Abstract

We study the optical properties of subwavelength metallic waveguides made of nanoscale apertures in a metal. We develop analytical expressions for the fundamental optical modes in apertures. The results are in excellent agreement with finite element calculations. This model provides a physical understanding of the role of non-perfect metallic walls, and of the shape and size of the apertures. They reveal the effect of the skin depth and of the surface plasmon polariton coupling on the waveguide modes. The nanoscopic origin of the increase of the cut-off wavelength due to the electromagnetic penetration depth in the metal is described. Simple expressions and universal curves for the effective index and the cut-off wavelength of the fundamental guided mode of any rectangular metallic waveguide are presented. The results provide an efficient tool for the design of nanoscale waveguides with real metal.

©2007 Optical Society of America

1. Introduction

Nanoscale apertures in a metal show astonishing optical properties leading to enhanced and selective light transmission [1, 2], and light confinement [3, 4]. Several structures are considered. Efficient light transmission through a single subwavelength aperture in a metallic film can be achieved by optical tunneling through the fundamental guided mode in the hole. The key role of the aperture geometry on the light transmission process has been demonstrated experimentally [5, 6, 7] and theoretically [8, 9, 10, 11]. The design of such subwavelength metal apertures is still a major challenge for the conception of optimal probes for scanning near-field optical microscopy [12]. Indeed light confinement in tiny apertures has allowed an impressive enhancement of single-molecule analysis by fluorescence detection in subwavelength holes [3, 13].

Enhanced light transmission is also achieved through metallic films with arrays of subwavelength holes [1]. In this last case, the optical tunneling through the holes is boosted by the excitation of surface plasmon polaritons (SPP) on the flat metallic surfaces [14, 15]. However, the dispersion properties of surface waves are also strongly dependent on the hole geometry [16, 17]. The role of the shape and size of each aperture on the transmission resonance has been evidenced experimentally by several groups [18, 19, 20, 21]. Another very recent example of the crucial role of the aperture geometry on the optical properties of such structures is the enhancement of the nonlinear optical response of metallic films with hole arrays [22]. This properties are attributed to slow modes due the cut-off behaviour in each hole. In hole arrays, apertures act as uncoupled metallic waveguides due to the opacity of noble metals in the visible and infrared wavelength range if the metal thickness is greater than the penetration depth of the electromagnetic field (about 25 nm). Consequently, the optical modes of the holes can be studied independently in a each aperture.

In previous theoretical studies of light transmission through single holes or through hole arrays in metallic films, several approaches have been used to modelize the electromagnetic field in the apertures. The simpler model makes use of perfect metallic walls [9, 23, 14], which can be modified with an effective hole radius [24]. Alternatively, time consuming numerical methods allow accurate calculations of optical modes and light transmission (Fourier decomposition [15, 20, 25], FDTD [26], or finite elements [27]). Optical modes in cylindrical holes can be calculated by well-known waveguide theory [28, 29, 30], whereas approximation methods have been proposed recently for rectangular [31] and circular [32] metallic waveguides. Numerical methods allow to study other hole geometries [33]. However, these approaches do not allow to clearly distinguish the respective role of the hole shape, hole size, and metal permittivity. Here, we develop analytical formulae for the effective index of the fundamental optical guided mode in rectangular nanoscale holes. It provides simple physical interpretations of the influence of the shape and size of the holes, and the role of the finite permitivitty of the metal. The penetration depth of the electromagnetic field in the metallic walls and the role of coupled surface plasmon polaritons are emphasized.

In this article, we focus on the fundamental modes of 1D and 2D subwavelength metallic waveguides. We develop explicit analytical expressions for the 1D and 2D effective indices, in excellent agreement with numerical computations on broad size and wavelength ranges. In the first part, we study the fundamental TM mode of 1D planar metallic waveguides. This mode is composed of two coupled surface plasmon polaritons. We show that this coupling is driven by the metal skin depth and the waveguide width, leading to a wavelength independent effective index in the near- and mid-infrared wavelength. These results have important consequences in nanoscale hole waveguides. In the second part, we focus on 2D subwavelength rectangular metallic waveguides. We provide simple analytical equations for the effective index of the fundamental TE mode. Our model takes into account losses, and is in very good agreement with 2D finite element calculations. The role of coupled surface plasmon polaritons and metal skin depth on the effective index is analyzed. We propose very simple expressions for the effective index n and the cut-off wavelength λc of the fundamental guided mode. Taking into account the finite permittivity of the metal induces a red-shift of the cut-off wavelength of the fundamental guided mode of rectangular waveguides. The nanoscopic origin of this phenomenon is described. Universal curves of the effective index and the cut-off frequency of any rectangular metallic waveguide are presented. These results provide a straightforward analysis of the optical properties of nanoscale apertures, and a tool for the design of efficient metallic structures for extreme light confinement.

