Abstract

Metallic plates embedded between dielectric slabs and perforated by rectangular arrays of subwavelength holes with a dense periodicity in one of the directions support extraordinary transmission (ET) phenomena, viz. strong peaks in the transmittance frequency dependence. Stacks of such perforated plates support ET phenomena with propagation along the stack axis that is characterized by the left handed behavior. The incorporation of the dielectric materials and dense periodicity allows significantly reducing the illuminated area of the perforated plate required experimentally to observe the ET phenomena as compared to the areas required in the case of free standing rectangular hole arrays. This facilitates the experimental investigation of ET under excitation in the Fresnel zone of aussian beams.

©2007 Optical Society of America

1. Introduction

Recently, there has been an increased interest among physical and engineering communities into the investigation of extraordinary wave phenomena supported by metamaterials and photonic crystal (PhC) structures. Veselago’s seminal paper [1] predicted that electromagnetic waves propagating along media with simultaneously both dielectric permittivity and magnetic permeability have negative antiparallel phase and group velocities. Consequently, the electric, magnetic and wave vectors in these media form a left-handed triplet in contrast with the right-handed triplet of standard media. This is accompanied by the fact that such media have a negative index of refraction. Therefore, the media are referred to as left handed or negative index metamaterials (NIM).

NIMs can act as perfect lenses focusing to subwavelength spatial spots [2] and can be constructed by using conventional materials and techniques [3–5,6]. It should be noted that NIMs are not the only means to achieve a left-handed propagation (LHP) behavior and subwavelength focusing. Notomi described negative refraction in Photonic Crystals [7], which are made fundamentally of dielectrics and do not suffer from the inherent losses associated with the use of metal resonators to construct NIMs [8–9]. These features connect PhCs to the phenomena of negative refraction and subwavelength focusing [7–9]. One difference compared to NIMs is that periodicities of PhC structures are of order of the wavelength of operation [3–5]..

Very recently, microwave LHP in a PhC that operated in far field (Fraunhofer zone) of radiating and receiving antennas was experimentally demonstrated. The PhC comprised a stack of metal plates perforated by arrays of subwavelength holes that operated in the regime of extraordinary transmission (ET) [10]. In this work, connections between ET [11], Photonic Bandgap (PBG) materials [12,13] and left-handed metamaterials [1] were demonstrated. The physics behind the operation of the structure can be interpreted by means of an electrical engineering based equivalent circuit approach as an inverse transmission line [10] or by means of equivalent artificial waveguide model [16]. It also was observed that by simply adjusting the longitudinal period, i.e. the distance between the hole perforated plates in the stack, a rich variety of propagation regimes can be obtained ranging from conventional right-handed propagation to LHP [10,16,17] opening also the possibility of a zero-group velocity band [16]. Other recent analytical papers confirming these results can also be found [18,19].

This paper extends and significantly improves the previously introduced ideas [10] for achieving left-handed propagation by considering a stack of metallic plates perforated by doubly periodic rectangular arrays of subwavelength holes that are sandwiched between dielectric slabs. It is experimentally shown that this structure shows a better performance with higher flexibility in tuning the structure’s parameters than free standing square hole array structures [10]. It is shown that the introduced structure supports left- and right-handed propagation with nearly total transmission. The role and impact of the dielectric slabs and rectangular periodicity are analysed. Important insights are given based on simulations and theoretical comparisons.

2. Rectangular doubly-periodic and dielectric loaded subwavelength hole arrays

The analysis of ET phenomena is described in [20–24,30] from the point of view of surface and leaky wave concepts and diffraction methods. It is now well-established that ET phenomena are associated with the existence of surface waves supported by perforated metal plates and diffraction modes generated by periodic arrays of holes. In the optical regime, the surface waves are surface plasmon polaritons, viz. waves supported by plasma surfaces. In the microwave and terahertz regimes the surface waves are supported due to the hole interactions even when the metals behave as perfect conductors [23].

