Abstract

The microring-assisted (MRA) Mach-Zehnder (MZ) modulator offers a potential solution to attaining highly linear optical modulators. In this paper, the influence of waveguide loss on the linearity property of the MRA-MZ modulator is analyzed. The way to choose the biasing points is introduced. Analysis shows that the linearity of the MRA-MZ modulator is high, even at low-loss conditions. By properly setting the biasing phases, the 2nd - and 3rd-order harmonic terms of the modulation curve can be removed. The linearity range can reach 90% when the round-trip loss of the microring is less than 3 dB. The maximum modulation depth is the main factor that limits the linearity range of the modulation curve when the loss is large, but with proper power ratio setting between the two arms of the MZ interferometer, the intrinsic maximum modulation depth can be improved and the linearity range can be kept large.

© 2004 Optical Society of America

1. Introduction

Optical modulators are one of the key components for signal transmission and transduction systems, and various types have been reported [1–4]. With the rapidly increasing demand for linear external modulators in recent years, practically viable solutions to improving the modulation linearity are highly desired. Although a number of approaches to improve the linearity of the modulation characteristic have been proposed and applied [5–10], the improvement of the modulation linearity by almost all methods comes at the expense of simplicity of the device design, and up to now no practical device has been found. As we know, the Mach-Zehnder (MZ) interferometer is one of the simplest and most widely used configurations of optical modulators, but the large nonlinear distortion adversely affects its performance and limits its applications, especially in the analog signal processing and transmission systems. The nonlinearity of the MZ modulator is mainly caused by the sinusoidal modulation curve, showing the sublinear characteristic, and so that the linearity may be enhanced by applying super-linear phase modulation to the arm(s) of the MZ interferometer. The microring resonator is a potential and powerful structure that has been used in many applications of optical passive components, such as optical filters and optical dispersion compensators [11–14]. In [15], it was proposed that the microring-based all-pass filter (MRB-APF) could be used to achieve the super-linear characteristic and thus to improve the linearity of the MZ interferometric modulator. Since loss makes heavy impact on the response of the microring resonator, it is very important to clearly know the role of the waveguide loss in the microring-assisted (MRA) MZ intensity modulator. In this paper, the influence of loss on the linearity characteristic of the MRA-MZ modulator is investigated. It will be found that the linearity of the MRA-MZ modulator can still be high at low-loss cases, but phase biasing should be set properly. Large loss will seriously cause power imbalance between two arms of the MZ interferometer and result in limited modulation depth.

2. Basic principle

 

Fig. 1. Schematic diagram of the linearity-enhanced MZ modulator with a microring resonator coupled to one of its arms. The modulation signal is applied to the microring.

Download Full Size | PPT Slide | PDF

The MRA-MZ intensity modulator is schematically shown in Fig. 1, in which a microring resonator is coupled with one of the arms of the MZ interferometer, forming an all-pass filter (APF). The modulation signal is applied to the microring, modulating the output phase of the all-pass filter and then resulting in the intensity-modulated output of the MZ interferometer. Applying two microrings can form a push-pull configuration, as discussed in [15], but the device operation becomes complicated if the influence of loss is taken into account, so in this paper, we only focus on the single-ring-assisted MZ modulator, as the basic configuration.

The output intensity of the MRA-MZ modulator can be written as:

Iout=I04[σ012ar2(θ)+σ022+2σ01σ02ar(θ)cos(φ1+φr(θ)φ2)]

where I 0 is the intensity of the input light, σ 0i = exp (-α 0i L 0i) is the amplitude attenuation factor of arm i (=1, 2), and φ i = β 0i L 0i is the phase delays introduced by arm i (=1, 2). α 0i, β 0i, and L 0i are the amplitude attenuation coefficient, the propagation constant, and the waveguide length of arm i (=1, 2), respectively. The intensity and phase response, ar2(θ) and φr (θ), of the microring-based APF can be written as follows, respectively:

ar2(θ)=ρ2+σ22σρcosθ1+σ2ρ22σρcosθ
φr(θ)=arctan[(1+ρ2)σsinθ(1+σ2)ρσcosθ(1+ρ2)]

Here ρ=1κ2 is the transmission coefficient and κ is the ring-waveguide amplitude coupling coefficient, σ = exp (-α r L r) is the round-trip amplitude attenuation factor, α r is the amplitude attenuation coefficient of the microring, and θ is the phase delay of the light with a wavelength λ0 in a round trip Lr of the microring. Generally we can assume that the two arms of the MZ interferometer are identical, i.e. σ 01=σ 02, then Eq. (1) can be rewritten as follows:

Iout=I0σ0124[1+ar2(θ)+2ar(θ)cos(Δφ+φr(θ))]

where Δφ= φ 1 - φ 2 is the phase delay difference of the two arms, which can also be regarded as the phase bias applied on the arms of the MZ interferometer. If waveguide loss is neglectable, i.e. σ 01=σ 02=1 and σ=1, it can be found that the linearity of the MZ modulator can be significantly improved when Δφ is biased to be (m+1/2)π, where m is integer. Owning to the periodicity, we just consider Δφ, θ, and other phase-related parameters in the range from -π to π in the following text.