2. Coupled surface plasmon polaritons 1D metallic waveguides

We first study a one dimensional metallic waveguide. A dielectric slab of permittivity εd and width w is surrounded by two semi-infinite metallic regions of permittivity εm (see Fig. 1(a)). In the following, the subscripts d and m denote the dielectric and metallic regions, respectively. κ is the wavenumber of the fundamental guided mode, and k 0 = 2π/λ is the free space wavenumber.

 figure: Fig. 1.

Fig. 1. Schematic of 1D planar metallic waveguide (a) and 2D rectangular metallic waveguide (d). The fundamental TM mode of planar 1D waveguides is composed of two surface plasmons waves (red). They are weakly coupled in wide waveguides (wλ, (b)) and strongly coupled in narrow waveguides (wλ, (c))

Download Full Size | PPT Slide | PDF

In case of perfect metallic walls, the fundamental waveguide mode is a TEM mode whose axial wavenumber is κ= √εd k 0. κ is independent of the waveguide width w, and there is no cut-off frequency. In case of non-perfect metal, the exact 1D mode equation for even TM modes in the waveguide is given by:

kxdεd[1eikxdw1+eikxdw]+kxmεm=0

where kxd=εdk02κ2 and kxm=εmk02κ2.

In the limit of wide waveguides (wλ), an approximate solution is obtained for the fundamental TM0 mode. When |ℑ(kxdw)| ≫ 1, Eq. (1) is reduced to kxdεd+kxmεm=0,, which is the exact relation dispersion of surface plasmon polaritons (SPP) on a single semi-infinite dielectric/metal interface. The effective index of this mode is neff=κk0=11εd+1εm. The fundamental TM mode is composed of two uncoupled surface plasmon polaritons propagating along both dielectric/metal interfaces (see fig. 1(b)).

For very narrow (sub-wavelength) waveguides, the coupling between both SPP can not be neglected anymore. When kxdw1,1eikxdw1+eikxdw~ikxdw2 and Eq. (1) becomes

kxmεm=kxdεd(ikxdw2).

With kxd2kxm2=(εdεm)k02 we can deduce the mode equation as a function of kxd:

kxd2[1+kxd2(εmεd)2w24]=(εdεm)k02

and we obtain a simple, analytical expression for the effective index of the fundamental TM 0 mode (coupled SPP approximation):

n1D=κk0=εd(1+λπwεm1+εdεm)12
 figure: Fig. 2.

Fig. 2. Effective index of the fundamental TM mode of a planar metallic waveguide (εd = 1) as a function of the width w for εm = -50.

Download Full Size | PPT Slide | PDF

The expression λπwεm1+εdεm in Eq. (4) is a correction term due to the coupling of sur-face plasmon polaritons. Fig. 2 shows the comparison of the calculation of n 1D with Eq. (4) and with the exact mode equation (1) for εm = -50. The effective index is plotted as a function of the normalized width w/λ. Importantly, for very narrow waveguides (w < 0.1λ) the increasing coupling between both surface plasmon polaritons induces a strong increase of the effective index. For greater values of w/λ, the results are always close to the perfect metal solution (n 1D ~ √εd). Hence, no deviation occurs between the approximated and the exact solutions for large waveguides, even if the approximation was supposed to be most valid for very narrow waveguides. As a result, a very good agreement is achieved on a broad size range (three orders of magnitude).

Equation (4) can be simplified in two ways. First, the term 1+εdεm can be omitted as soon as |εm| ≫ εd. Second, using a Drude model for the metal permittivity allows to write a very compact expression for n 1D:

nw=εd(1+2δcw)

where δc=cωp is a good approximation for the metal skin depth within the Drude model εm=1ωp2ω2+iωγ where ω = k 0c is the frequency. Precisely, Eq. (5) is valid when γωωp). For high conductivity metals (Ag, Au, Al), this corresponds to the near- and mid-infrared (NIR-MIR) range. In the following we use ωp=1.2×1016s1 and γ=1.2×1014s1 as a good approximation for the permittivity of gold [34] (the dielectric region is air, εd = 1). We obtain δc ~ 25 nm. The difference between the skin depth and δc is less than 14% in the 0.5 μm to 20 μm wavelength range, as illustrated on fig. 3.

