477 (2005).
[CrossRef]

2004 (3)

K. Hatanaka, T. Miura, and H. Fukumura, "White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number," Chem. Phys. 299, 265-270 (2004).
[CrossRef]

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spectroscopy," Chem. Rev. 104, 1781 - 1812 (2004).
[CrossRef] [PubMed]

D. Mathur, "Structure and dynamics of molecules in high charge states," Phys. Rep. 391, 1 - 118 (2004).
[CrossRef]

2003 (1)

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

2002 (4)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, "Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride," Appl. Phys. Lett. 80, 3925-3927 (2002).
[CrossRef]

G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, and T. Elsaesser, "Ultrashort 1-khz laser plasma hard x-ray source," Opt. Lett. 27, 866 - 868 (2002).
[CrossRef]

V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
[CrossRef]

1999 (2)

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

N. Vogel and V. Skvortsov, "The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages," IEEE Trans. Plasma Sci. 27, 122 - 123 (1999).
[CrossRef]

1998 (1)

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

1997 (2)

H. Nakano, T. Nishikawa, and N. Uesugi, "Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target," Appl. Phys. Lett. 70, 16-18 (1997).
[CrossRef]

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
[CrossRef]

1995 (2)

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
[CrossRef]

1991 (1)

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
[CrossRef] [PubMed]

1987 (1)

F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
[CrossRef] [PubMed]

Anand, M.

M. Anand, C. P. Safvan, and M. Krishnamurthy, "Hard X-ray generation from microdroplets in intense laser fields," Appl. Phys. B 81, 469-477 (2005).
[CrossRef]

Audebert, P.

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
[CrossRef]

Berezhiani, V.I.

V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
[CrossRef]

Bressler, C.

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spectroscopy," Chem. Rev. 104, 1781 - 1812 (2004).
[CrossRef] [PubMed]

Brunel, F.

F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
[CrossRef] [PubMed]

Cavalleri, A.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Chergui, M.

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spectroscopy," Chem. Rev. 104, 1781 - 1812 (2004).
[CrossRef] [PubMed]

Cô té, C. Y.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

Elsaesser, T.

Falcone, R. W.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
[CrossRef] [PubMed]

Fukumura, H.

K. Hatanaka, T. Miura, and H. Fukumura, "White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number," Chem. Phys. 299, 265-270 (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, "Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride," Appl. Phys. Lett. 80, 3925-3927 (2002).
[CrossRef]

Gamaly, E. E.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
[CrossRef]

Gauthier, J.-C.

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
[CrossRef]

Geindre, J.-P.

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
[CrossRef]

Getz, A. V.

A. V. Getz and V. P. Krainov, "Vacuum heating of large atomic clusters by superintense femtosecond laser pulse," J. Exper. & Theor. Phys. 101, 80-87 (2005).
[CrossRef]

Guethlein, G.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

Guo, T.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Hallo, L.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Hatanaka, K.

K. Hatanaka, T. Miura, and H. Fukumura, "White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number," Chem. Phys. 299, 265-270 (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, "Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride," Appl. Phys. Lett. 80, 3925-3927 (2002).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Ikhlef, A.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

Jiang, Z.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Nishimura, and H. Misawa, "Three-dimensional laser structuring of materials at tight focusing," Chin. Opt. Lett. 5, S198 - 200 (2007).

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

Kammler, M.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Kapteyn, C.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
[CrossRef] [PubMed]

Kieffer, J. C.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

Korn, G.

Krainov, V. P.

A. V. Getz and V. P. Krainov, "Vacuum heating of large atomic clusters by superintense femtosecond laser pulse," J. Exper. & Theor. Phys. 101, 80-87 (2005).
[CrossRef]

Krishnamurthy, M.

M. Anand, C. P. Safvan, and M. Krishnamurthy, "Hard X-ray generation from microdroplets in intense laser fields," Appl. Phys. B 81, 469-477 (2005).
[CrossRef]

Linden, S.

M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
[CrossRef]

Luther-Davies, B.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
[CrossRef]

Mahajan, S.M.

V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
[CrossRef]

Maksimchuk, A.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
[CrossRef]

Mathur, D.

D. Mathur, "Structure and dynamics of molecules in high charge states," Phys. Rep. 391, 1 - 118 (2004).
[CrossRef]

Matsuo, S.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

Misawa, H.

