Abstract

A highly stable version of spectral interferometry is demonstrated, allowing single shot measurement of ultrafast high field processes using modest energy lasers, with pump and probe pulses totaling less than 1 mJ. The technique makes possible reconstruction of ultrafast refractive index transients with one-dimensional spatial resolution, limited only by the bandwidth of the supercontinuum pulse (~100 nm) and instrument resolution. The ultrafast nonlinear Kerr effect in glass, and in Ar, N2, and N2O gases is measured, along with plasma generation in Ar. The inertial contribution to the nonlinear index from N2 and N2O molecular rotation is also observed.

©2007 Optical Society of America

1. Introduction

Spectral or frequency domain interferometry (SI) [1] was developed to study the ultrafast transient refractive index change induced by the interaction of intense short duration pump laser pulse with a medium. This technique has been applied, for example, to measure the pump-induced phase modulation in absorptive materials [2] and optical fibers [3, 4]. Because of its sensitivity and also its simplicity as a linear method, SI has also proven useful in the temporal characterization of intense laser-plasma interactions, including density evolution of femtosecond laser produced plasma [5, 6], plasma shock waves [7], laser-cluster interactions [8], and laser wakefields [9, 10, 11].

In SI, a weak reference pulse first passes through the interaction zone, followed collinearly by the pump pulse, with no temporal overlap. A weak probe pulse, which is a replica of the reference pulse, is then sent collinearly through the interaction zone with adjustable time delay. The pump is removed from the beam path and the reference and probe are sent to a spectrometer, where they interfere in the spectral domain, recording a wavelength (frequency) dependent series of fringes in the spectrometer focal plane with frequency spacing 2π/τ, where τ is the time delay between reference and probe pulses. If the probe pulse experiences a phase shift caused by the pump-induced perturbation of refractive index (in other words, cross-phase modulation), the interference fringes shift accordingly. The standard version of SI (for example, ref. [5]) requires the probe pulse duration to be shorter than the fastest index modulation time scale; the temporal evolution of the refractive index is then retrieved via step-by-step scanning of the delay between the pump and probe pulses.

Thus there are two stringent requirements for obtaining a complete, high temporal resolution trace of refractive index evolution: an ultrashort probe pulse, and a high degree of shot-to-shot reproducibility. However, both shot-to-shot fluctuations in the pump pulse and the typically highly nonlinear response of the excited medium make good reproducibility difficult. Usually necessary is multi-shot averaging for each probe delay, which is time-consuming and may also result in the averaging to zero of real but small phase effects swamped by the shot-to-shot fluctuations. Standard SI is thus almost impractical for measuring the effects of high intensity laser pulses with repetition rate much lower than 1 Hz. For higher repetition rate systems, for example, the widely used 10 Hz Ti: Sapphire tabletop terawatt laser, in addition to fluctuations there may be long term drift of output energy, frequency and pulse shape, which can introduce systematic errors with probe delay.

To overcome these difficulties, various versions of single-shot spectral interferometry (SSI) have been developed. These utilize chirped reference and probe pulses [12, 13, 14], or an unchirped reference pulse and a chirped probe pulse [15]. For a linearly chirped pulse with a Gaussian spectrum of full width at half maximum (FWHM) Δω centered at ω = ω 0 and group delay dispersion (GDD) β2 = 1/2 ( 2ϕ/∂ω 2)ω0 , where ϕ(ω) is the pulse phase in the frequency domain, the frequency sweep is given by ω = ω 0 + bt with chirp parameter b12β21[1+2β22(Δω)4]1. The chirped probe pulse is temporally overlapped onto the full transient index evolution, so that the varying phase shift is encoded onto the chirped pulse’s frequency components.

The frequency-dependent fringe shift Δϕ(ω) recorded by the spectrometer allows extraction of the index-induced phase transient Φ (t = (ω - ω 0)/b) from a single interferogram. However, this frequency-to-time ”direct mapping” approach is resolution-limited to Δtres(Δω)1[1+2β22(Δω)4]1/2 [16], indicating that bandwidth-limited resolution of Δtres ~ (Δω)-1 is achievable only for β2ω)2 ≪ 1. Thus for fixed bandwidth pulses that are stretched longer (smaller b and larger β2) in order to capture longer duration events, Δtres increases and time resolution is degraded [16].

In order to take advantage of a potentially large Δω and to achieve the best time resolution, a different approach is needed for analyzing the spectral interferogram. For chirped probe and reference pulses Ẽpr(ω) exp(pr(ω) and Ẽr(ω) exp(r(ω)), where Ẽpr(ω) and Ẽr(ω) are real and ϕpr(ω) = ϕr + Δϕ(ω), the spectral interferogram allows extraction of Δϕ(ω). Knowledge of E˜pr(ω)Ipr(ω),E˜r(ω)Ir(ω), and ϕr(ω), where Ipr(ω) and Ir(ω) are probe and reference spectra measured by the spectrometer and ϕr(ω) is the reference phase measured by cross-phase modulation [16], allows Fourier transformation to find the time-domain probe signal Epr(x,t) exp(iΔΦ(x,t)), from which the refractive index transient n(x,t) is obtained from kn(x,t)L = ΔΦ(x,t), where k is the central probe vacuum wavenumber and L is the effective interaction length in the medium. Here we consider transverse (to the probe beam) spatial variation in x of the measured phase, as discussed below.