The comparison of expressions (4) and (5) with exact mode calculation and with single SPP approximation is given on fig. 4 for both real and imaginary parts of the effective index n 1D. The waveguide width is w = 100 nm. A very good agreement between the 1D mode equation (1)

 figure: Fig. 3.

Fig. 3. Skin depth of the metal δ=λ(2πεm(λ)) (dark) as a function of the wavelength. The skin depth is nearly constant and equal to δ = c/ωp (red) between 0.5 and 20 μm.

Download Full Size | PPT Slide | PDF

and the coupled SPP approximation (Eq. (4)) is obtained for wavelengths greater than 1μm, for both the real and imaginary parts of the effective index. In this example, the condition |kxdw| ≪ 1 is no more fullfilled below 1 μm. As a result, a slight discrepancy is found between the 1D mode equation and the coupled SPP approximation. On fig. 4, the effective index of the planar metallic waveguide is also compared to the effective index of a single SPP, and to the constant effective index nw given by Eq. (5).

 figure: Fig. 4.

Fig. 4. Real (left) and imaginary (right) parts of the effective index of the fundamental TM mode of a planar metallic waveguide as a function of the wavelength λ. Dark solid line: effective index of a single metal/dielectric surface plasmon polariton. The metal permittivity is given by a Drude model: εm=1ωp2ω2+iωγ,ωp=1.2×1016s1,γ=1.2×1014s1. The waveguide width is w = 100 nm.

Download Full Size | PPT Slide | PDF

Let us emphasize the main properties of the effective index n 1D . The real part of n 1D is much greater than the effective index of a single SPP, due to the strong coupling between both SPP. The coupling mechanism between both SPP can be expressed by the ratio between the metal skin depth and the waveguide width δ/w. As a result, the constant metal skin depth induces a constant effective index nw given by Eq. (5). It provides an accurate evaluation of the real part of n 1D in the 1 - 10 μm wavelength range (see fig. 4).

Equation (5) gives a very simple relation for the increase of the effective index when decreasing the distance between metal walls. This phenomenon induces a gradient of the effective index in V-shaped metal grooves, and allows light to be confined at the bottom of the groove. This light confinement mechanism has led to the achievement of channel plasmon-polariton waveguides made of subwavelength metal grooves [36, 37, 38].

3. 2D rectangular metallic waveguides

We now consider a 2D rectangular metallic waveguide (fig. 1(d)) with wx > wy and λwx, wy: the NIR-MIR wavelength range is above the cut-off wavelength. We focus our study on the TE 10 mode. This mode has the smallest attenuation along the waveguide, and it has been shown that it should play a predominent role in the enhanced transmission through subwavelength holes in a metallic film [14]. Recently, Gordon et al. have shown that for good metals this 2D problem can be approximated by two 1D problems, leading to accurate evaluation of the cut-off wavelength of rectangular metallic waveguides [31]. In the following, we use a similar approach to provide analytical formulae for the effective index of waveguide modes. Both 1D problems are described by mode equations of 1D metallic waveguides, which are simplified by first order approximations. We emphasize that absorption losses in metal are included in the model. It can be noted that an alternative approach based on perturbation of boundary conditions and Green’s theorem was described by Jackson [39]. However, we found that our model provides slightly different and more accurate results. Moreover, simple equations allow us to discuss the role of coupled surface plasmon polaritons, and of metal skin depth.

