Abstract

In this paper, the transmission of a Gaussian beam passing through a slab made of a one-dimensional left-handed meta-material (1D LHM) is studied. The analytical solution of the electric and the magnetic fields inside and outside the slab are given. The calculation of the power flow of the beam predicts that in the negative pass band of the 1D LHM, there exist different directions of lateral displacements. Such phenomenon is further verified by experiment.

© 2006 Optical Society of America

1. Introduction

Since the left-handed meta-material (LHM) was experimentally verified in 2001 [1], more and more interests in this field were aroused. The lateral displacement of a Gaussian beam transmitted through an isotropic LHM slab has been studied theoretically and experimentally [2,3]. Different from the isotropic LHM or right-handed material (RHM), which are with circular dispersion relation shapes, and the anisotropic RHM, which is with elliptical dispersion relation shape, a one-dimensional (1D) LHM with only one negative principal element in permittivity tensor and one negative principal element in permeability tensor in the orthogonal direction respecting to the negative permittivity element, has a hyperbolic shaped dispersion relation curve [4–6], which can be fabricated using S-shaped or Ω-shaped split ring resonators [7,8]. In this paper, the lateral displacement of a Gaussian beam obliquely incident into an 1D LHM slab is studied. The analytical solutions for the electric and the magnetic fields inside and outside the slab are provided, showing that in the negative pass band of the 1D LHM, the lateral displacement can either shifts to the positive or the negative direction, which is different from isotropic LHM case, whose shift can only be negative [2,3]. Further more, experimental result is also provided to verify the analytical solutions by examining the distribution of the time-averaged power flow at the second interface of the slab where the transmitted Gaussian beam emerges. We see that, the experimental result is in accordance with the analytical result.

2. Electromagnetic fields inside and outside the slab

 

Fig. 1. Illustration of the lateral displacement of an obliquely incident Gaussian beam.

Download Full Size | PPT Slide | PDF

Consider an 1D LHM slab located in a x-y-z coordinate system depicted in Fig. 1, whose first and second boundaries are located at z=0 and z=z 0, respectively. Let a Gaussian beam be incident obliquely onto the first boundary at Point “A”, and line “AB” be the normal of the two boundaries. Assume the 1D LHM is with a permittivity tensor diag[ε 1, ε 2, ε 3] and a permeability tensor diag[μ 1, μ 2, μ 3] in an e1-e2-e3 coordinate system, where μi,εi are along with the principle axes ei(i=1,2,3), respectively, and the e1-e2-e3, coordinate system can be obtained by anti-clockwise rotating the x-y-z system θ angles around y-axis. The permittivity and permeability tensors described in the x-y-z coordinates are then as follows:

ε̿=[ε1cos2θ+ε3sin2θ0sinθcosθ(ε1ε3)0ε20sinθcosθ(ε1ε3)0ε1sin2θ+ε3cos2θ]
μ̿=[μ1cos2θ+μ3sin2θ0sinθcosθ(μ1μ3)0μ20sinθcosθ(μ1μ3)0μ1sin2θ+μ3cos2θ]

in which only ε 2 and μ 1 have negative real parts. For a wave linearly E-polarized along y-axis, the dispersion relation of the 1D LHM is

αkz2+βkxkz+γkx2ω2ε2μ1μ3=0,

where α = μ 1 sin2 θ + μ 3 cos2 θ, β = -2sin θ cos θ(μ 1 - μ 3)and γ = μ 1 cos2 θ + μ 3 sin2 θ.