3. High-order harmonic terms

To assess the linearity of an optical modulator, two criterions are commonly used [16, 5, 9]. One criterion is the level of the spurious signals, also known as the nonlinear distortions, caused by the high-order harmonic terms of the modulation curve. This criterion is commonly used when the optical modulator with a large spur-free dynamic range is expected. In this section, we will analyze the linearity in terms of the high-order harmonic terms of the modulation curve.

For the MRA-MZ modulator, its transfer function given by Eq. (4) can be written in a series of the high-order harmonic terms of Δθ=θ - θ 0:

Iout(Δθ)=I0σ012n1nI(n)(0)(Δθ)n

where I(n)(Δθ)=1I0σ012dIoutn(Δθ)dn(Δθ) is the normalized coefficient of the nth-order harmonic term and θ 0 is the phase bias applied on the microring. If the waveguide loss is ignored, the even-order distortion of the modulation curve given by Eq. (4) can been eliminated by setting Δφ to be π/2 and θ 0 to be π. Analysis shows that the 3rd -order term also vanishes when the transmission coefficient ρ is at the value of 0.268 (=2 - √3), and then the lowest high-order distortion will come from the 5th -order harmonic term.

If the loss of the microring is taken into account, a 2 r(θ) is no longer kept unit, and from Eq. (4), it can be found that the modulation curve is no longer antisymmetric around the point π, the biasing point of the loss-free MRA-MZ modulator. The modulation curve with the biasing points Δφ = π/2 and θ0= π is distorted.

 

Fig. 2. General case of modulation curve (solid) and relocation of the biasing phase θ 0.

Download Full Size | PPT Slide | PDF

To analyze the influence of loss on the modulation curve of the MRA-MZ modulator, the biasing points Δφ and θ 0 should be determined first. We investigated the higher-order terms of Eq. (5) with various transmission coefficients ρ. It is well known that the 2nd -order distortions can be effectively suppressed by biasing the modulator to the inflection point. For the modulation curve shown in Fig. 2, we choose the center point between θMax and θMin as the biasing point θ 0 applied on the microring:

θ0=θMax+θMin2

where θMax and θMin correspond the two points at which the output I out of the MRA-MZ modulator reaches its maximum and minimum values, respectively. Then, analysis shows that the second-order coefficient I“(0) can always find its zero point at a certain biasing phase Δφ. We choose this value of Δφ as phase bias applied on the arms of the MZ interferometer. Under various transmission coefficients ρ, Δφ that makes I“(0) zero is shown in Fig. 3(a), in which the attenuation factor σ is assumed to be 1.0, 0.8, 0.5, and 0.3, respectively. It can be found that Δφ shift away from π/2, and varies with ρ, while analysis shows that the corresponding biasing point θ 0 applied on the microring is still at the value of π. Figure 3(b) gives the corresponding 3rd -order coefficient. From these analytical results, we can conclude that the 2nd -order terms of the MRA-MZ modulator can always be eliminated by properly setting the biasing phases Δφ and θ 0.

 

Fig. 3. Phase bias applied on the arms, at which the 2nd -order harmonic term of the modulation curve vanishes. The corresponding 3rd-order term is shown in (b).

Download Full Size | PPT Slide | PDF

From Fig. 3(b), we can find that, for each σ, there always a ρ with which the 3rd -order coefficient I’’’(0) also vanishes. For comparison, based on Fig. 3(c), we can derive that the 3rd -order term of the traditional MZ modulator (θ = 0) always exists. We calculated the transmission coefficient θ for various σ, and Fig. 4(a) illustrates the results. The corresponding biasing points Δφ is presented in Fig. 4(b) and θ 0 is π. The 1st- and 5th -order coefficients are illustrated in Fig. 4(c) while the 4th -order coefficient is at least 7-order smaller than the 1st -order coefficient and neglectable though the 4th -order coefficient is no longer zero. With these data, we will be able to design and fabricate the 3rd-order-free linearized MRA-MZ modulator. We can also calculate the nonlinear distortion caused by the high-order terms of these modulation curves if the MRA-MZ modulator is used in a system.