Essential to SSI is a broadband probe pulse. Specialized Ti:Sapphire oscillators and optical parametric amplifiers (OPA) might fulfill this requirement for output bandwidths exceeding 100 nm. However, this would dramatically increase the system cost and complexity. A convenient way to obtain broad bandwidth is through supercontinuum (SC) generation. By focusing a 80 fs, 1 mJ, 800 nm Ti: Sapphire laser pulse in atmospheric air, ~100 nm bandwidth SC probe and reference pulses centered at ~690 nm were generated (with total SC energy 10–100 μJ), making single-shot supercontinuum spectral interferometry (SSSI) feasible [16]. In SSSI, temporal resolution of ~10 fs was achieved [17], with probe bandwidth and spectrometer resolution as the only limiting factors. An added feature is that for experiments using 800 nm pump pulses, the probe wavelength of ~700nm introduces negligible pump-probe walkoff during propagation through the interaction region. Pump-probe walkoff can be a problem for schemes using second harmonic probe pulses [15]. SSSI has been used to measure the transient Kerr nonlinearity in a solid [16], laser-induced double step ionization of helium [17], laser-heated cluster explosion [8, 18], and intense laser coupling into plasma waveguides [19]. Recently, SSI with a broadband chirped second harmonic (SHG) probe pulse at ~400 nm was used to measure laser wakefields induced by 800 nm pump pulses [20], but with less temporal resolution and more walkoff than with SSSI.

We note that a recent and popular method to generate a broadband supercontinuum is to guide a femtosecond laser pulse through a photonic crystal fiber [21]. However, fiber damage limits the pump laser pulse energy to the nanojoule level [22]. For a single-shot measurement where there may be significant background light, such as in laser-plasma experiments [8], nanojoule supercontinuum pulse energy is too low for practical application.

In this paper we report an improved SSSI setup employing a commercial kilohertz regenerative amplifier system producing 1 mJ, 110 fs pulses. SC pulses are generated with much lower pulse energy in a sealed Xe gas cell, leaving sufficient pulse energy to use as a pump in a wide range of experiments. The SC pulses also have excellent shot-to-shot stability, making possible the averaging of results over many thousands of shots if desired. We discuss in detail this new configuration and report results for the transient Kerr nonlinearity in BK7 glass, and samples of monatomic gas (argon) and gases of linear molecules N2 and N2O.

2. Experimental setup

Two laser pulses were split at beamsplitter BS1 from the output of a commercial Ti:Sapphire regenerative amplifier (RGA) (Spectra-Physics Spitfire) with 1 kHz repetition rate (see Fig. 1). We note that in our previous work [8, 16, 17, 18, 19] SC was generated by focusing in 1 atm air a ~1 mJ, 70 fs laser pulse split from a 10 Hz, 2 TW Ti: Sapphire laser system based on a 10 Hz regenerative amplifier followed by two power amplifiers. Pulse-to-pulse output energy fluctuations of ~10–15% were determined by fluctuations of the 10 Hz, 532 nm pump laser pulses. Here, the 1 kHz RGA is pumped by a CW arc lamp-pumped, intra-cavity doubled Q-switched Nd:YLF laser (Spectra Physics Merlin), with pulse-to-pulse energy fluctuation less than 2%. The result is very stable SC on a shot-to-shot basis.

 figure: Fig. 1.

Fig. 1. Experimental setup. BS1: beamsplitter, XGC: xenon gas cell, MI: Michelson interferometer, P: 500 μm pinhole, SF4: 2.5-cm thick SF4 glass as dispersive material, HWP: half waveplate, M: zero degree Ti:Sapphire dielectric mirror, BS2: beamsplitter for combining pump and SC pulses. The pump beam energy can be tuned by another set of half waveplate and polarizer, which is not shown in this figure.