Assume a Gaussian beam

Eiy=dkxexp[i(kxx+k0zz)]ψ(kx)

is incident from region 1 into the slab at an incident angle φ, where ψ(kx)=g2πexp{[g2(kxkixc)24]} is the Gaussian spectrum. The total electric and magnetic fields are expressed as follows:

In region 1,

E1y=dkxψ(kx)(eikizz+Reikizz)eikxx
H1x=1ωμ0dkxψ(kx)kiz(eikizz+Reikizz)eikxx
H1z=1ωμ0dkxψ(kx)kx(eikizz+Reikizz)eikxx

In region 2,

E2y=dkxψ(kx)(ξeikz1z+ζeikz2z)eikxx
H2x=1ωdkxψ(kx)[a(ξkz1eikz1z+ζkz2eikz2z)+b(ξeikz1z+ζeikz2z)kx]eikxx
H2z=1ωdkxψ(kx)[c(ξkz1eikz1z+ζkz2eikz2z)+d(ξeikz1z+ζeikz2z)kz]eikxx

in which kz1, kz2 and kx satisfy the dispersion relation of Eq. (3); a, b, c and d are the elements of the inversed tensor of μ̿, and a = α/μ 1 μ 3, b = c = -β/2μ 1 μ 3, d = γ/μ 1 μ 3 ; ξ, ζ are the transmission or reflection coefficients of the beams in the 1D LHM slab.

In region 3,

E3y=dkxψ(kx)Teiktzzeikxx
H3x=1ωμ0dkxψ(kx)Tktzeiktzzeikxx
H3z=1ωμ0dkxψ(kx)Tkxeiktzzeikxx

The coefficients R, ξ, ζ, and T can be given by matching the boundary conditions for tangential electric and magnetic fields at z=0 and z=z 0, respectively:

ξ=2p2kiz(p1p4p2p3)μ0
ζ=2p1kiz(p1p4p2p3)μ0
R=2(p2p1)kiz(p1p4p2p3)μ01
T=2(p2ei(kz1ktz)z0p1ei(kz2ktz)z0)kiz(p1p4p2p3)μ0

where p 1=(-ak z1 + bkx + ktz / μ 0)exp(ik z1 z 0) , p 2 = (-ak z2 + bkx + ktz / μ 0)exp(ik z2 z 0) , P 3 = -ak z1 + bkx - kiz / μ 0 , and P 4 = -ak z2 + bkx - kiz / μ 0.

Finally the time-averaged normal and tangential power flow (Poynting vector) can be calculated by

S¯nz=12Re{Eny·Hnx*}
S¯nx=12Re{Eny·Hnz*}

where the subscript n = 1, 2, 3 denotes different regions.

3. Lateral displacement of the Gaussian beam

 

Fig. 2. K-surfaces for the illustration of the lateral shifts for a Gaussian beam incidence.

Download Full Size | PPT Slide | PDF

Here we define: if the directions of the tangential power flow in and out of the slab are the same, the lateral shift of the beam is positive, and vise versa. In Fig. 1, a positive shift means the outgoing beam at the second boundary locates in the upper side to the normal line “AB”, and a negative shift means the opposite situation. Notice that for an RHM slab, the shift must be positive, and for an isotropic LHM, the shift must be negative. From Eq. (3), when the real part of α changes from negative to positive with frequency, the solution for kz changes its sign too, which leads to the change of the direction of the tangential power flow in the 1D LHM, concluded from Eq. (6.c) and Eq. (13). The above discussion could be illustrated by Fig. 2, in which the solid hyperbola represents the k-surface of the 1D LHM when the real part of α is negative, and the dashed one represents the case when the real part of α is positive. Knowing that the Poynting vector is always normal to the k-surface, from Fig. 2, we can see that the solid hyperbola will yield a negative lateral shift, i.e., S̅1 has a different direction of the tangential component compared to the incident beam’s, while the dashed one will yield a positive shift, or S̅2 has the same direction of the tangential component as the incident beam’s. When the Lorentz model is applied to μ 1 and ε 2, say