3.1. Analytical expression of TE10 modes

Incase of perfect metal, the wavenumber of the TE10 mode is κ0=εdk02π2wx2, and this mode can be decomposed by two plane waves whose wavevectors are in the (x,z) plane. In case of good (but non perfect) metal, the TE 10 mode can be decomposed by two pairs of coupled surface plasmons propagating in (x,z) planes at y = 0 and y = wy [31]. Hence, its axial wavenumber κ can be calculated by the equation of the symmetric transverse electric TE 1 mode of a planar metallic waveguide, replacing the dielectric permittivity εd by an effective permittivity λ′d = n 2 1D where n 1D is the effective index of coupled SPP, given by Eq. (4). The TE 1 mode equation can be written:

tan(kxdwx2)=ikxmkxd

Using a first order approximation of the tan function at kxd=πwx, and using kxd2kxm2=(εdεm)k02, we find that the effective index of the 2D TE 10 mode can be written:

n2D=κk0=εd(λ2wx)2

where the effective width wx is given by:

wx=wx(1+λπwx(εdεm)+(λ2wx)2)

The analytical formulae (Eq. (7) and (8)) obtained for the effective index of the TE 10 of 2D rectangular waveguide modes are compared to finite element calculations made with a commercial software [27] on fig. 5. The results are also compared to the perfect metal solution. The role of the exact metal permittivity is clearly shown. A perfect agreement between our analytical formulae and finite element calculations shows the accuracy of our approximations. We point out that the influence of the metal permittivity can not be taken into account by simply introducing an effective width [24]. The coupling of surface plasmon polaritons plays a key role. Both effective dielectric permittivity ε′d and effective width wx are necessary to achieve a quantitative agreement with finite element calculations.

 figure: Fig. 5.

Fig. 5. Real (left) and imaginary (right) parts of the effective index of the fundamental TE10 mode of a rectangular metallic waveguide as a function of the wavelength λ. The widths of the waveguide is wx = 300 nm and wy = 200 nm. The results of the perfect metal (dark), finite element calculation (blue) and coupled SPP approximation (Eq. (7) and (8)) (red) are compared.

Download Full Size | PPT Slide | PDF

3.2. Role of the metal skin depth

Since we study subwavelength waveguides (wx < λ) and ε′d ≪ |εm|, it can be shown easily that the effective width wx can be approximated by:

wx=wx+2δ

where δ is the metal skin depth defined previously. We have calculated the imaginary part of n 2D with Eq. (7) and (9). Once again, the results are in quantitative agreement with finite element calculations (the results are not shown on fig. 5 since both curves are superimposed).

In the following, we neglect the imaginary part of the metal permittivity. Hence, the role of the metal on the effective index can be taken into account only by its constant skin depth in the NIR-MIR frequency range, leading to a very simple expression for the effective index n 2D of the TE10 mode :

n2D=εd(1+2δwy)(λ2(wx+2δ))2

Equation (10) provides a very simple interpretation of the effect of the metal skin depth on the fundamental guided mode TE10. Importantly, the penetration depth of the electromagnetic field in the metal δ does not play the same role on the different metallic walls of the waveguide. On the x-direction, we have shown that an effective width can be defined, simply increasing the waveguide width wx by 2δ. On the y-direction, the effect of the finite permittivity of the metal is due to coupled surface plasmon polaritons, and is only sensitive for widths not greater than a few δ.

3.3. Red-shift of the cut-off wavelength due to the finite permittivity of the metal

From Eq. (10) we deduce the expression of the cut-off wavelength λc of rectangular waveguides as a function of the widths wx and wy and of the skin depth δ :

λc=2(wx+2δ)εd(1+2δwy)

Equation (11) gives a straightforward interpretation of the red shift of the cut-off wavelength due to the finite permittivity of the metal. This effect may be responsible for the red shift of the transmission peak observed through single apertures in metal [7, 9, 10, 11, 31]. In each metallic walls, the increase of the penetration of the electromagnetic field increases the cut-off wavelength. However, the importance of this effect is not the same on each direction, as stated before for the effective index.

 figure: Fig. 6.

Fig. 6. Cut-off wavelength of the fundamental guided mode TE10 as a function of wy, for a silver rectangular waveguide with wx = 270 nm. The approximated model from Eq. (11) (solid curve) is compared to reference [31] (red points), and to the perfect metal case (horizontal dashed line).

Download Full Size | PPT Slide | PDF

This red-shift is illustrated on fig. 6. The cut-off wavelength λc is plotted as a function of wy for a silver rectangular waveguide with wx = 270 nm. The results are in very good agreement with reference [31] (red points). They show the influence of coupled surface plasmon polaritons for small wy. In this example δ = 23 nm. The cut-off wavelength of perfect metal waveguides would be constant and equal to 540 nm (dashed line).