Download Full Size | PPT Slide | PDF

For SC generation, one of the pulses (~300 μJ) was focused at f/6 into an 11-cm long xenon-filled (0–2 atm) gas cell (XGC) with 1-mm thick fused silica entrance and exit windows. Xenon gas has previously been observed to generate very broad supercontinuum spectra under femtosecond laser pulse illumination [23]. The SC pulse (along with the fundamental) emerges from the propagation filament induced by χ (3) self-focusing. The cell windows were sufficiently far from the beam waist/filament that they provided no contribution to the SC generation. The conical emission was transversely spatially chirped, with frequency increasing with radial position. This emission, with approximately 10 μJ/pulse in the SC component and the rest at the fundamental frequency, was collected by a lens at f/3 and converted into weakly converging beam, from which the fundamental component was removed by passing the beam through a high reflection dielectric mirror (M) centered at λ = 800 nm. The slightly converging SC pulse was then passed through a Michelson interferometer (MI) to generate a pair of co-propagating, identical pulses with variable delay (the reference and probe pulses). Beyond the Michelson, the converging beam spot was now small enough to efficiently reduce its spatial chirp and shape its transverse profile by placing a 500-μm diameter pinhole (P) in its path. By fine tuning the transverse position of the pinhole, a SC beam with high brightness, broad bandwidth, good spatial coherence, and uniform beam profile was obtained. The SC beam was then collimated by a telescope with 2× magnification, and the pulse duration and chirp parameter were tuned by adding appropriate lengths of dispersive material in the beam path. In the results shown here, we used a 2.5-cm thick optical grade SF4 glass window. This stretched the reference/probe pulses to ~2 ps, providing a 2 ps window for single-shot measurements of refractive index transients.

The other beam from BS1 was passed through an adjustable delay line and served as the pump. A half waveplate (HWP in Fig. 1) in this beam allowed independent pump polarization adjustment with respect to the SC beam. The SC and the pump beam paths were collinearly recombined at BS2, and focused by a f=41 cm lens into the sample to be measured. In the work presented here, the sample was either 200 μm thick BK7 window or a 45 cm long high pressure gas cell with 1 cm thick broadband anti-reflection coated fused silica windows. In the case of the gas cell, the windows were far enough from the pump focus so as to not contribute to any pump-induced phase shifts (cross phase modulation) to the probe. To keep the pump intensity low at the cell windows, the pump beam was expanded with 2 × magnification before the focusing lens. The pump Rayleigh range in the cell was z 0, p = 4.5 mm with a full width at half-maximum (FWHM) focal spot size of 36 μm by 27 μm. Pump peak intensities were determined by the known pulse energy, pulse shape (from SSSI (see below) and independently from a Grenouille measurement [24]), and relay images of the pump spot recorded on a 14-bit CCD camera. The SC beam Rayleigh range was z 0, sc = 24.6 cm with a FWHM spot size of 270 μm. In the interaction region, the probe beam therefore significantly overfilled the pump in the transverse plane, allowing observation of the pump-induced phase shift across the full pump profile. The ”exit” plane of the pump interaction region was imaged beyond the sample onto the spectrometer slit at 6.9× magnification. Along this beam path, the combined pump/SC beam exiting the sample was passed through a zero degree dielectric Ti:Sapphire mirror (M) to reject the pump beam. The f/2 imaging spectrometer consisted of a diffraction grating with 1200 mm-1 groove density and a 10-bit CCD camera (SONY XCD-SX910), which captures full frame images of 1280 × 960 pixels at 7.5 frames per second. The ~72 nm spectral window projected on the CCD sensor chip ranged from 651.7 nm to 723.2 nm, and the one-dimensional source spatial resolution was 0.67 μm/pixel along the entrance slit direction.

As discussed earlier, extraction of the probe temporal phase shift ΔΦ(x,t), where x is the coordinate along the spectrometer slit axis in the image plane, can be achieved by either direct frequency-to-time mapping or through Fourier transforms. For extraction by Fourier transform, the full spectral phase ϕpr(ω) = ϕr(ω) + Δϕ(ω) of the probe pulse is required, necessitating knowledge of the reference phase ϕr(ω). Determining this through the second order dispersion ϕr(ω) ≅ β2 (ω - ω 0)2 and neglecting higher order terms has been found to be sufficient for pump pulses > 20 fs [16]. To obtain β 2, a calibration procedure using cross-phase modulation, similar to the method in Ref. [16], was applied: interferograms were recorded under varying delay τ between pump and probe pulses in 100 psi argon, giving a sequence of identical Δϕ(ω) cal Δϕ(ω) traces, but shifted in frequency. For each trace the frequency ω′ of maximum Δϕ(ω) was identified and plotted against τ. A linear fit to this plot gave for the linear chirp parameter 1/b = a = 2β 2 (1 + (2ln(2))2/β -2 2ω)-4) = 7820 fs2. This agrees well with the calculated total dispersion introduced by total lengths of 1.1 cm of fused silica, 3.5 cm of BK7, and 2.5 cm of SF4 in the SC beam path. Our SC probe spectral width of ~100 nm gives β -2 2ω)-4 ≪ 1, and therefore β 2a/2.

3. Results

Figure 2 shows sample spectral interferograms and extracted transient refractive index shifts Δn(x, t) using the gas cell filled with argon at room temperature. The CCD shutter speed was set to ~ 1 ms to ensure that only one shot was recorded per image. Argon is a monatomic gas where the lowest order nonvanishing nonlinearity (χ (3)) at 700-800 nm is electronic, nonresonant, and nearly instantaneous, so below the ionization threshold the time- and 1D-space- dependent nonlinear phase shift is given by ΔΦAr(x,t) = k Δn(x,z,t)dz = kn 2,Ar ∫I(x,z,t)dz, where n 2,Ar is the nonlinear refractive index for argon [25]. We can define an effective interaction length L by ΔΦAr(x,t) = kΔn(x,t)L = kn 2,Ar I(x,t)L. Thus the phase shift follows the time and one-dimensional transverse envelope I(x, t) of the pump pulse intensity.