ε2=1ωεp2ωε02ω2ωε02+iγεω
μ1=1ωμp2ωμo2ω2ωμo2+iγμω

where ωij = 2πfij, i = ε,μ and j = o,p. Assume fεo = 0GHz , fεp = 12.25GHz, fμo = 10.6GHz, fμp = 12.2GHz , γε = γμ = 0.001, ε 1 = ε 3 = ε 0, and μ 2 = μ 3 = μ 0. For θ = 18.4°, we see that the real part of α goes to zero when f = 10.78 GHz, indicating that in the first region of the negative pass band, say 10.6 GHz < f < 10.78 GHz (Re{α} < 0), the direction of the tangential power flow in the 1D LHM slab is toward negative direction; and in the second region, say 10.78 GHz < f < 12.2 GHz (Re{α} > 0), the direction of the tangential power flow is positive. For θ = 45°, the separating frequency changes to 11.43GHz, and the negative and positive shift regions change to 10.6 GHz < f < 11.43 GHz and 11.43 GHz < f < 12.2 GHz, respectively. All above can be illustrated in a 2D form by calculating the analytical result of the normal power flow demonstrated by Eq. (12) at the second interface of the slab when the Gaussian beam is incident from air onto the 1D LHM slab at point “A” with an incident angle φ = 45° and g = 0.2 (the Gaussian spectrum parameter defined in Eq. (4)), as shown in Fig. 1. The results are presented in Fig. 3, where the vertical axes represent the location of the transmitted beam, and the originals 0 correspond to the point “B” in Fig. 1. From Fig. 3, we see that in the lower frequency regions, from 10.6 GHz to 10.78 GHz for θ = 18.4° and from 10.6 GHz to 11.43 GHz for θ = 45°, the beam has negative shifts, while in the higher frequency regions, from 10.78 GHz to 12.2 GHz for θ = 18.4° and from 11.43 GHz to 12.2 GHz for θ = 45°, positive shifts appear.

 

Fig. 3. The normalized power flow calculated at the second interface of the 1D LHM slab. (a)θ = 18.4°, (b)θ = 45°

Download Full Size | PPT Slide | PDF

4. Experimental verification

To verify the above analytical conclusion, the S-shaped 1D LHM sample with a negative pass band occupied from 10 to 12 GHz is chosen to construct the slab with a rotated angle θ = 18.4° [7]. The schematic of the experimental setup is depicted in Fig. 4, in which the point “A” and “B” correspond to the same points in Fig. 1. For the experimental convenience to detect the transmission power, the detector is moved along axis- X'. Although axis- X' is not parallel to the second interface of the 1D LHM slab, the original point 0 still corresponds to the point “B”, so that we can use the axis- X' to define the positive shift region and negative shift region.

 

Fig. 4. Schematic of the experimental setup for detecting the lateral shift of the incident Gaussian beam.

Download Full Size | PPT Slide | PDF

The experimental result is shown in Fig. 5. We see that in the negative pass band of the S-shaped 1D LHM, with a separating frequency around 11.1 GHz, there indeed exist two regions, each corresponding to a different lateral shift: one is to the negative direction in the lower frequency region, and the other is to the positive direction in the higher frequency region. Such experimental result clearly shows the phenomenon predicted by previous analysis. However, there also exists difference. The separated beams in fig. 5 seem to have more smearing and therefore not appear exactly similar to fig. 3(a). We conclude this due to the inexactness of the Lorentz model to the real dispersion property of the S-shaped 1D LHM sample. Although artificial LHMs fabricated by dense metallic sub-wavelength resonators are considered to have dispersion relations in accordance with Lorentz model, the actual dispersion curves are with noises caused by some complex issues, such as sub-resonances.

 

Fig. 5. Normalized transmission power detected at the second interface of the S-shaped 1DLHM slab.

Download Full Size | PPT Slide | PDF

5. Conclusion

Since the 1D LHM studied in this paper has a unique hyperbola dispersion relation, analytically we conclude that in the negative pass band, a rotated 1D LHM slab will bring both negative and positive lateral shifts for an obliquely incident Gaussian beam. This is also verified by the experimental result demonstrated above. The critical frequency, who separates the negative pass band into two parts, is decided by the rotating angle θ and the dispersion property of the negative permeability element μ 1, if the incident beam is E-polarized. According to the duality, we can also draw a similar conclusion for a H-polarized beam. Such structure can be used as a spatial beam splitter or diplexer, by giving an appropriate dispersion property and rotated angle of the material.