3.4. Universal curves for the effective index

Normalizing dimensions and wavelengths to the metal skin depth δ in Eq. (10) allows to plot universal curves for the effective index of the fundamental guided mode TE 10. The results are valid for any rectangular metallic waveguide (for most noble metals in the NIR-MIR frequency range δ ≃ 25 nm). This is illustrated on fig. 7 for three different wavelengths.

 figure: Fig. 7.

Fig. 7. Universal curves for the real part of the effective index of the fundamental guided mode TE10 for three different wavelengths (λ/δ = 100, 200 and 500). Dimensions of the rectangular waveguide (wx,wy) are normalized to the metal skin depth δ.

Download Full Size | PPT Slide | PDF

On fig. 7, we clearly distinguish three different propagating conditions. In the dark region there is no propagating modes. From Eq. (10), we also note that in this case, for λw x, the attenuation length along the propagation direction z becomes independent of the wavelength and equal to: Λ = (wx + 2δ)/π. This property is particularly important for the design of ’zero-mode’ metallic waveguides for single-molecule fluorescence analysis in tiny volumes [13, 3].

The grey region corresponds to classical waveguiding conditions with effective indices close to 1. The white region corresponds to very small values of wy, and clearly shows the increase of the effective index due to the coupling between surface plasmon polaritons. As demonstrated previously (see Eq. 10), this effect is only sensitive when wy is of the same order than δ.

3.5. Universal curves for the cut-off wavelength

 figure: Fig. 8.

Fig. 8. Universal curves for the cut-off wavelength of the fundamental guided mode TE10 of rectangular metallic waveguides. Dimensions and wavelengths are normalized to the metal skin depth δ.

Download Full Size | PPT Slide | PDF

Using the same normalization procedure in Eq. (11), we have also plotted universal curves for the cut-off wavelength of the fundamental guided mode TE 10 for any rectangular metallic waveguide (see fig. 8). These curves give the waveguide geometries (wx,wy) which provide a given cut-off wavelength λc. They show that the effect of coupled surface plasmon polaritons on the cut-off wavelength is sensitive up to about wy/δ = 10. For large values of wy, the cut-off wavelength limit is equal to 2(wx + 2δ).

4. Conclusion

In this paper, we have studied the fundamental optical modes of 1D and 2D subwavelength metallic waveguides. We have proposed a simple model based on coupled surface plasmon polaritons and first-order approximations. Analytical expressions have been developped, and are in very good agreement with numerical calculations. This approach reveals the role of non-perfect metallic walls on optical modes. These effects can be taken into account by introducing the metal skin depth, leading to very simple expressions for the effective index n and the cut-off wavelength λc of the fundamental guided mode. Universal curves of n and λc for any rectangular metallic waveguide have been presented. They provide a simple way to evaluate the role of the metal and of the geometry of nanoscale apertures on their optical properties. This model should be an efficient tool to design new metallic structures for the enhancement of single-molecule analysis in subwavelength apertures [13, 3], and nonlinear optical effects in metallic films [22].

Acknowledgements

The authors are grateful towards Philippe Lalanne for stimulating discussions, and Lorenzo Bernardi for assistance in simulation tools.

References and links

1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

2. William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).

3. Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005). [CrossRef]   [PubMed]  

4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002). [CrossRef]   [PubMed]  

5. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999). [CrossRef]  

6. Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001). [CrossRef]  

7. A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004). [CrossRef]  

8. Francisco Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10,,1475 (2002).

9. F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005). [CrossRef]   [PubMed]  

10. Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005). [CrossRef]  

11. F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006). [CrossRef]  

12. N. M. Arslanov, “The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture,” J. Opt. A 8,338 (2006). [CrossRef]  

13. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003). [CrossRef]   [PubMed]  

14. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001). [CrossRef]   [PubMed]  

15. P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005). [CrossRef]  

16. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004). [CrossRef]   [PubMed]  

17. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005). [CrossRef]  

18. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004). [CrossRef]   [PubMed]  

19. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004). [CrossRef]  

20. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005). [CrossRef]  

21. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7,S90 (2005). [CrossRef]  

22. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006). [CrossRef]   [PubMed]  

23. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999). [CrossRef]  

24. L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films”, Opt. Express 12,3619 (2004). [CrossRef]  

25. P. Lalanne and J.-P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Mater. 2,509 (2006).

26. F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004). [CrossRef]  

27. Commercial software (Femlab/Comsol).

28. L. Novotny and C. Hafner “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50,4094 (1994). [CrossRef]  

29. Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005). [CrossRef]  