In Fig. 2(a) the pump pulse intensity was intentionally kept far below the argon field ionization threshold (~ 1014 W/cm2 [26]). In Fig. 2(b) the intensity was increased so that plasma was generated. The wavelength-dependent interference fringe shifts in Fig. 2(a) and Fig. 2(b) represent the transient modification of refractive index in the argon gas and gas/plasma. Figure 2(c) shows the 1D space and time variation of the argon nonlinear refractive index shift Δn(x,t) extracted from Fig. 2(a), using an effective nonlinear interaction length LAr = 5.7 mm. We note that for well-defined gas interaction lengths, such as provided by a thin (≪ 2z0, p) gas jet [17], L could be considered a known quantity and n 2 could be extracted. Here, however, for the longer gas cell, where the effective nonlinear interaction length is less well-defined, we wish to extract L. The procedure was to compare the nonlinear Kerr effect phase shift in the gas cell, ΔΦAr(x, t), to that in a thin BK7 window ΔΦBK7(x,t) = kn 2,BK7 L BK7 I(x,t), where the window thickness is L BK7 - 200 μm≪2z0,p. Thus LAr=(ΔΦAr)(n2,BK7)(ΔΦBK7)(n2,Ar)LBK7, using values of n 2,BK7 - 3.5 × 10-16 cm2/W obtained from SSSI measurement described later, and n 2,Ar = 9.8 × 10-20 cm2 W-1 atm-1 from Ref. [30]. The measured n 2,BK7 value is in good agreement with various values (3.43 × 10-16, 3.63 × 10-16, 3 × 10-16 cm2/W) given by, respectively, Refs. [27], [28], and [29].

 figure: Fig. 2.

Fig. 2. Spectral interferograms showing pump-induced, wavelength-dependent fringe shift in argon at (a) 7.8 atm and Ipeak = 4.1×1013 W/cm2 and (b) 4.4 atm and Ipeak = 7.7×1013 W/cm2, where plasma is observed as a long tail extending to the short wavelength edge on the interferogram. Note that the SC probe and reference pulses are positively chirped, thus a shorter wavelength on the interferogram means a later time. The 1D space and time variations of the effective argon nonlinear refractive index change Δn extracted from (a) and (b) are shown in (c) and (d), respectively. The positive index shift is due to instantaneous electronic nonlinearity, which follows the pump pulse temporal profile. The plasma-induced negative index shift is seen in (d) following the pump pulse. The baseline noise in extracted Δn(x,t) plots is determined by the CCD camera pixel size, which sets the minimum resolvable fringe shift in (a) and (b).

Download Full Size | PPT Slide | PDF

Figure 2(d) shows Δn(x,t) extracted from Fig. 2(b), including the generation of plasma. The initial profile of Δn is similar to Fig. 2(c), then the onset of plasma generation drives Δn to a value Δn plasma ~ -0.4 × 10-5, corresponding to an on-axis electron density of 1.9 × 1016 cm-3, which stays constant for the remainder of the 2 ps probe window. The gas density is 1.2 × 1020 cm , which means only ~ 0.02% of argon atoms are ionized. Plasma recombination occurs on a longer, nanosecond time scale. As an example of the good shot-to-shot stability made possible through use of a kHz regenerative amplifier system, Fig. 3 shows a 250 shot average and a single shot sample of the phase and refractive index transient from an unionized 5.1 atm nitrogen sample. The results agree well. Evidence of shot-to-shot stability of the SC generation in both spectrum and transverse spatial distribution is further demonstrated by Fig. 4, which shows a comparison of a single shot spectral interferogram to an interferogram averaged over 300 shots, of pump interaction with 5.1 atm of N2O.

Figure 5 shows the nonlinear phase shift Δn BK7(x,t) for the 200 μm thick BK7 (borosilicate glass) window, which compares quite well to ΔnAr(x,t) in Fig. 2(c), as it should: in BK7 glass, the dominant low order nonlinearity (χ (3)) is also electronic, non-resonant, and nearly instantaneous. Thus both phase shifts are proportional to I(x,t), justifying our method above for finding LAr.

 figure: Fig. 3.

Fig. 3. 250 shot average (solid line) and a single shot trace (circles) of refractive index transient Δn(x = 0,t) (and extracted phase ΔΦ(x = 0,t)) along the beam axis for 5.1 atm nitrogen. The results agree well, confirming good shot-to-shot stability. The pump energy was 60 μJ, corresponding to Ipeak = 4.1×1013 W/cm2, below the threshold for nitrogen ionization.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. (a) A sample single-shot spectral interferogram taken in 5.1 atm N2O with 1.4×1013 W/cm2 pump intensity. (b) Averaged spectral interferogram image over 300 laser shots, taken in the same condition as (a). The close resemblance between single-shot and multi-shot-averaged spectra indicates good stability in SC generation.