Our earlier results on ET phenomena [25–27] showed that it was hard to experimentally observe ET phenomena under a Gaussian beam excitation in the Fresnel zone when the perforated plates comprised square free-standing arrays of subwavelength holes [28,29] . The reason is that these arrays support leaky waves with a large propagation length [23,30–32]. The ET phenomena are directly related to the coupling of the incident and transmitted fields to these leaky waves. The large propagation length of the leaky waves leads to a low radiation rate per unit length/area and, as a result, to a large illuminated area of the perforated plate (and a large number of holes) required for a significant increase of transmittance. However, the number of holes excited in the Fresnel zone is relatively small leading to only weakly transmittance enhancement [27].

 figure: Fig. 1.

Fig. 1. Photographs of the prototypes. (a) Rectangular periodicity subwavelength hole array with parameters dx = 1.5 mm, dy = 4 mm, hole diameter a = 1.2 mm, metallization thickness (copper) t = 35 microns, dielectric thickness h = 0.49 mm and dielectric permittivity ε = 2.43. Squared periodicity subwavelength hole array with hole diameter a = 2 mm (b) and a = 2.5 mm (c), the rest of parameters being: dx = dy = 5 mm, metal thickness (aluminum) t = 0.5 mm. (d) Schematic of the stacked hole array with parameters dy = 3.4 mm, dz = 0.525 mm and the rest as in (a).

Download Full Size | PPT Slide | PDF

The illumination area and the number of required holes can be reduced significantly by introducing two modifications to the configurations presented in [25–27]. First, the perforated plates are embedded in a dielectric material. Indeed, it can be shown that a perforated plate embedded between two dielectric slabs supports leaky waves that have propagation length much shorter than the one in the case of free standing perforated plates. The short propagation length means stronger coupling between the incident fields and the leaky waves and results in a much smaller area (and the number of holes) required to achieve prominent ET phenomena. In addition, the incorporation of dielectric slabs allows for more flexibility in tuning the structure’s scattering properties. The second modification allowing reducing the area of illumination for experimentally observable ET phenomena, is to consider rectangular hole arrays where one of the periodicities is significantly smaller than the other (e.g. dx < dy in Fig. 1(a)). This modification, by increasing the number of holes per unit area, further decreases the propagation length of the leaky wave and the area of illumination required for the transmittance enhancement. In addition, this modification allows for applications requiring transmittance polarization selectivity as only one (larger periodicity) components will lead to ET phenomena (assuming only lower frequency transmission bands).

For instance, Fig. 2(a) represents the simulated response of two identical infinite rectangular subwavelength hole arrays (see the caption to Fig. 1(a)): cyan curve, sandwiched between two dielectric slabs of thickness h = 0.49 mm and relative dielectric permittivity εr = 2.43, and blue curve, the same metallic hole array in air. Clearly, when the hole array is inserted between a dielectric sandwich, the ET peak is shifted to lower frequencies, in the present case from 73 GHz to 60 GHz. The peaks also broaden. For completeness, Fig. 2(a) also shows the simulated transmittance of infinite square hole arrays embedded in air with the dimensions of Fig. 1(b) (green curve) and Fig. 1(c) (magenta curve). Notice that the simulation results are for infinite hole arrays under plane wave excitation and therefore, total transmission is achieved for the infinite structure. This is fundamentally different from the real finite structure experiment, where the transmittance has reduced values.

 figure: Fig. 2.

Fig. 2. (a) Simulated transmission coefficient magnitude comparing two rectangular periodicity infinite hole arrays with parameters as in Fig. 1(a), one immersed in air (blue curve) and the other one sandwiched between two dielectric slabs of thickness h = 0.49 mm and relative dielectric permittivity εr = 2.43 (cyan curve). Green and magenta curves correspond to square periodicity infinite hole arrays embedded in air shown in Fig. 1(b) and (c) respectively. (b) Measured transmission coefficient magnitude for single plate subwavelength hole arrays prototypes. Solid cyan curve corresponds to the parallel polarization excitation (copolar) of the rectangular periodicity hole array shown in Fig. 1(a) and sandwiched between two identical dielectric slabs of thickness h = 0.49 mm and dielectric permittivity εr = 2.43. Dashed cyan curve is for the orthogonal polarization (crosspolar). Green and magenta curves correspond to square periodicity hole arrays embedded in air shown in Fig. 1(b) and (c) respectively.