30. K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006). [CrossRef]  

31. Reuven Gordon and Alexandre G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13,1933 (2005). [CrossRef]   [PubMed]  

32. Jirun Luo and Chongqing Jiao “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Appl. Phys. Lett. 88,061115 (2006). [CrossRef]  

33. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006). [CrossRef]  

34. E. D. Palik “Handbook of Optical Constants of Solids,” New York: Academic, 1985.

35. K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006). [CrossRef]  

36. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005). [CrossRef]   [PubMed]  

37. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006) [CrossRef]   [PubMed]  

38. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14,9467 (2006). [CrossRef]   [PubMed]  

39. J. D. Jackson, Classical Electrodynamics, Third Ed., sec. 8.6, (John Wiley & Sons, New York, 1998).

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).
  2. William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).
  3. Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
    [Crossref] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
    [Crossref] [PubMed]
  5. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
    [Crossref]
  6. Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001).
    [Crossref]
  7. A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
    [Crossref]
  8. Francisco Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10,,1475 (2002).
  9. F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
    [Crossref] [PubMed]
  10. Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
    [Crossref]
  11. F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
    [Crossref]
  12. N. M. Arslanov, “The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture,” J. Opt. A 8,338 (2006).
    [Crossref]
  13. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
    [Crossref] [PubMed]
  14. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
    [Crossref] [PubMed]
  15. P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005).
    [Crossref]
  16. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004).
    [Crossref] [PubMed]
  17. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005).
    [Crossref]
  18. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
    [Crossref] [PubMed]
  19. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
    [Crossref]
  20. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
    [Crossref]
  21. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7,S90 (2005).
    [Crossref]
  22. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
    [Crossref] [PubMed]
  23. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999).
    [Crossref]
  24. L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films”, Opt. Express 12,3619 (2004).
    [Crossref]
  25. P. Lalanne and J.-P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Mater. 2,509 (2006).
  26. F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
    [Crossref]
  27. Commercial software (Femlab/Comsol).
  28. L. Novotny and C. Hafner “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50,4094 (1994).
    [Crossref]
  29. Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005).
    [Crossref]
  30. K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
    [Crossref]
  31. Reuven Gordon and Alexandre G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13,1933 (2005).
    [Crossref] [PubMed]
  32. Jirun Luo and Chongqing Jiao “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Appl. Phys. Lett. 88,061115 (2006).
    [Crossref]
  33. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
    [Crossref]
  34. E. D. Palik “Handbook of Optical Constants of Solids,” New York: Academic, 1985.
  35. K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
    [Crossref]
  36. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
    [Crossref] [PubMed]
  37. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
    [Crossref] [PubMed]
  38. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14,9467 (2006).
    [Crossref] [PubMed]
  39. J. D. Jackson, Classical Electrodynamics, Third Ed., sec. 8.6, (John Wiley & Sons, New York, 1998).

2006 (10)

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

N. M. Arslanov, “The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture,” J. Opt. A 8,338 (2006).
[Crossref]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

P. Lalanne and J.-P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Mater. 2,509 (2006).

Jirun Luo and Chongqing Jiao “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Appl. Phys. Lett. 88,061115 (2006).
[Crossref]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
[Crossref]

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14,9467 (2006).
[Crossref] [PubMed]

2005 (10)

Reuven Gordon and Alexandre G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13,1933 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7,S90 (2005).
[Crossref]

P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005).
[Crossref]

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
[Crossref] [PubMed]

Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
[Crossref]

Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005).
[Crossref]

2004 (6)

A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
[Crossref]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004).
[Crossref] [PubMed]

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films”, Opt. Express 12,3619 (2004).
[Crossref]

2003 (2)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

Francisco Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10,,1475 (2002).

2001 (2)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001).
[Crossref]

1999 (2)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999).
[Crossref]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

1994 (1)

L. Novotny and C. Hafner “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50,4094 (1994).
[Crossref]

Abajo, Francisco Garcia de

Arslanov, N. M.

N. M. Arslanov, “The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture,” J. Opt. A 8,338 (2006).
[Crossref]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
[Crossref]

Baida, F.I.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

Barnes, William L.

William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
[Crossref]

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

Bonod, Nicolas

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
[Crossref]

Boyer, Philippe

Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14,9467 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

Brolo, Alexandre G.