Acknowledgments

This work is supported by Chinese Natural Science Foundation under contract 60531020, 60371010 and 60201001.

References and links

01. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001). [CrossRef]   [PubMed]  

02. J. A. Kong, B.-I. Wu, and Y. Zhang, “A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability,” Microwave Opt. Technol. Lett. 33, 136–139 (2002). [CrossRef]  

03. L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Beam Shifting Experiment for the Characterization of Left-handed Properties,” J. Appl. Phys. 95, 2238–2241 (2004). [CrossRef]  

04. D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]   [PubMed]  

05. D. R. Smith, P. Kolinko, and D. Schurig, “Negative Refraction in Indefinite Media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004). [CrossRef]  

06. T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, “Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials”, IEEE Trans. Microw. Theory and Technol. 53, 1443–1450 (2005). [CrossRef]  

07. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left-handed Materials Composed of Only S-shaped Resonators,” Phys. Rev. E 70, 057605 (2004). [CrossRef]  

08. L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, “Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss,” Phys. Rev. B 70, 073102 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
    [CrossRef] [PubMed]
  2. J. A. Kong, B.-I. Wu, and Y. Zhang, "A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
    [CrossRef]
  3. L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
    [CrossRef]
  4. D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90,077405 (2003).
    [CrossRef] [PubMed]
  5. D. R. Smith, P. Kolinko, D. Schurig, "Negative Refraction in Indefinite Media," J. Opt. Soc. Am. B 21, 1032-1043 (2004).
    [CrossRef]
  6. T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
    [CrossRef]
  7. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
    [CrossRef]
  8. L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
    [CrossRef]

2005 (1)

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

2004 (4)

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

D. R. Smith, P. Kolinko, D. Schurig, "Negative Refraction in Indefinite Media," J. Opt. Soc. Am. B 21, 1032-1043 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

2003 (1)

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90,077405 (2003).
[CrossRef] [PubMed]

2002 (1)

J. A. Kong, B.-I. Wu, and Y. Zhang, "A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
[CrossRef] [PubMed]

Chen, H.

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

Chen, X.

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

Grzegorczyk, T. M.

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

Kolinko, P.

Kong, J. A.

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

J. A. Kong, B.-I. Wu, and Y. Zhang, "A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Li, Y.

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

Nikku, M.

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

Ran, L.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, P. Kolinko, D. Schurig, "Negative Refraction in Indefinite Media," J. Opt. Soc. Am. B 21, 1032-1043 (2004).
[CrossRef]

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90,077405 (2003).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, P. Kolinko, D. Schurig, "Negative Refraction in Indefinite Media," J. Opt. Soc. Am. B 21, 1032-1043 (2004).
[CrossRef]

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90,077405 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
[CrossRef] [PubMed]

Wu, B.-I.

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

J. A. Kong, B.-I. Wu, and Y. Zhang, "A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Zhang, X.

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

Zhang, Y.

J. A. Kong, B.-I. Wu, and Y. Zhang, "A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

IEEE Trans. Microw. Theory and Technol. (1)

T. M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, and J. A. Kong, "Refraction Laws for Anisotropic Media and Their Application to Left-handed Metamaterials", IEEE Trans. Microw. Theory and Technol. 53,1443-1450 (2005).
[CrossRef]

J. Appl. Phys. (1)

L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam Shifting Experiment for the Characterization of Left-handed Properties," J. Appl. Phys. 95,2238- 2241 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

J. A. Kong, B.-I. Wu, and Y. Zhang, "A Unique Lateral Displacement of a Gaussian Beam Transmitted through a Slab with a Negative Permittivity and Permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Phys. Rev. B (1)

L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave Solid-state Left-handed Material with a Broad Bandwidth and an Ultralow Loss," Phys. Rev. B 70,073102 (2004).
[CrossRef]

Phys. Rev. E (1)

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed Materials Composed of Only S-shaped Resonators," Phys. Rev. E 70,057605 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

D. R. Smith, D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90,077405 (2003).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the lateral displacement of an obliquely incident Gaussian beam.