Download Full Size | PPT Slide | PDF

A rectangular double periodic hole array was drilled by a numerical milling machine on a metallic layer of a commercial microwave substrate with the following parameters: dielectric thickness h = 0.49 mm and dielectric permittivity εr = 2.43. The remaining parameters were (see also Fig. 1(a)): periodicities dx = 1.5 mm, dy = 4 mm, hole diameter a = 1.2 mm, metallization thickness (copper) t = 35 μm and circular wafer diameter Ø = 62.4 mm. The fractional area of the hole, defined as the ratio of hole to unit cell area, was approximately F = 0.2. For comparison purposes, two square hole arrays made in aluminum prototypes also were built with hole diameter a = 2 mm and 2.5 mm, periodicity dx = dy = 5 mm, and metal thickness t = 0.5 mm (see Fig. 1(b) and (c)). The corresponding fractional hole areas were F = 0.12 and 0.2 for a = 2 mm and 2.5 mm, respectively.

The transmission through the samples was measured by using the set-up shown in Fig. 3 and following the next procedure. A vertically polarized gaussian beam [28] was generated by a transmitting corrugated horn antenna (Tx). The beam propagated up to a focusing pair of elliptical mirrors (A-B) designed to obtain an undistorted beam having its beam waist in the half of the distance of the set-up, where the samples were located. Another identical pair of mirrors (C-D) focused the transmitted beam into a receiving corrugated horn antenna (Rx). The whole set-up can be considered as a beam waveguide [28] and, therefore, the transmitted power could be easily measured (see Fig. 2(b)).

 figure: Fig. 3.

Fig. 3. Experimental quasi-optical bench set-up (QO bench). The transmitting and receiving corrugated horn antennas, the focusing mirrors and the sample positioning system are displayed. The propagating Gaussian beam contour is highlighted in blue.

Download Full Size | PPT Slide | PDF

The solid cyan curve in Fig. 2(b) shows the measurement of the rectangular hole array prototype, Fig. 1(a), sandwiched between identical dielectric slabs. A clear resonance ET peak with a level of −2.45 dB, arises at 60 GHz. In the orthogonal polarization (dashed cyan curve), no resonance is observed (as expected) and the level at 60 GHz is −11.6 dB. Note that the simulation results of Fig. 2(a) predict total transmission at the ET resonance. A possible cause of the lower level in the measurement is due to dielectric losses, which were not considered in the simulation. For a rough estimation, a single dielectric slab was also measured (dash-dot gray line in Fig. 2(b)). The measurement shows an attenuation of 0.9 dB in the passband. As the sandwich had two twin dielectric slabs, the total losses due to dielectrics are (roughly) 1.8 dB. Therefore, the attenuation due to the perforated plate can be estimated as 0.66 dB. Notice that the measurements are taken by using the Fresnel-zone illumination set-up and that, accordingly, the actual illuminated area had a diameter approximately equal to the gaussian beamwaist, i.e. 27.9 mm, and still the measured transmission is quite high. The effective number of illuminated holes is 19×8, which corresponds to an area (normalized to the ET wavelength) S2 = 24.45.

Transmission measurements for the two square hole array prototypes of Fig. 1(b) and (c) are also plotted in Fig. 2(b), see green (a = 2 mm) and pink (a = 2.5 mm) traces. The peak of ET arises at 57 GHz with a maximum level of -13 dB and −7 dB for a = 2 and 2.5 mm respectively, i.e. 10.5 and 4.5 dB below the power measured with the rectangular hole array. In this case it is important to note that, due to the finite size of the incident Gaussian beam, the number of periods illuminated by the beamwaist is restricted to 6 × 6 holes (Fresnel zone), which is much lower than the experimentally found number of 31 × 31 holes required for nearly total transmission in Fraunhofer illumination for these structure’s parameters [27]. This result is related to the analytical description of Ref. [33]. Note that this hole array size corresponds to an area of S2 = 900, i.e. 36 times greater than that required to achieve a nearly total transmission through the rectangular hole array between dielectric slabs.

Therefore, the measurements confirm that the metal plates embedded in a dielectric material and perforated by rectangular hole arrays with a dense periodicity in one of the directions are more efficient for the experimental verification of ET than free standing square hole arrays. Hence, ET phenomena can be observed under Fresnel zone illumination. As the array density in the horizontal dimension increases, the transmitted power level increases as well.