Download Full Size | PPT Slide | PDF

Figure 6 shows a comparison of the pump-induced nonlinear index change in Ar, N2, and N2O samples for times near the pump laser pulse. Unlike Ar, the other species are linear molecules with an inertial contribution to their nonlinearity, which corresponds to delayed molecular axis alignment along the laser polarization resulting from the torque experienced by the induced molecular dipole in the laser field [31]. The prompt and delayed refractive index response can be expressed as Δn(t) = n 2 I(t) + 0 R(τ)I(t - τ), where R is the molecular response function [32]. As discussed earlier, the response of Ar is near instantaneous, as expressed by the first term only. The curves in Fig. 5 show the nonlinear response of Ar peaking first, followed by N2 and then N2O, with increasing broadening of the peaks. This is consistent with the increasing moment of inertia of N2 and N2O (decreasing ground state rotational constants B of 2.01 cm-1 [33] and 0.42 cm-1 [34], respectively). The decay in Δn of the molecular response shown here can be viewed as resulting from the dephasing of the superposition of rotational quantum states excited by the pump pulse [35], where the timescale for such dephasing increases with molecular moment of inertia or decreasing B.

 figure: Fig. 5.

Fig. 5. Induced nonlinear refractive index shift Δn(x,t) from a 200 μm-thick BK7 window with 5 μJ pump pulse energy and 3.4×1012 W/cm2 peak intensity. The inset is the probe phase shift ΔΦ(x = 0,t) with corresponding Δn(x = 0,t) (solid line). The temporal phase evolution profile from 7.8 atm argon (Fig. 2(a)), normalized to the same peak phase value, is shown here for comparison (circles).

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Measured nonlinear refractive index shift Δn(x,t) in Ar, N2, and N2O. For the linear molecules N2 and N2O, part of the nonlinearity is contributed by the inertia of molecular rotation, which causes a delayed response which does not follow the pump pulse shape.

Download Full Size | PPT Slide | PDF

Note that the 2 ps measurement window of our SSSI diagnostic can be moved with an optical delay line to times well past the pump pulse. In this manner, we can measure, in a single shot, the refractive index effect of the quantum rotational recurrences [35] induced by pump pulses in molecular gases. This will be the subject of a future paper.

4. Conclusion

In conclusion, we have developed a spectral interferometer capable of recording single shot records of refractive index transients with ~10 fs time resolution and 1D space resolution in a 2 ps window. It uses chirped supercontinuum probe pulses generated from the self-focusing of few hundred microjoule, femtosecond pulses in a Xe gas cell. This diagnostic is suitable for use with modest energy femtosecond laser systems such as those based on kHz or multi-kilohertz Ti:Sapphire regenerative amplifiers, which are the workhorse system in many ultrafast optics and molecular physics laboratories.

Acknowledgments

The authors thank A. York for help with the interferogram analysis. This work is supported by the U.S. Department of Energy and the National Science Foundation.

References and links

1. Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973). [CrossRef]  

2. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Opt. Lett. 17, 1131–1133 (1992). [CrossRef]   [PubMed]  

3. F. Reynaud, F. Salin, and A. Barthelemy, “Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses,” Opt. Lett. 14, 275–277 (1989). [CrossRef]   [PubMed]  

4. C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity,” Opt. Lett. 23, 679–681 (1998). [CrossRef]  

5. J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994). [CrossRef]   [PubMed]  

6. P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999). [CrossRef]  

7. R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996). [CrossRef]   [PubMed]  

8. K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003). [CrossRef]   [PubMed]  

9. J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996). [CrossRef]   [PubMed]  

10. C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996). [CrossRef]   [PubMed]  

11. J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen Jr., P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998). [CrossRef]  

12. A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999). [CrossRef]  

13. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pèpin, F. Vidal, and H. P. Mercure, “Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air,” Opt. Lett. 25, 578–580 (2000). [CrossRef]  

14. J. -P. Geindre, P. Audebert, S. Rebibo, and J. -C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001). [CrossRef]  

15. S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25, 764–766 (2000). [CrossRef]  

16. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002). [CrossRef]  

17. K. Kim, I. Alexeev, and H. Milchberg, “Single-shot measurement of laser-induced double step ionization of helium,” Opt. Express 10, 1563–1572 (2002). [PubMed]  

18. K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004). [CrossRef]  

19. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005). [CrossRef]  

20. N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006). [CrossRef]  

21. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]  

22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]  

23. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986). [CrossRef]   [PubMed]  

24. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001). [CrossRef]  

25. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

26. S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996). [CrossRef]   [PubMed]  

27. D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved inter-ferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976). [CrossRef]  

28. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987). [CrossRef]  

29. M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002). [CrossRef]  

30. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985). [CrossRef]  

31. B. Friedrich and D. Herschbach, “Alignment and trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995). [CrossRef]   [PubMed]  

32. J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997). [CrossRef]  

33. W. Demtrüder, Molecular Physics (Wiley-VCH, Weinheim, 2005). [CrossRef]  

34. R. A. Toth, “Line Positions and Strengths of N2O between 3515 and 7800 cm-1,” J. Mol. Spectrosc. 197, 158–187 (1999). [CrossRef]   [PubMed]  

35. P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973).
    [Crossref]
  2. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Opt. Lett. 17, 1131–1133 (1992).
    [Crossref] [PubMed]
  3. F. Reynaud, F. Salin, and A. Barthelemy, “Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses,” Opt. Lett. 14, 275–277 (1989).
    [Crossref] [PubMed]
  4. C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity,” Opt. Lett. 23, 679–681 (1998).
    [Crossref]
  5. J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
    [Crossref] [PubMed]
  6. P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
    [Crossref]
  7. R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
    [Crossref] [PubMed]
  8. K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
    [Crossref] [PubMed]
  9. J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
    [Crossref] [PubMed]
  10. C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
    [Crossref] [PubMed]
  11. J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
    [Crossref]
  12. A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
    [Crossref]
  13. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pèpin, F. Vidal, and H. P. Mercure, “Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air,” Opt. Lett. 25, 578–580 (2000).
    [Crossref]
  14. J. -P. Geindre, P. Audebert, S. Rebibo, and J. -C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
    [Crossref]
  15. S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25, 764–766 (2000).
    [Crossref]
  16. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
    [Crossref]
  17. K. Kim, I. Alexeev, and H. Milchberg, “Single-shot measurement of laser-induced double step ionization of helium,” Opt. Express 10, 1563–1572 (2002).
    [PubMed]
  18. K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
    [Crossref]
  19. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005).
    [Crossref]
  20. N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
    [Crossref]
  21. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  23. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref] [PubMed]
  24. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
    [Crossref]
  25. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  26. S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
    [Crossref] [PubMed]
  27. D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved inter-ferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
    [Crossref]
  28. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
    [Crossref]
  29. M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002).
    [Crossref]
  30. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
    [Crossref]
  31. B. Friedrich and D. Herschbach, “Alignment and trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
    [Crossref] [PubMed]
  32. J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
    [Crossref]
  33. W. Demtrüder, Molecular Physics (Wiley-VCH, Weinheim, 2005).
    [Crossref]
  34. R. A. Toth, “Line Positions and Strengths of N2O between 3515 and 7800 cm-1,” J. Mol. Spectrosc. 197, 158–187 (1999).
    [Crossref] [PubMed]
  35. P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
    [Crossref]

2006 (2)

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005).
[Crossref]

2004 (1)

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

2003 (2)

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

2002 (3)

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
[Crossref]

K. Kim, I. Alexeev, and H. Milchberg, “Single-shot measurement of laser-induced double step ionization of helium,” Opt. Express 10, 1563–1572 (2002).
[PubMed]

M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002).
[Crossref]

2001 (2)

2000 (3)

1999 (3)

R. A. Toth, “Line Positions and Strengths of N2O between 3515 and 7800 cm-1,” J. Mol. Spectrosc. 197, 158–187 (1999).
[Crossref] [PubMed]

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

1998 (2)

C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity,” Opt. Lett. 23, 679–681 (1998).
[Crossref]

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

1997 (1)

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

1996 (3)

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

1995 (2)

B. Friedrich and D. Herschbach, “Alignment and trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

1994 (1)

1992 (1)

1989 (1)

1987 (1)

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

1985 (1)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

1976 (1)

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved inter-ferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

1973 (1)

Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973).
[Crossref]

Adair, R.

Alexeev, I.

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005).
[Crossref]

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
[Crossref]

K. Kim, I. Alexeev, and H. Milchberg, “Single-shot measurement of laser-induced double step ionization of helium,” Opt. Express 10, 1563–1572 (2002).
[PubMed]

Amiranoff, F.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

Antonetti, A.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
[Crossref] [PubMed]

Antonsen, T.

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

Antonsen, T. M.

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

Audebert, P.

J. -P. Geindre, P. Audebert, S. Rebibo, and J. -C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
[Crossref]

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
[Crossref] [PubMed]

Augst, S.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

Auguste, T.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Babine, A.

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Badger, A. D.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Barthelemy, A.

Batani, D.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Beaudoin, Y.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

Benuzzi-Mounaix, A.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Boudenne, J. M.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Bulanov, S. S.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

Campo, D.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Carrè, B.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Chaker, M.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

Chase, L. L.

Chessa, P.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

Chien, C. Y.

Chin, S. L.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

Chvykov, V.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Corkum, P. B.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

d’Oliveira, P.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Demtrüder, W.

