Abstract

We derive an exact expression for the radiation pressure of a quasi-monochromatic plane wave incident from the free space onto the flat surface of a semi-infinite dielectric medium. In order to account for the total optical momentum (incident plus reflected) that is transferred to the dielectric, the mechanical momentum acquired by the medium must be added to the rate of flow of the electromagnetic momentum (the so-called Abraham momentum) inside the dielectric. We confirm that the electromagnetic momentum travels with the group velocity of light inside the medium. The photon drag effect in which the photons captured in a semiconductor appear to have the Minkowski momentum is explained by analyzing a model system consisting of a thin absorptive layer embedded in a transparent dielectric.

© 2005 Optical Society of America

Connection Failure

References

  • View by:
  • |

  1. M. Mansuripur, �??Radiation pressure and the linear momentum of the electromagnetic field,�?? Opt. Express 12, 5375-5401 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-375.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-375.</a>
    [CrossRef] [PubMed]
  2. J. P. Gordon, �??Radiation forces and momenta in dielectric media,�?? Phys. Rev. A 8, 14-21 (1973).
    [CrossRef]
  3. J. D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975).
  4. R. Loudon, �??Theory of the radiation pressure on dielectric surfaces,�?? J. Mod. Opt. 49, 821-838 (2002).
    [CrossRef]
  5. Y. N. Obukhov and F. W. Hehl, �??Electromagnetic energy-momentum and forces in matter,�?? Phys. Lett. A 311, 277-284 (2003).
    [CrossRef]
  6. M. Mansuripur, A. R. Zakharian, and J. V. Moloney, �??Radiation pressure on a dielectric wedge,�?? accepted for publication, Opt. Express, 2005.
  7. A. F. Gibson, M. F. Kimmitt, and A. C. Walker, �??Photon drag in Germanium,�?? Appl. Phys. Lett. 17, 75-77 (1970).
    [CrossRef]
  8. R. Loudon, S. M. Barnett, and C. Baxter, �??Theory of radiation pressure and momentum transfer in dielectrics: the photon drag effect,�?? to appear in 2005.

Appl. Phys. Lett. (1)

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, �??Photon drag in Germanium,�?? Appl. Phys. Lett. 17, 75-77 (1970).
[CrossRef]

J. Mod. Opt. (1)

R. Loudon, �??Theory of the radiation pressure on dielectric surfaces,�?? J. Mod. Opt. 49, 821-838 (2002).
[CrossRef]

Opt. Express (2)

Phys. Lett. A (1)

Y. N. Obukhov and F. W. Hehl, �??Electromagnetic energy-momentum and forces in matter,�?? Phys. Lett. A 311, 277-284 (2003).
[CrossRef]

Phys. Rev. A (1)

J. P. Gordon, �??Radiation forces and momenta in dielectric media,�?? Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975).

R. Loudon, S. M. Barnett, and C. Baxter, �??Theory of radiation pressure and momentum transfer in dielectrics: the photon drag effect,�?? to appear in 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

A light beam consisting of two equal-amplitude plane-waves of slightly differing frequencies, f 1 and f 2, is normally incident on a semi-infinite dielectric of refractive index n(f). The beam is linearly polarized, having its E-field along the x-axis and H-field along the y-axis. While a fraction of the beam is reflected at the surface, the remainder enters the dielectric, penetrating it at the group velocity Vg =c/n+n f). Here f = 1 2 ( f 1 + f 2 ) is the center frequency, and n =dn/df ; both n and n are evaluated at the center frequency.

Fig. 2.
Fig. 2.

A thin absorptive layer of thickness d and complex refractive index n+iκ is embedded in a transparent, homogeneous dielectric medium of refractive index n (same n as the real part of the complex index of the absorptive layer). A monochromatic plane-wave, having vacuum wavelength λ o=c/f, E-field amplitude E o, and H-field amplitude H o=nE o/Z o, is normally incident on the absorbing layer. The layer’s (amplitude) reflection and transmission coefficients are ρ and τ, respectively. Each absorbed photon of energy hf transfers the equivalent of its Minkowski momentum nhf/c to the absorbing layer.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