3. LHP through a stack of rectangular hole arrays

A bulk PhC is constructed by periodically stacking the rectangular hole arrays (Fig. 1(d)). In the following numerical and experimental results, the stack period, which is the sum of the thickness of the dielectric and conductor layers dz = h + t, was chosen as 0.525 mm. The vertical periodicity of the hole array was slightly modified to dy = 3.4 mm for reasons explained below. All other parameters were unchanged.

 figure: Fig. 4.

Fig. 4. (a) Dispersion diagram particularized to the first band of the stacked hole array separated by air slabs (blue) and by εr = 2.43 dielectric slabs (green). (b) Experimental transmission coefficient magnitude of stacked hole arrays. Solid lines correspond to copolar excitation of the rectangular periodic hole array on the dielectric slab structure, i.e. E-field in the direction of the large periodicity and dashed lines to the orthogonal polarization. (c) and (d) Phase response in and out of the LHM band respectively. In (b), (c) and (d) black is for two plates, red for three plates and blue for four plates

Download Full Size | PPT Slide | PDF

Figure 4 shows numerical and experimental results characterizing the field scattering from the stacked structure. Figure 4(a) plots a computed dispersion diagram of the double periodicity structure separated with air and with a dielectric of relative permittivity εr = 2.43. By using the eigenmode solver of CST Microwave StudioTM, when the structure is embedded in air, the first band appears between 75 and 87 GHz (blue curve), whereas the first band shifts to the range between 48.4 and 56 GHz (green curve) when the structure is embedded in dielectric. The frequency shift for the stacked hole arrays embedded in dielectric as compared to the freestanding stacked arrays (see Ref. 10) is consistent with the shift in a single hole array sandwiched between dielectric slabs.

Figure 4(b) shows the experimental results for the frequency dependence of the transmittance of the stacked rectangular hole arrays embedded in a dielectric material. The transmittance was measured using the previously described Quasi-Optical (QO) bench, in the range from 45 to 110 GHz (V- and W-bands). The solid cyan curve represents the response of a single perforated plate sandwiched between dielectric slabs. Note that the resonance is shifted to 70 GHz as compared to the one in Fig. 2 due to the shorter chosen periodicity dy. For two stacked plates (solid black curve) a clear ET peak is detected at 60 GHz. As the number of layers is increased, the peak level decreases, likely due to losses and slight misalignments between consecutive layers. However, the resonance frequency remains locked at 60 GHz, below the resonance of a single perforated plate, regardless the number of plates in the stack. The frequency shift is due to the coupling between the perforated plates in the stack. This coupling leads to the fact that the electric field lines are trapped in the dielectric and contribute to a self-capacitance of the single perforated plate and mutual capacitance of adjacent plates [10]. This shift also partially explains the decrease in the transmittance by the fact that the hole diameter / wavelength ratio decreased as well (see e.g. discussions in [25]).

Figure 4(b) also compares the frequency dependence of the co- and cross-polarized transmitted fields. For the cross-polarization, no resonances are observed in any of the measured cases. Instead, the power level increases monotonously with the frequency (as expected). Finally, Figs. 4(c) and (d) show the phase response of the stacked structure. Inside the ET band (Fig. 4(c)) the phase increases with the number of periods (as in [10]), i.e. ET-LHP is obtained. Outside the ET band (Fig. 4(d)), the phase obeys a regular right handed behavior, i.e. it decreases with the number of periods. This behavior shows that ET phenomena in a stack of perforated plates are intimately related with our ability to achieve LHP. It also should be noted that the LHP is obtained only in the regime of ET indicating that the origin of the LHP is not a presence of a Brillouin zone edge as often occurs in conventional PhCs but rather the effects associated with ET resonances.

4. Conclusions

Introducing rectangular double periodicity and a dielectric sandwich in sub-wavelength hole arrays allows obtaining ET transmission phenomena for perforated metal plates of significantly reduced size. It allows nearly total transmission of collimated Gaussian beam when the perforated plate sample is in the Fresnel rather than Fraunhofer zone. This represents an important achievement for the experimental study of enhanced transmission phenomena in the microwave regime.