Capoulade, Jérémie

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Catrysse, Peter B.

Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005).
[Crossref]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7,S90 (2005).
[Crossref]

A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

Dereux, Alain

William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

Dintinger, José

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7,S90 (2005).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

Ebbesen, T.W.

A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
[Crossref]

Ebbesen, Thomas W.

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

Fan, Shanhui

Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005).
[Crossref]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004).
[Crossref] [PubMed]

L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films”, Opt. Express 12,3619 (2004).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

Gordon, R.

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

Gordon, Reuven

Granet, G.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
[Crossref]

Hafner, C.

L. Novotny and C. Hafner “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50,4094 (1994).
[Crossref]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

Hugonin, J.-P.

P. Lalanne and J.-P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Mater. 2,509 (2006).

P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005).
[Crossref]

Hulst, N. F. van

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
[Crossref]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, Third Ed., sec. 8.6, (John Wiley & Sons, New York, 1998).

Jiao, Chongqing

Jirun Luo and Chongqing Jiao “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Appl. Phys. Lett. 88,061115 (2006).
[Crossref]

Koerkamp, K. J. Klein

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
[Crossref]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

Kumar, L. K. S.

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

Labeke, D. Van

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
[Crossref]

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

Lalanne, P.

P. Lalanne and J.-P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Mater. 2,509 (2006).

P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005).
[Crossref]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
[Crossref]

Lenne, Pierre-Franois

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

Lezec, H.J.

A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
[Crossref]

Li, J.

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001).
[Crossref]

Luo, Jirun

Jirun Luo and Chongqing Jiao “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Appl. Phys. Lett. 88,061115 (2006).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005).
[Crossref]

L. Martin-Moreno and F. J. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films”, Opt. Express 12,3619 (2004).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

Molen, K. L. van der

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
[Crossref]

Moreau, A.

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

Moreno, Esteban

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
[Crossref] [PubMed]

Nevière, Michel

Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
[Crossref]

Nieuwstadt, J. A. H. van

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and C. Hafner “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50,4094 (1994).
[Crossref]

Palik, E. D.

E. D. Palik “Handbook of Optical Constants of Solids,” New York: Academic, 1985.

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

Tineke Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972 (2001).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999).
[Crossref]

Popov, Evgeni

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Popov, Evgeny

Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
[Crossref]

Porto, J. A.

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999).
[Crossref]

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

Rigneault, Hervé

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Rodier, J.-C.

P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005).
[Crossref]

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
[Crossref]

Shin, Hocheol

Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005).
[Crossref]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

Thio, Tineke

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

Webb, K. J.

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Wenger, Jérôme

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

Yamamoto, N.

A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
[Crossref]

Adv. Mat. (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen “Beyond the Bethe Limit : Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mat. 11,860 (1999).
[Crossref]

Appl. Phys. B (1)

F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79,1 (2004).
[Crossref]

Appl. Phys. Lett. (2)

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85,4316 (2004).
[Crossref]

Jirun Luo and Chongqing Jiao “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Appl. Phys. Lett. 88,061115 (2006).
[Crossref]

J. Opt. A (4)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7,S90 (2005).
[Crossref]

N. M. Arslanov, “The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture,” J. Opt. A 8,338 (2006).
[Crossref]

P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7,422 (2005).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamate-rials,” J. Opt. A 7,S97 (2005).
[Crossref]

Nat. Mater. (1)

P. Lalanne and J.-P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Mater. 2,509 (2006).

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440,508 (2006)
[Crossref] [PubMed]

Nature (London) (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 667,391 (1998).

William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 824,424 (2003).

Opt. Commun. (2)

A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, “Optical transmission properties of a single subwave-length aperture in a real metal,” Opt. Commun. 239,61 (2004).
[Crossref]

Evgeny Popov, Michel Nevière, Philippe Boyer, and Nicolas Bonod, “Light transmission through a subwave-length hole,” Opt. Commun. 255,338 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (6)

F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74,153411 (2006).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72,045421 (2005).
[Crossref]

Hocheol Shin, Peter B. Catrysse, and Shanhui Fan “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72,085436 (2005).
[Crossref]

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74,205419 (2006).
[Crossref]

K. J. Webb and J. Li “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73,033401 (2006).
[Crossref]

Phys. Rev. E (1)

