Abstract

We introduce a plasmon hybridization picture to understand the optical properties of double split-ring resonator metamaterials. The analysis is based on the calculated reflectance spectra from a finite-integration time-domain algorithm. Field distributions of the double split-ring resonators at the resonant frequencies confirm the results from the plasmon hybridization analysis. We demonstrate that the plasmon hybridization is a simple and powerful tool for understanding and designing metamaterials in the near infrared and visible regime.

©2007 Optical Society of America

1. Introduction

Metallic split-ring resonators (SRRs) have recently gained much research interest as promising building blocks for the realization of negative permeability for negative refractive index materials [118]. In the microwave regime, negative refraction has been demonstrated with double SRRs (DSRRs) in combination with thin wires [2]. Negative permeabilities of such structures were achieved near the resonance of DSRRs. The role of the inner ring has been discussed as a reduction of the resonance frequency by increasing the gap capacitance of the outer ring [3]. Most investigations of SRRs in the optical wavelength range have focused on single SRRs [1014]. Recently, it has been demonstrated that the resonances of a DSRR in the near infrared regime are a linear superposition of those of its constitute outer ring and inner ring [15]. In this paper, we analyze DSRRs as complex structured plasmonic systems from the viewpoint of resonance hybridization. The resonances in different coupling strength regimes are discussed with varied inner-ring sizes. This work underlines the need to consider coupling for the design and understanding of structured metamaterials. This can become critically important, especially as designs are increased in structural complexity, for example when extending into bulk regimes.

In near infrared and visible range, the resonances of SRRs excited by the external light field have been mostly modeled by a quasi-static LC circuit description [814]. Recently, the plasmon hybridization concept, which is an electromagnetic analogy of molecular orbital theory, has been successfully applied in describing the responses of complex nanostructures and stacked metamaterials [1921]. We find that the response of a DSRR can be regarded as an interaction between the plasmons of the constitute inner ring and outer ring. This is similar to the optical response of nanoshells and nanorice [19, 20]. The concept is illustrated in Fig. 1 for a closely arranged DSRR. The resonances of the outer and inner rings alone are excited at the frequencies ω1 and ω2, which correspond to the plasmonic eigenmodes |ω1〉 and |ω2〉, respectively. The interaction between these plasmons results in a new coupled mode pair due to the plasmon hybridization. The modes at lower and higher energies correspond to an anti-symmetric plasmon mode |ω-〉 and a symmetric plasmon mode |ω+〉, respectively.

2. Numerical analysis

A schematic diagram of a DSRR is shown in Fig. 2. In order to investigate the interaction between the outer and inner rings in DSRRs, the outer-ring geometry is kept constant, whereas the geometry of the inner ring is varied. As the plasmonic eigenmode of an SRR depends strongly on its geometric length (L=lx+2ly-2w), the varied geometry of the inner ring leads to a resonant energy shift [17, 18]. A finite-integration time-domain algorithm (CST microwave studio) was used to simulate the resonant response of SRRs due to its ability to provide reliable results [11, 15]. The DSRRs are composed of gold and arranged in a square lattice on a quartz substrate (n=1.45). The permittivity of the gold is described by a Drude model [22, 23]. The incident light with the polarization parallel to the gap-bearing side of the SRR is used to excite the plasmon eigenmodes of SRRs.

 

Fig. 1. The energy diagram describes the plasmon hybridization in a DSRR. The interaction between the plasmonic modes (|ω1〉 and |ω2〉) of its constitute outer ring and inner rings results in a new coupled mode pair: an anti-symmetric mode |ω-〉 and a symmetric mode |ω+〉.

Download Full Size | PPT Slide | PDF

 

Fig. 2. Schematic diagram of a DSRR. t denotes the thickness of the SRR, w the width of the wire, lox (lix) the length of the wire parallel to the gap bearing side in the outer (inner) ring, and loy (liy) the length of the wire perpendicular to the gap bearing side in the outer (inner) ring.

Download Full Size | PPT Slide | PDF

2.1. Hybridization strength as a function of the inner-ring geometry

Figure 3(a)–(c) show the simulated reflectance spectra of DSRRs with various inner-ring geometries. The spectra of outer and inner rings alone are also given for comparison. In the spectra, only the resonances below 700 meV correspond to the fundamental plasmonic eigenmodes (namely, LC resonances) of SRRs, whereas the resonances above 700 meV correspond to the higher-order plasmonic modes of SRRs [17]. In order to investigate the LC resonance properties of DSRRs, we focus our discussion on the resonance modes below 700 meV. For explanation of the simulation results, we use the following notation for our discussion: the plasmonic modes of the outer and inner rings alone are denoted by |ω1〉 and |ω2〉, respectively. Note that |ω1〉 is unchanged in each plot due to the fixed geometry, whereas |ω2〉 is shifted to higher energies with a decreased ring length. The new plasmonic eigenmodes of DSRRs at the lower and higher energies are denoted by |ω-〉 and |ω+〉, respectively.