Fig. 2.
Fig. 2.

K-surfaces for the illustration of the lateral shifts for a Gaussian beam incidence.

Fig. 3.
Fig. 3.

The normalized power flow calculated at the second interface of the 1D LHM slab. (a)θ = 18.4°, (b)θ = 45°

Fig. 4.
Fig. 4.

Schematic of the experimental setup for detecting the lateral shift of the incident Gaussian beam.

Fig. 5.
Fig. 5.

Normalized transmission power detected at the second interface of the S-shaped 1DLHM slab.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ε ̿ = [ ε 1 cos 2 θ + ε 3 sin 2 θ 0 sin θ cos θ ( ε 1 ε 3 ) 0 ε 2 0 sin θ cos θ ( ε 1 ε 3 ) 0 ε 1 sin 2 θ + ε 3 cos 2 θ ]
μ ̿ = [ μ 1 cos 2 θ + μ 3 sin 2 θ 0 sin θ cos θ ( μ 1 μ 3 ) 0 μ 2 0 sin θ cos θ ( μ 1 μ 3 ) 0 μ 1 sin 2 θ + μ 3 cos 2 θ ]
α k z 2 + β k x k z + γ k x 2 ω 2 ε 2 μ 1 μ 3 = 0 ,
E iy = dk x exp [ i ( k x x + k 0 z z ) ] ψ ( k x )
E 1 y = dk x ψ ( k x ) ( e ik iz z + Re ik iz z ) e ik x x
H 1 x = 1 ω μ 0 dk x ψ ( k x ) k iz ( e ik iz z + Re ik iz z ) e ik x x
H 1 z = 1 ω μ 0 dk x ψ ( k x ) k x ( e ik iz z + Re ik iz z ) e ik x x
E 2 y = dk x ψ ( k x ) ( ξe ik z 1 z + ζe ik z 2 z ) e ik x x
H 2 x = 1 ω dk x ψ ( k x ) [ a ( ξk z 1 e ik z 1 z + ζk z 2 e ik z 2 z ) + b ( ξ e ik z 1 z + ζ e ik z 2 z ) k x ] e ik x x
H 2 z = 1 ω dk x ψ ( k x ) [ c ( ξk z 1 e ik z 1 z + ζk z 2 e ik z 2 z ) + d ( ξ e ik z 1 z + ζ e ik z 2 z ) k z ] e ik x x
E 3 y = dk x ψ ( k x ) Te ik tz z e ik x x
H 3 x = 1 ω μ 0 dk x ψ ( k x ) T k tz e ik tz z e ik x x
H 3 z = 1 ω μ 0 dk x ψ ( k x ) T k x e ik tz z e ik x x
ξ = 2 p 2 k iz ( p 1 p 4 p 2 p 3 ) μ 0
ζ = 2 p 1 k iz ( p 1 p 4 p 2 p 3 ) μ 0
R = 2 ( p 2 p 1 ) k iz ( p 1 p 4 p 2 p 3 ) μ 0 1
T = 2 ( p 2 e i ( k z 1 k tz ) z 0 p 1 e i ( k z 2 k tz ) z 0 ) k iz ( p 1 p 4 p 2 p 3 ) μ 0
S ¯ nz = 1 2 Re { E ny · H nx * }
S ¯ nx = 1 2 Re { E ny · H nz * }
ε 2 = 1 ω ε p 2 ω ε 0 2 ω 2 ω ε 0 2 + i γ ε ω
μ 1 = 1 ω μ p 2 ω μ o 2 ω 2 ω μ o 2 + i γ μ ω

Metrics