A novel route for the fabrication of structures allowing controlled right and left handed propagation (transmission) was proposed. This was achieved by means of stacked plates perforated by rectangular arrays of holes and embedded in a dielectric material. The structure allows for a great flexibility in tuning the propagation properties. For instance, the tuning the left right to right handed propagation and vice versa can be achieved by modifying the transversal periodicities, longitudinal periodicities, as well as the dielectric permittivity of the embedding material. The latter option may be attractive as the permittivity of the dielectric can be controlled by incorporating electro-optic materials without modifies the structure dimensions.

Scaling these results to other frequency ranges (e.g. terahertz regime) is now under consideration. Further experiments and theoretical analysis to allow characterization of the introduced structure are under development as well.

Acknowledgments

This work has been supported by the Spanish Ministerio de Educación y Ciencia and E.U. Feder funding through the UNPN00-33-008, TEC2005-06923-C03-01 and TEC2005-06923-C03-02 projects.

References and links

1. V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968). [CrossRef]  

2. J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000). [CrossRef]   [PubMed]  

3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000). [CrossRef]   [PubMed]  

4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996). [CrossRef]   [PubMed]  

5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999). [CrossRef]  

6. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004). [CrossRef]  

7. Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002). [CrossRef]  

8. Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003). [CrossRef]  

9. Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003). [CrossRef]   [PubMed]  

10. M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006). [CrossRef]   [PubMed]  

11. T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998). [CrossRef]  

12. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987). [CrossRef]   [PubMed]  

13. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987). [CrossRef]   [PubMed]  

14. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005). [CrossRef]  

15. Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006). [CrossRef]   [PubMed]  

16. M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

17. M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007). [CrossRef]  

18. Zhichao Ruan and Min Qiu, “Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces,” Opt. Express 14,6172–6177, (2006). [CrossRef]   [PubMed]  

19. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006). [CrossRef]   [PubMed]  

20. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001). [CrossRef]   [PubMed]  

21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004). [CrossRef]   [PubMed]  

22. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003). [CrossRef]  

23. Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005). [CrossRef]  

24. F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005). [CrossRef]  

25. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005). [CrossRef]  

26. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004). [CrossRef]  

27. M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005). [CrossRef]  

28. P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).

29. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966). [CrossRef]  

30. V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004) [CrossRef]  

31. V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005). [CrossRef]  

32. V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006). [CrossRef]  

33. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
    [Crossref]
  2. J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
    [Crossref] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
    [Crossref] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
    [Crossref] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
    [Crossref]
  6. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
    [Crossref]
  7. Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
    [Crossref]
  8. Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
    [Crossref]
  9. Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
    [Crossref] [PubMed]
  10. M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
    [Crossref] [PubMed]
  11. T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
    [Crossref]
  12. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
    [Crossref] [PubMed]
  13. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
    [Crossref] [PubMed]
  14. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
    [Crossref]
  15. Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
    [Crossref] [PubMed]
  16. M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).
  17. M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
    [Crossref]
  18. Zhichao Ruan and Min Qiu, “Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces,” Opt. Express 14,6172–6177, (2006).
    [Crossref] [PubMed]
  19. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
    [Crossref] [PubMed]
  20. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
    [Crossref] [PubMed]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
    [Crossref] [PubMed]
  22. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
    [Crossref]
  23. Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
    [Crossref]
  24. F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
    [Crossref]
  25. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
    [Crossref]
  26. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
    [Crossref]
  27. M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
    [Crossref]
  28. P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).
  29. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
    [Crossref]
  30. V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
    [Crossref]
  31. V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
    [Crossref]
  32. V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
    [Crossref]
  33. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
    [Crossref]

2007 (1)

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

2006 (6)

Zhichao Ruan and Min Qiu, “Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces,” Opt. Express 14,6172–6177, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

2005 (6)

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

2004 (4)

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

2003 (3)

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

2002 (1)

Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

1998 (1)

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
[Crossref] [PubMed]

1968 (1)

V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
[Crossref]

1966 (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Abajo, F. J.García de

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Aydin, Koray

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Beruete, M.

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

Brueck, S. R. J.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Campillo, I.

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Chen, N.W.

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Cubukcu, Ertugrul

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Dolado, J.S.