 

Fig. 3. Simulated reflectance spectra for DSRR (dotted blue curves) compared to the outer SRR alone (dashed red curves) and the inner SRR alone (solid black curves) for various inner-ring sizes. |ω1〉 and |ω2〉 present the fundamental plasmonic eigenmodes of the outer and inner rings alone, respectively. For DSRRs, the lower energy anti-symmetric mode and higher energy symmetric modes are denoted as |ω-〉 and |ω+〉, respectively. In the simulations, the outer-ring size (lox=410 nm, loy=380 nm, w=50 nm, t=20 nm) and the array periods (px=py=550 nm) are kept constant. The inner-ring geometry is varied from (a) lix=270 nm and liy=290 nm; (b) lix=210 nm and liy=230 nm; and (c) lix=150 nm and liy=170 nm. The corresponding structure and plasmon hybridization diagrams are shown adjacent to the spectra. The individual spectra are shifted vertically for clarity.

Download Full Size | PPT Slide | PDF

In Fig. 3(a), the outer and inner rings are closely arranged in the DSRR and the spacing between them is small (20 nm). Since the entire wire length difference between the outer and inner rings is 320 nm, the plasmonic eigenmodes of the outer and inner rings alone are closely spaced in the spectrum (at 123 meV distance). Due to the strong coupling between them, the plasmon hybridization induces a large plasmon energy shift of 83 meV (plasmon energy shift ΔE=‖ω +〉-|ω -〉|-‖ω 2〉-|ω 1〉|). In this strong coupling regime, the strong interaction between the higher-order plasmonic modes of the outer and inner rings shifts the symmetric mode |ω+〉 to an energy level lower than |ω2〉. Fig. 3(b) shows the reflectance spectrum of a DSRR with reduced inner-ring size. The distance and entire wire length difference between the outer and inner rings are increased to 50 nm and 500 nm, respectively. In this case, the plasmonic eigenmodes of the outer and inner rings alone are more detuned from one another (at 209 meV distance). Due to the weaker coupling, only a slight plasmon energy shift of 53 meV is observed. Fig. 3(c) shows the results for an even further reduced inner-ring size. The distance and entire wire length difference between the outer and inner rings are increased to 80 nm and 680 nm, respectively. The resonances of the outer and inner rings alone are now strongly detuned (at 380 meV distance). Therefore, the coupling between them is strongly reduced and the induced plasmon energy shift is only 18 meV. The plasmonic modes of this DSRR can be regarded as a linear superposition of the plasmons of its constitute inner and outer rings alone. It is clear that the interaction strength between the plasmons is strongly influenced by the spatial distance and the resonant energy detuning between them. With the increased spacing and geometric length difference between the outer and inner rings, the plasmon energy shift is decreased. This corresponds to a decreased coupling strength.

The amplitudes of the DSRR resonances in the reflectance spectra are also influenced by the interaction between the outer and inner rings. For the symmetric mode |ω+〉 of the DSRR, the induced electric dipoles in the outer and inner rings oscillate in phase; therefore the resonance amplitudes are increased. As for the anti-symmetric mode |ω-〉, the induced electric dipoles in both rings oscillate out of phase, which leads to an electric field of the DSRR similar to an electric quadrupole rather than an electric dipole. As the coupling efficiency of the external light field to this quadrupole is much weaker, the resonance amplitude is not as pronounced as that of the out ring alone. This is consistent with the observation in Fig. 3(a) and (b), where the amplitude of resonance |ω-〉 (|ω+〉) decreases (increases) relative to that of |ω1〉 (|ω2〉) in the coupling case.

 

Fig. 4. Calculated reflectance spectra of the DSRRs with two different inner-ring orientations: the gap bearing side of the outer and inner rings are in the opposite direction (configuration A) and in the same direction (configuration B). Resonances at lower and higher energies in configuration A (B) are denoted by |ω-〉 (|ω*-〉) and |ω+〉 (|ω*+〉), respectively. The insets show the dipole oscillations at the corresponding resonances by the plasmon hybridization analysis. The individual spectra are shifted upwards for clarity.

Download Full Size | PPT Slide | PDF

 

Fig. 5. Simulated electric maximum peak field distribution of Ez in a plane 30 nm above the structure for resonant modes of: (a) |ω-〉, (b) |ω+〉, (c) |ω*-〉, (d) |ω*+〉, corresponding to the peaks shown in Fig. 4. The amplitudes are normalized to that of the incident light field.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Simulated magnetic maximum peak field distributions of Hz in a plane 30nm above the structure for the resonant modes of (a) |ω-〉 and (b) |ω*-〉 corresponding to the lower energy peaks shown in Fig. 4. The amplitudes are normalized to those of incident field.