S. Juodkazis, K. Nishimura, and H. Misawa, "Three-dimensional laser structuring of materials at tight focusing," Chin. Opt. Lett. 5, S198 - 200 (2007).

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

Miura, T.

K. Hatanaka, T. Miura, and H. Fukumura, "White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number," Chem. Phys. 299, 265-270 (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, "Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride," Appl. Phys. Lett. 80, 3925-3927 (2002).
[CrossRef]

More, R. M.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

Murnane, M. M.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
[CrossRef] [PubMed]

Nakano, H.

H. Nakano, T. Nishikawa, and N. Uesugi, "Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target," Appl. Phys. Lett. 70, 16-18 (1997).
[CrossRef]

Nantel, M.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
[CrossRef]

Nicolai, P.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nishikawa, T.

H. Nakano, T. Nishikawa, and N. Uesugi, "Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target," Appl. Phys. Lett. 70, 16-18 (1997).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, and H. Misawa, "Three-dimensional laser structuring of materials at tight focusing," Chin. Opt. Lett. 5, S198 - 200 (2007).

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Pekker, M.

V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
[CrossRef]

Pépin, H.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

Price, D. F.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

R, A.

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
[CrossRef]

Richardson, M.

Rode, A. V.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
[CrossRef]

Rosen, M. D.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
[CrossRef] [PubMed]

Safvan, C. P.

M. Anand, C. P. Safvan, and M. Krishnamurthy, "Hard X-ray generation from microdroplets in intense laser fields," Appl. Phys. B 81, 469-477 (2005).
[CrossRef]

Shepherd, R. L.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

Siders, C. W.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Silies, M.

M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
[CrossRef]

Skvortsov, V.

N. Vogel and V. Skvortsov, "The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages," IEEE Trans. Plasma Sci. 27, 122 - 123 (1999).
[CrossRef]

Sokolowski-Tinten, K.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Stewart, R. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

Stiel, H.

Thoss, A.

Tikhonchuk, V.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
[CrossRef]

Toth, C.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Uesugi, N.

H. Nakano, T. Nishikawa, and N. Uesugi, "Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target," Appl. Phys. Lett. 70, 16-18 (1997).
[CrossRef]

Umstadler, D.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Vogel, N.

N. Vogel and V. Skvortsov, "The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages," IEEE Trans. Plasma Sci. 27, 122 - 123 (1999).
[CrossRef]

Vogt, U.

von der Linde, D.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

von Hoegen, M. H.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Walling, R. S.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

Wilson, K. R.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Witte, H.

M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
[CrossRef]

Workman, J.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
[CrossRef]

Yoshida, Z.

V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
[CrossRef]

Zacharias, H.

M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
[CrossRef]

Appl. Phys. B (4)

M. Anand, C. P. Safvan, and M. Krishnamurthy, "Hard X-ray generation from microdroplets in intense laser fields," Appl. Phys. B 81, 469-477 (2005).
[CrossRef]

M. Silies, S. Linden, H. Witte, and H. Zacharias, "The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse," Appl. Phys. B 87, 623 - 627 (2007).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

K. Hatanaka, T. Miura, and H. Fukumura, "Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride," Appl. Phys. Lett. 80, 3925-3927 (2002).
[CrossRef]

H. Nakano, T. Nishikawa, and N. Uesugi, "Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target," Appl. Phys. Lett. 70, 16-18 (1997).
[CrossRef]

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, "Application of a picosecond soft x-ray source to time-resolved plasma dynamics," Appl. Phys. Lett. 70, 312- 314 (1997).
[CrossRef]

Barty em Science (1)

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty em Science 286, 1340, (1999).
[CrossRef] [PubMed]

Chem. Phys. (1)

K. Hatanaka, T. Miura, and H. Fukumura, "White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number," Chem. Phys. 299, 265-270 (2004).
[CrossRef]

Chem. Rev. (1)

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spectroscopy," Chem. Rev. 104, 1781 - 1812 (2004).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

IEEE Trans. Plasma Sci. (1)

N. Vogel and V. Skvortsov, "The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages," IEEE Trans. Plasma Sci. 27, 122 - 123 (1999).
[CrossRef]

J. (1)

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ.Phys. B: At. Mol. Opt. Phys. 31, L883-L889 (1998).
[CrossRef]

J. Exper. & Theor. Phys. (1)

A. V. Getz and V. P. Krainov, "Vacuum heating of large atomic clusters by superintense femtosecond laser pulse," J. Exper. & Theor. Phys. 101, 80-87 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949 - 957 (2002).
[CrossRef]