W. Demtrüder, Molecular Physics (Wiley-VCH, Weinheim, 2005).
[Crossref]

Desparois, A.

Di Santo, D.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Dooley, P. W.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Dorchies, F.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

Dos Santos, A.

Downer, M. C.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25, 764–766 (2000).
[Crossref]

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Evans, R.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Falconieri, M.

M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002).
[Crossref]

Fallies, F.

Falliès, F.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Fisher, D.

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Fragnito, H. L.

M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002).
[Crossref]

Franco, M.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Friedrich, B.

B. Friedrich and D. Herschbach, “Alignment and trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

Froehly, Cl.

Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973).
[Crossref]

Gaul, E. W.

Gauthier, J. C.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
[Crossref] [PubMed]

Gauthier, J. -C.

Gauthier, J.-C.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Geindre, J. P.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
[Crossref] [PubMed]

Geindre, J. -P.

Geindre, J.-P.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Geltman, S.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Grillon, G.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Gu, X.

Gupta, A.

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

Hall, T. A.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Hamo-niaux, G.

Haus, H. A.

Hergott, J.-F.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Herschbach, D.

B. Friedrich and D. Herschbach, “Alignment and trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

Ippen, E. P.

Jiang, Z.

Johnston, T. W.

Kalintchenko, G.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Kalmykov, S.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Kieffer, J. C.

Kim, K.

Kim, K. Y.

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005).
[Crossref]

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
[Crossref]

Kimmel, M.

Kobayashi, T.

Koenig, M.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Kumarappan, V.

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

La Fontaine, B.

Lacourt, A.

Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973).
[Crossref]

Lange, R.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Le Blanc, S. P.

S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25, 764–766 (2000).
[Crossref]

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Le Dèroff, L.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Lee, Kevin F.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Lehmeier, H. J.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Leupacher, W.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Litvinyuk, I. V.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Mahdieh, M.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Maksimchuk, A.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Margalit, M.

Marquès, J. R.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

Masini, A.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Matlis, N. H.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25, 764–766 (2000).
[Crossref]

Matsuoka, T.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Mercure, H. P.

Merdji, H.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Milam, D.

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved inter-ferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

Milchberg, H.

Milchberg, H. M.

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005).
[Crossref]

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
[Crossref]

Monot, P.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Mora, P.

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

Mysyrowicz, A.

Mysy-rowicz, A.

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

Nibbering, E.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

O’Shea, P.

Palange, E.

M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002).
[Crossref]

Parra, E.

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

Payne, S. A.

Penzkofer, A.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Pèpin, H.

Prade, B.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Ranka, J. K.

Rayner, D. M.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Rebibo, S.

Reed, S.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Reynaud, F.

Ripoche, J.-F.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Rousse, A.

Rousseau, P.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Rundquist, A.

Salières, P.

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

Salin, F.

Scianitti, F.

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Sergeev, A.

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Shvets, G.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Siders, C. W.

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Spanner, M.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Stentz, A. J.

Stepanov, A.

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Taguchi, T.

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

Tajima, T.

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

Talebpour, A.

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

Terasaki, A.

Tokunaga, E.

Toth, R. A.

R. A. Toth, “Line Positions and Strengths of N2O between 3515 and 7800 cm-1,” J. Mol. Spectrosc. 197, 158–187 (1999).
[Crossref] [PubMed]

Trebino, R.

Vidal, F.

Viénot, J. Ch.

Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973).
[Crossref]

Villeneuve, D. M.

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Weber, M. J.

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved inter-ferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

Windeler, R. S.

Yanovsky, V.

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Yu, C. X.

Appl. Phys. Lett. (1)

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
[Crossref]

J. Appl. Phys. (1)

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved inter-ferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

J. Mol. Spectrosc. (1)

R. A. Toth, “Line Positions and Strengths of N2O between 3515 and 7800 cm-1,” J. Mol. Spectrosc. 197, 158–187 (1999).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of λ/4000 phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 404–407 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature Phys. (1)

N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, “Snapshots of laser wakefields,” Nature Phys. 2, 749–753 (2006).
[Crossref]

Nouvelle Revue d’Optique (1)

Cl. Froehly, A. Lacourt, and J. Ch. Viénot, “Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications,” Nouvelle Revue d’Optique 4, 183–196 (1973).
[Crossref]

Opt. Commun. (2)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (9)

C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pèpin, F. Vidal, and H. P. Mercure, “Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air,” Opt. Lett. 25, 578–580 (2000).
[Crossref]

J. -P. Geindre, P. Audebert, S. Rebibo, and J. -C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
[Crossref]

S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25, 764–766 (2000).
[Crossref]

E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Opt. Lett. 17, 1131–1133 (1992).
[Crossref] [PubMed]

F. Reynaud, F. Salin, and A. Barthelemy, “Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses,” Opt. Lett. 14, 275–277 (1989).
[Crossref] [PubMed]