Download Full Size | PPT Slide | PDF

2.2. Hybridization for different inner-ring orientations

The picture of the plasmon hybridization also explains intuitively the influence of the orientation of the inner ring with respect to the outer ring on the DSRR resonance. Fig. 4 compares the simulated reflectance spectra for two orientations of the inner-ring. The geometry of the DSRRs used in the simulations are the same as those of Fig. 3(a). We denote the previously used orientation by configuration “A” and the inverted orientation by configuration “B”. The resonances in configuration B at lower and higher energies are denoted by |ω*-〉 and |ω*+〉, respectively. In both cases, the introduction of an inner ring leads to two new eigenmodes when compared to the spectra of the outer and inner rings alone in Fig. 3(a). The calculated electric maximum peak field distributions of the resonances for both configurations are shown in Fig. 5. Out-of-phase charge oscillations are observed for both |ω-〉 and |ω*-〉, whereas for |ω+〉 and |ω*+〉, in-phase charge oscillation are observed. This is consistent with our analysis by the plasmon hybridization picture as indicated by the insets in Fig. 4.

Figure 6 shows the simulated magnetic maximum peak field distributions of resonance modes |ω-〉 and |ω*-〉, which correspond to the lower energy resonance peaks shown in Fig. 4. A strong magnetic field confinement is observed in both configurations. However, the magnetic field is confined in the center area of the DSRR in configuration A, but between the bottom arms of the inner and outer ring in configuration B. it is clear that the orientation of the inner ring with respect to the outer ring is not crucial for inducing the magnetic dipole in a DSRR in our discussion.

3. Conclusion

We have demonstrated that the optical response of a DSRR can be analyzed by a simple plasmon hybridization method. The interaction between the localized surface plasmons of the constitute inner and outer ring of a DSRR was discussed based on the variation of the inner-ring geometry. We have analyzed the influence of the inner-ring orientation on DSRR resonances based on the plasmon hybridization of the inner and outer ring. For the magnetic dipole excitation, the orientation of the inner ring is not crucial. The plasmon hybridization has been proven to be a well suitable model for describing the resonance behaviour of SRRs. It offers a simple and intuitive method for understanding the optical responses of coupled systems in metamaterials and provides insight for the design of specific resonance properties.

Acknowledgments

This work was financially supported by the German Federal Ministry of Education and Research (Grant No. 13N9155) and the Deutsche Forschungsgemeinschaft (Grant No. FOR557). T. M. and T. Z. thank the Alexander von Humboldt Foundation and the Landesstiftung Baden-Württemberg, respectively.

References and links

1. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]  

2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]   [PubMed]  

3. D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]   [PubMed]  

4. R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002). [CrossRef]  

5. P. Markoš and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002). [CrossRef]  

6. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peak in metamaterials,” Opt. Lett. 29, 2623–2625 (2004). [CrossRef]   [PubMed]  

7. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef]   [PubMed]  

8. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004). [CrossRef]  

9. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005). [CrossRef]   [PubMed]  

10. M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005). [CrossRef]  

11. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef]   [PubMed]  

12. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006). [CrossRef]   [PubMed]  

13. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006). [CrossRef]  

14. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007). [CrossRef]  

15. N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007). [CrossRef]  

16. W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639–1646 (2007). [CrossRef]   [PubMed]  

17. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006). [CrossRef]   [PubMed]  

18. H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007). [CrossRef]  

19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]   [PubMed]  

20. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006). [CrossRef]   [PubMed]  

21. N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983). [CrossRef]   [PubMed]  

23. We have used ε=1, ωp=2π×2175 THz, and ωτ=2π×19.5 THz in the Drude model dielectric function of [22].

References

  • View by:
  • |
  • |
  • |

  1. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  3. D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  4. R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
    [Crossref]
  5. P. Markoš and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002).
    [Crossref]
  6. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peak in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
    [Crossref] [PubMed]
  7. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [Crossref] [PubMed]
  8. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
    [Crossref]
  9. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
    [Crossref] [PubMed]
  10. M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
    [Crossref]
  11. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
    [Crossref] [PubMed]
  12. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
    [Crossref] [PubMed]
  13. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
    [Crossref]
  14. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
    [Crossref]
  15. N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
    [Crossref]
  16. W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639–1646 (2007).
    [Crossref] [PubMed]
  17. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
    [Crossref] [PubMed]
  18. H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
    [Crossref]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref] [PubMed]
  20. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
    [Crossref] [PubMed]
  21. N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983).
    [Crossref] [PubMed]
  23. We have used ε∞=1, ωp=2π×2175 THz, and ωτ=2π×19.5 THz in the Drude model dielectric function of [22].