Phys. Rep. (1)

D. Mathur, "Structure and dynamics of molecules in high charge states," Phys. Rep. 391, 1 - 118 (2004).
[CrossRef]

Phys. Rev. B (1)

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Phys. Rev. E (2)

V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, and M. Pekker, "Dynamics of self-trapped singular beams in an underdense plasma," Phys. Rev. E 65, 046415 (2002).
[CrossRef]

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., "Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas," Phys. Rev. E 52, 2963 - 2968 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, andW. E. White, "Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV," Phys. Rev. Lett. 75, 252- 255 (1995).
[CrossRef] [PubMed]

F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
[CrossRef] [PubMed]

Science (1)

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, "Ultrafast X-ray pulses from laser-produced plasmas," Science 251, 531 - 536 (1991).
[CrossRef] [PubMed]

Other (5)

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, "Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas," Phys. Rev. Lett. 94, 025004/1-4 (2005).
[CrossRef] [PubMed]

H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9.
[CrossRef]

D. Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applications (Cambridge, Cambridge University Press, 1999).

N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation (Moscow, Nauka (in Russ.), 1991).

R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(color online/final size) Setup used to chirp fs-pulses: XD is the X-ray detector, OL - objective lens, GR1,2 - gratings, S - sample, RM - retro-mirror, SL - slit defining the spectral width, and RNG - regenerative amplifier of fs-pulses. The incoming and outgoing pulses are separated by a slight off-plane angle of mirror (RM).

Fig. 2.
Fig. 2.

(color online/final size) The dependence of X-ray intensity on the pulse duration at different values of chirp for s-pol. (a) and p-pol. (b) in aqueous solution of CsCl (please, note the shortest pulse is at the center of the figure). Pulse energy was Ep =0.38 mJ at focus; the pulse duration was measured before the objective lens. Angle of incidence was 58 degrees. For comparison, X-ray emission by non-chirped transform-limited pulses (controlled by slit SL (Fig. 1)) is also plotted. Arrow (a) marks the shortest pulse duration at the focus.

Fig. 3.
Fig. 3.

(color online/final size) Laser incident angle dependence of the X-ray emission from the CsCl aqueous solution (4 mol/dm3) for s- and p-pol. Superimposed are the Fresnel reflection coefficients R p,s (left axis) for the corresponding polarizations at the air-CsCl aqueous solution interface (the refractive indices are nair =1, nsol .=1.38; the Brewster angle θB =54°). Pulse energy was 0.30 mJ; X-ray detector was at 10 cm distance for the p-pol. and at 5 cm for s-pol.

Fig. 4.
Fig. 4.

(color online/final size) Evolution of ionisation rate dne /dt [cm-3s-1](calculated by eqn. 2) during the pulse of τ p =160 fs duration at the positive and negative chirp |β|=6×10-5 fs-2, at which the pulse duration is 255 fs (see, Fig. 2(b)). Material has ionization potential J=8 eV and the irradiance was I=30 TW/cm2.

Fig. 5.
Fig. 5.

(Supplement figure) Hard X-ray emission spectra for the negatively-chirped 240 fs, (β<0) positively-chirped 240 fs (β>0), and transform-limited 160 fs (β=0) p-pol. pulses, respectively. Spectra are not corrected for the transmission in a 15-cm-long path in air; the transmission is shown on the right axis. The experimental conditions of X-ray generation are the same as those for Fig. 2 only the pulse energy was Ep =0.30 mJ (at focus). The spectra were detected by the Si(Li) detector (Rontek, XFlash Detector Type 1100). The following lines of Cs and Cl can be recognized: the line at 2.55 keV (Cl at 2.62 keV), 4.26 keV (Cs at 4.28 keV), 4.60 keV (Cs 1 at 4.61 keV), and 4.89 keV (Cs 2 at 4.93 keV) according to the Ref. [X-ray data booklet, 2nd Edition, Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory, 2001].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I i I r I i = τ ( θ ) 2 ( 2.31 exp ( 2 τ ( θ ) 3 ) 3 ) 2 ,
n e ( ω ins ( t ) ) = ( n e 0 + n a w m p i w i m p [ 1 e w i m p t ] ) e w i m p t ,
P br ~ Z 2 n e n i T e [ W m 3 ] ,

Metrics