L. Novotny and C. Hafner “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50,4094 (1994).
[Crossref]

Phys. Rev. Lett. (7)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95,046802 (2005).
[Crossref] [PubMed]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97,146102 (2006).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Phys. Rev. Lett. 83,2845 (1999).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86,1114 (2001).
[Crossref] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92,183901 (2004).
[Crossref] [PubMed]

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95,103901 (2005).
[Crossref] [PubMed]

Hervé Rigneault, Jérémie Capoulade, José Dintinger, Jérôme Wenger, Nicolas Bonod, Evgeni Popov, Thomas W. Ebbesen, and Pierre-Franois Lenne “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95,117401 (2005).
[Crossref] [PubMed]

Science (3)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297,820 (2002).
[Crossref] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847 (2004).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299,682 (2003).
[Crossref] [PubMed]

Other (3)

Commercial software (Femlab/Comsol).

E. D. Palik “Handbook of Optical Constants of Solids,” New York: Academic, 1985.

J. D. Jackson, Classical Electrodynamics, Third Ed., sec. 8.6, (John Wiley & Sons, New York, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of 1D planar metallic waveguide (a) and 2D rectangular metallic waveguide (d). The fundamental TM mode of planar 1D waveguides is composed of two surface plasmons waves (red). They are weakly coupled in wide waveguides (wλ, (b)) and strongly coupled in narrow waveguides (wλ, (c))
Fig. 2.
Fig. 2. Effective index of the fundamental TM mode of a planar metallic waveguide (εd = 1) as a function of the width w for εm = -50.
Fig. 3.
Fig. 3. Skin depth of the metal δ = λ ( 2 π ε m ( λ ) ) (dark) as a function of the wavelength. The skin depth is nearly constant and equal to δ = c/ωp (red) between 0.5 and 20 μm.
Fig. 4.
Fig. 4. Real (left) and imaginary (right) parts of the effective index of the fundamental TM mode of a planar metallic waveguide as a function of the wavelength λ. Dark solid line: effective index of a single metal/dielectric surface plasmon polariton. The metal permittivity is given by a Drude model: ε m = 1 ω p 2 ω 2 + iωγ , ω p = 1.2 × 10 16 s 1 , γ = 1.2 × 10 14 s 1 . The waveguide width is w = 100 nm.
Fig. 5.
Fig. 5. Real (left) and imaginary (right) parts of the effective index of the fundamental TE10 mode of a rectangular metallic waveguide as a function of the wavelength λ. The widths of the waveguide is wx = 300 nm and wy = 200 nm. The results of the perfect metal (dark), finite element calculation (blue) and coupled SPP approximation (Eq. (7) and (8)) (red) are compared.
Fig. 6.
Fig. 6. Cut-off wavelength of the fundamental guided mode TE10 as a function of wy , for a silver rectangular waveguide with wx = 270 nm. The approximated model from Eq. (11) (solid curve) is compared to reference [31] (red points), and to the perfect metal case (horizontal dashed line).
Fig. 7.
Fig. 7. Universal curves for the real part of the effective index of the fundamental guided mode TE10 for three different wavelengths (λ/δ = 100, 200 and 500). Dimensions of the rectangular waveguide (wx ,wy ) are normalized to the metal skin depth δ.
Fig. 8.
Fig. 8. Universal curves for the cut-off wavelength of the fundamental guided mode TE10 of rectangular metallic waveguides. Dimensions and wavelengths are normalized to the metal skin depth δ.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k xd ε d [ 1 e ik xd w 1 + e ik xd w ] + k xm ε m = 0
k xm ε m = k xd ε d ( ik xd w 2 ) .
k xd 2 [ 1 + k xd 2 ( ε m ε d ) 2 w 2 4 ] = ( ε d ε m ) k 0 2
n 1 D = κ k 0 = ε d ( 1 + λ πw ε m 1 + ε d ε m ) 1 2
n w = ε d ( 1 + 2 δ c w )
tan ( k xd w x 2 ) = i k xm k xd
n 2 D = κ k 0 = ε d ( λ 2 w x ) 2
w x = w x ( 1 + λ πw x ( ε d ε m ) + ( λ 2 w x ) 2 )
w x = w x + 2 δ
n 2 D = ε d ( 1 + 2 δ w y ) ( λ 2 ( w x + 2 δ ) ) 2
λ c = 2 ( w x + 2 δ ) ε d ( 1 + 2 δ w y )

Metrics