2007 (5)

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639–1646 (2007).
[Crossref] [PubMed]

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

2006 (4)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

2005 (2)

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

2004 (4)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peak in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

2002 (2)

R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

P. Markoš and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

1983 (1)

Alexander, R. W.

Aydin, K.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Economou, E. N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Fu, L.

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

Giessen, H.

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Gundogdu, T. F.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Guo, H. C.

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

Guven, K.

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Holden, A. J.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Kafesaki, M.

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peak in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
[Crossref]

Kaiser, S.

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

Katsarakis, N.

Klein, M. W.

Konstantinidis, G.

Koschny, T.

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
[Crossref]

Kostopoulos, A.

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Liu, N.

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Long, L. L.

Markoš, P.

P. Markoš and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002).
[Crossref]

Marques, R.

R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Medina, F.

R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Meyrath, T. P.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Ordal, M. A.

Ozbay, E.

Padila, W. J.

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Padilla, W. J.

W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639–1646 (2007).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Penciu, R. S.

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

Pendry, B.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Raffi-El-Idrissi, R.

R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Robbins, D. J.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peak in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref] [PubMed]

P. Markoš and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002).
[Crossref]

Stewart, W. J.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Ward, C. A.

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Zentgraf, T.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827 (2006).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Zhang, L.

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Appl. Phys. Lett. (1)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943 (2004).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Left-handed metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]

Nano Lett. (1)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (2)

R. Marques, F. Medina, and R. Raffi-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[Crossref]

Phys. Rev. E (1)

P. Markoš and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Phys. Status Solidi B (2)

H. C. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split-ring resonator metamaterials,” Phys. Status Solidi B 244, 1256 (2007).
[Crossref]

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared,” Phys. Status Solidi B 244, 1251 (2007).
[Crossref]

Science (4)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Other (2)

N. Liu, H. C. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mat., in press (2007).

We have used ε∞=1, ωp=2π×2175 THz, and ωτ=2π×19.5 THz in the Drude model dielectric function of [22].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The energy diagram describes the plasmon hybridization in a DSRR. The interaction between the plasmonic modes (|ω1〉 and |ω2〉) of its constitute outer ring and inner rings results in a new coupled mode pair: an anti-symmetric mode |ω-〉 and a symmetric mode |ω+〉.
Fig. 2.
Fig. 2. Schematic diagram of a DSRR. t denotes the thickness of the SRR, w the width of the wire, lox (lix ) the length of the wire parallel to the gap bearing side in the outer (inner) ring, and loy (liy ) the length of the wire perpendicular to the gap bearing side in the outer (inner) ring.
Fig. 3.
Fig. 3. Simulated reflectance spectra for DSRR (dotted blue curves) compared to the outer SRR alone (dashed red curves) and the inner SRR alone (solid black curves) for various inner-ring sizes. |ω1〉 and |ω2〉 present the fundamental plasmonic eigenmodes of the outer and inner rings alone, respectively. For DSRRs, the lower energy anti-symmetric mode and higher energy symmetric modes are denoted as |ω-〉 and |ω+〉, respectively. In the simulations, the outer-ring size (lox =410 nm, loy =380 nm, w=50 nm, t=20 nm) and the array periods (px =py =550 nm) are kept constant. The inner-ring geometry is varied from (a) lix =270 nm and liy =290 nm; (b) lix =210 nm and liy =230 nm; and (c) lix =150 nm and liy =170 nm. The corresponding structure and plasmon hybridization diagrams are shown adjacent to the spectra. The individual spectra are shifted vertically for clarity.
Fig. 4.
Fig. 4. Calculated reflectance spectra of the DSRRs with two different inner-ring orientations: the gap bearing side of the outer and inner rings are in the opposite direction (configuration A) and in the same direction (configuration B). Resonances at lower and higher energies in configuration A (B) are denoted by |ω-〉 (|ω*-〉) and |ω+〉 (|ω*+〉), respectively. The insets show the dipole oscillations at the corresponding resonances by the plasmon hybridization analysis. The individual spectra are shifted upwards for clarity.
Fig. 5.
Fig. 5. Simulated electric maximum peak field distribution of Ez in a plane 30 nm above the structure for resonant modes of: (a) |ω-〉, (b) |ω+〉, (c) |ω*-〉, (d) |ω*+〉, corresponding to the peaks shown in Fig. 4. The amplitudes are normalized to that of the incident light field.
Fig. 6.
Fig. 6. Simulated magnetic maximum peak field distributions of Hz in a plane 30nm above the structure for the resonant modes of (a) |ω-〉 and (b) |ω*-〉 corresponding to the lower energy peaks shown in Fig. 4. The amplitudes are normalized to those of incident field.

Metrics