C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity,” Opt. Lett. 23, 679–681 (1998).
[Crossref]

J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamo-niaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[Crossref]

Phys. Plasmas (3)

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora, “Laser wakefield: Experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
[Crossref]

K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, A. Gupta, and H. M. Milchberg, “Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium,” Phys. Plasmas 11, 2882–2889 (2004).
[Crossref]

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12, 056712 (2005).
[Crossref]

Phys. Rev. A (2)

S. Augst, A. Talebpour, S. L. Chin, Y. Beaudoin, and M. Chaker, “Nonsequential triple ionization of argon atoms in a high-intensity laser field,” Phys. Rev. A 52, R917–R919 (1995); S. Geltman, “Multiple ionization of argon atoms by intense laser pulses,” Phys. Rev. A 54, 2489–2491 (1996).
[Crossref] [PubMed]

P. W. Dooley, I. V. Litvinyuk, Kevin F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003).
[Crossref]

Phys. Rev. E (1)

A. Benuzzi-Mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani, F. Scianitti, A. Masini, and D. Di Santo, “Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments,” Phys. Rev. E 60, R2488–R2491 (1999).
[Crossref]

Phys. Rev. Lett. (7)

P. Salières, L. Le Dèroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carrè, “Frequency-Domain Interferometry in the XUV with High-Order Harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
[Crossref]

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysy-rowicz, G. Grillon, and A. Antonetti, “Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum,” Phys. Rev. Lett. 77, 3359–3362 (1996).
[Crossref] [PubMed]

K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-Resolved Explosion of Intense-Laser-Heated Clusters,” Phys. Rev. Lett. 90, 023401 (2003); I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett. 90, 103402 (2003).
[Crossref] [PubMed]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, “Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse,” Phys. Rev. Lett. 76, 3566–3569 (1996).
[Crossref] [PubMed]

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
[Crossref] [PubMed]

B. Friedrich and D. Herschbach, “Alignment and trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (2)

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

W. Demtrüder, Molecular Physics (Wiley-VCH, Weinheim, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. BS1: beamsplitter, XGC: xenon gas cell, MI: Michelson interferometer, P: 500 μm pinhole, SF4: 2.5-cm thick SF4 glass as dispersive material, HWP: half waveplate, M: zero degree Ti:Sapphire dielectric mirror, BS2: beamsplitter for combining pump and SC pulses. The pump beam energy can be tuned by another set of half waveplate and polarizer, which is not shown in this figure.
Fig. 2.
Fig. 2. Spectral interferograms showing pump-induced, wavelength-dependent fringe shift in argon at (a) 7.8 atm and Ipeak = 4.1×1013 W/cm2 and (b) 4.4 atm and Ipeak = 7.7×1013 W/cm2, where plasma is observed as a long tail extending to the short wavelength edge on the interferogram. Note that the SC probe and reference pulses are positively chirped, thus a shorter wavelength on the interferogram means a later time. The 1D space and time variations of the effective argon nonlinear refractive index change Δn extracted from (a) and (b) are shown in (c) and (d), respectively. The positive index shift is due to instantaneous electronic nonlinearity, which follows the pump pulse temporal profile. The plasma-induced negative index shift is seen in (d) following the pump pulse. The baseline noise in extracted Δn(x,t) plots is determined by the CCD camera pixel size, which sets the minimum resolvable fringe shift in (a) and (b).
Fig. 3.
Fig. 3. 250 shot average (solid line) and a single shot trace (circles) of refractive index transient Δn(x = 0,t) (and extracted phase ΔΦ(x = 0,t)) along the beam axis for 5.1 atm nitrogen. The results agree well, confirming good shot-to-shot stability. The pump energy was 60 μJ, corresponding to Ipeak = 4.1×1013 W/cm2, below the threshold for nitrogen ionization.
Fig. 4.
Fig. 4. (a) A sample single-shot spectral interferogram taken in 5.1 atm N2O with 1.4×1013 W/cm2 pump intensity. (b) Averaged spectral interferogram image over 300 laser shots, taken in the same condition as (a). The close resemblance between single-shot and multi-shot-averaged spectra indicates good stability in SC generation.
Fig. 5.
Fig. 5. Induced nonlinear refractive index shift Δn(x,t) from a 200 μm-thick BK7 window with 5 μJ pump pulse energy and 3.4×1012 W/cm2 peak intensity. The inset is the probe phase shift ΔΦ(x = 0,t) with corresponding Δn(x = 0,t) (solid line). The temporal phase evolution profile from 7.8 atm argon (Fig. 2(a)), normalized to the same peak phase value, is shown here for comparison (circles).
Fig. 6.
Fig. 6. Measured nonlinear refractive index shift Δn(x,t) in Ar, N2, and N2O. For the linear molecules N2 and N2O, part of the nonlinearity is contributed by the inertia of molecular rotation, which causes a delayed response which does not follow the pump pulse shape.

Metrics