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

Dolling, Gunnar

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Ebbesen, T. W.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Ebbesen, T.W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Enkrich, Christian

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Fan, Wenjun

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Foteinopoulou, Stavroula

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

Genet, C.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Ghaemi, H.

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Goldsmith, P.F.

P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).

Gómez-Medina, R.

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Joannopoulos, J. D.

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
[Crossref] [PubMed]

Johnson, Steven G.

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Li, S. Q.

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Li, S.Q.

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

Li, T.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Linden, Stefan

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Lomakin, V.

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Lomakin, Vitaliy

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Luo, Chiyan

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Malloy, K. J.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Martín-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

Michielssen, E.

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Michielssen, Eric

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

Navarro, M.

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Notomi, Masaya

Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
[Crossref]

Osgood, R. M.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Ozbay, Ekmel

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Panoiu, N. C.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Qiu, Min

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

Ruan, Zhichao

Sáenz, J. J.

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Sarrazin, M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Sorolla, M.

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Soukoulis, Costas M.

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Veselago, V.G.

V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Vigneron, J. P.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Vigoureux, J. M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Wegener, Martin

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Wolf, P. A.

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Zhang, Shuang

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

IEEE Microwave Wirel. Compon. Lett (4)

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

IEEE Trans. Antennas Propag (2)

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

IEEE Trans. Microwave Theory Technol (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

Nature (2)

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Nature Physics (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron (1)

Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
[Crossref]

Optics Lett (1)

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

Phys. Rev. B (3)

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Phys. Rev. E (1)

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Phys. Rev. Lett (8)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Proc. IEEE (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Science (2)

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

Soviet Physics Uspekhi (1)

V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
[Crossref]

Other (2)

P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Photographs of the prototypes. (a) Rectangular periodicity subwavelength hole array with parameters dx = 1.5 mm, dy = 4 mm, hole diameter a = 1.2 mm, metallization thickness (copper) t = 35 microns, dielectric thickness h = 0.49 mm and dielectric permittivity ε = 2.43. Squared periodicity subwavelength hole array with hole diameter a = 2 mm (b) and a = 2.5 mm (c), the rest of parameters being: dx = dy = 5 mm, metal thickness (aluminum) t = 0.5 mm. (d) Schematic of the stacked hole array with parameters dy = 3.4 mm, dz = 0.525 mm and the rest as in (a).
Fig. 2.
Fig. 2. (a) Simulated transmission coefficient magnitude comparing two rectangular periodicity infinite hole arrays with parameters as in Fig. 1(a), one immersed in air (blue curve) and the other one sandwiched between two dielectric slabs of thickness h = 0.49 mm and relative dielectric permittivity εr = 2.43 (cyan curve). Green and magenta curves correspond to square periodicity infinite hole arrays embedded in air shown in Fig. 1(b) and (c) respectively. (b) Measured transmission coefficient magnitude for single plate subwavelength hole arrays prototypes. Solid cyan curve corresponds to the parallel polarization excitation (copolar) of the rectangular periodicity hole array shown in Fig. 1(a) and sandwiched between two identical dielectric slabs of thickness h = 0.49 mm and dielectric permittivity εr = 2.43. Dashed cyan curve is for the orthogonal polarization (crosspolar). Green and magenta curves correspond to square periodicity hole arrays embedded in air shown in Fig. 1(b) and (c) respectively.
Fig. 3.
Fig. 3. Experimental quasi-optical bench set-up (QO bench). The transmitting and receiving corrugated horn antennas, the focusing mirrors and the sample positioning system are displayed. The propagating Gaussian beam contour is highlighted in blue.
Fig. 4.
Fig. 4. (a) Dispersion diagram particularized to the first band of the stacked hole array separated by air slabs (blue) and by εr = 2.43 dielectric slabs (green). (b) Experimental transmission coefficient magnitude of stacked hole arrays. Solid lines correspond to copolar excitation of the rectangular periodic hole array on the dielectric slab structure, i.e. E-field in the direction of the large periodicity and dashed lines to the orthogonal polarization. (c) and (d) Phase response in and out of the LHM band respectively. In (b), (c) and (d) black is for two plates, red for three plates and blue for four plates

Metrics