p = 1 4 Real ( E × H * ) c 2 + 1 4 Real ( D × B * ) .
p = 1 2 Real ( E × H * ) c 2 + 1 4 Real ( P × B * ) .
E x ( z , t ) = E o sin { 2 π f 1 [ ( z c ) t ] } E o sin { 2 π f 2 [ ( z c ) t ] }
H y ( z , t ) = ( E o Z o ) sin { 2 π f 1 [ ( z c ) t ] } ( E o Z o ) sin { 2 π f 2 [ ( z c ) t ] }
< S z ( z , t ) > = E o 2 Z o
d q z d t = { 1 + 1 2 ( 1 n 1 ) ( 1 + n 1 ) 2 + 1 2 ( 1 n 2 ) ( 1 + n 2 ) 2 } ε o E o 2 .
d q z d t = 2 [ ( n 2 + 1 ) ( n + 1 ) 2 ] ε o E o 2 ,
E x ( z , t ) = [ 2 E o ( n 1 + 1 ) ] sin { 2 π f 1 [ ( n 1 z c ) t ] } [ 2 E o ( n 2 + 1 ) ] sin { 2 π f 2 [ ( n 2 z c ) t ] }
H y ( z , t ) = { 2 n 1 E o [ Z o ( n 1 + 1 ) ] } sin { 2 π f 1 [ ( n 1 z c ) t ] }
{ 2 n 2 E o [ Z o ( n 2 + 1 ) ] } sin { 2 π f 2 [ ( n 2 z c ) t ] }
< S z ( z , t ) > = 1 2 { [ 4 n 1 ( n 1 + 1 ) 2 ] + [ 4 n 2 ( n 2 + 1 ) 2 ] } E o 2 Z o .
d q z d t = p z V g = 4 n ε o E o 2 [ ( n + n f ) ( n + 1 ) 2 ] .
J x ( z , t ) = P x ( z , t ) t = 4 π f 1 ( n 1 1 ) ε o E o cos { 2 π f 1 [ ( n 1 z c ) t ] }
+ 4 π f 2 ( n 2 1 ) ε o E o cos { 2 π f 2 [ ( n 2 z c ) t ] } .
F z ( t ) ( 2 ε o E o 2 ) = { [ n 1 n 2 ( n 1 f 2 n 2 f 1 ) ( n 2 f 2 n 1 f 1 ) ] [ ( n 1 + 1 ) ( n 2 + 1 ) ] } { 1 cos [ 2 π ( f 2 f 1 ) t ] }
{ ( n 2 n 1 ) ( f 2 f 1 ) [ ( n 1 + 1 ) ( n 2 + 1 ) ( n 1 f 1 + n 2 f 2 ) ] } cos [ 4 π ( n 2 n 1 ) f 1 f 2 t ( n 2 f 2 n 1 f 1 ) ]
+ { [ n 1 n 2 ( n 1 f 2 + n 2 f 1 ) ( n 1 f 1 + n 2 f 2 ) ] [ ( n 1 + 1 ) ( n 2 + 1 ) ] } cos [ 2 π ( f 1 + f 2 ) t ]
1 2 [ ( n 1 1 ) ( n 1 + 1 ) ] cos ( 4 π f 1 t ) 1 2 [ ( n 2 1 ) ( n 2 + 1 ) ] cos ( 4 π f 2 t ) .
< F z > = ( 1 T ) 0 T F z ( t ) d t = 2 ε o E o 2 [ n 1 n 2 ( n 1 f 2 n 2 f 1 ) ( n 2 f 2 n 1 f 1 ) ] [ ( n 1 + 1 ) ( n 2 + 1 ) ] .
< F z > = 2 { n 2 [ ( n n f ) ( n + n f ) ] } ε o E o 2 ( n + 1 ) 2 .
p z V g + < F z > = 2 [ ( n 2 + 1 ) ( n + 1 ) 2 ] ε o E o 2 .
ρ = [ 1 + i ( κ 2 n ) ] ( 2 π κ d λ o ) ,
τ = 1 ( 2 π κ d λ o ) + i [ 2 n ( κ 2 n ) ] π d λ o .
γ = 1 2 ( 1 ρ 2 τ 2 ) n E o 2 Z o = ( 2 π n κ d λ o ) E o 2 Z o .
< F z > = ( 2 π n 2 κ d λ o ) ε o E o 2 .

Metrics