It should be noted that the 1st-order coefficient rapidly goes to zero as the loss increases. It means that the transfer efficiency of the modulation signal becomes lower in the lossy cases though the lowest two high-order harmonic terms, the 2nd - and 3rd -order terms, can be suppressed. The 4th-order coefficient I (4) is not kept zero any longer at the biasing point if loss exists. It means that the 4th-order term becomes the lowest high-order distortion source. Certainly, compared to the 5th -order term, the 4th -order coefficient is very small.

 

Fig. 4. (a) Transmission coefficient, with which both the 2nd- and 3rd-order harmonic terms of the modulation curve vanish, and (b) the corresponding phase bias applied on the arms of the MZ interferometer. The 1st- and 5th-order terms are in (c).

Download Full Size | PPT Slide | PDF

As we know, the fabrication error is unavoidable and it is hard to achieve the MRA-MZ modulator with the right transmission coefficient ρ and attenuation factor σ presented in Fig. 4(a). However, based our analysis, we found that there is always a pair of biasing phases Δφ and θ 0 at which the 2nd - and 3rd -order terms of the MRA-MZ modulator can be zero. Certainly, this biasing point θ 0 is not at the center point between θMax and θMin , and so the modulation efficiency will be limited.

4. Range of linearity

The linearity range of the modulation curve [5, 9] is another quantitative criterion. The linearity range, in fact, is the maximum modulation depth at which the deviation of the modulation curve from the best linear fit is still lower than a specified value η. It is a very important parameter to evaluate the lightwave transmission efficiency of an analog system. Assuming that the best linear fit is f = fθ), we have the following expression of the linearity range m:

m=IoutUIoutLIoutMax

where IoutU and IoutL are the output intensities corresponding to the upper and lower limits Δθ U and Δθ L of the phase change range within which the following deviation condition is satisfied:

Iout(Δθ)f(Δθ)ηΔIoutMax,whereΔθLΔθΔθU

Here, as shown in Fig. 2, ΔIoutMax = IoutMax - IoutMin , and IoutMax and IoutMin are the maximum and minimum intensities of the output, respectively. Commonly η was specified as 1% [5, 9].

Setting Δφ = π/2 and θ 0= π, we calculated the linearity range of the MRA-MZ modulator at the no loss case. Figure 5(a) shows the calculation result. It can be found that the linearity range is always larger than 90% when ρ is set between 0.25 to 0.42 and the maximum value can even reach up to 99.5% at ρ ≈ 0.42. In comparison, when ρ is zero, the linearity range is only about 72%, which is the value of the traditional MZ modulator. Figure 5(b) illustrates the modulation curve of the MRA-MZ modulator with ρ ≈ 0.35 and σ = 1.0. The best linear fit fθ) = 0.5-0.485Δθ and the deviation [Ioutθ)- fθ)]/IoutMax of the modulation curve are also presented in this figure. The linearity range of this modulation curve is 97.3%.

As analyzed in the last section, if the waveguide loss is taken into account, the modulation curve around the biasing points Δφ = π/2 and θ 0= π is distorted. To acquire higher modulation linearity, the biasing points Δφ and θ 0 should be relocated. The method to eliminate the 2nd -order harmonic term of the modulation curve, as introduced in the last section, is used again to obtain the values of Δφ and θ 0 for the MRA-MZ modulator with various loss and microring coupling coefficients. Based on the data given by Fig. 3, the linearity range of the MRA-MZ modulator with various transmission coefficients ρ is calculated and illustrated in Fig. 6. It can be found that the maximum linearity range decreases as the loss increases. However, the linearity range is kept above 90% within a rather large range of the transmission coefficient ρ if the attenuation factor is larger than 0.7, which corresponds to the round-trip loss of about 3 dB. This data shows that the fabrication tolerance of high-linearity MRA-MZ modulators is large if the loss can be controlled at a low level.

 

Fig. 5. (a) Linearity range m of the MRA-MZ modulator at the loss-free case. (b) Modulation curve of the MRA-MZ modulator with the transmission coefficient of 0.35 and the deviation.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Linearity range versus transmission coefficient under different attenuation factors.

Download Full Size | PPT Slide | PDF

 

Fig. 7. (a) Maximum linearity range m and m’ of the MRA-MZ modulator with various attenuation factors, and (b) the corresponding transmission coefficient. The corresponding phase bias applied on the arms of the MZ interferometer is in (c).

Download Full Size | PPT Slide | PDF

The solid line in Fig. 7(a) presents the maximum linearity range m of the MRA-MZ modulator with various microring losses. The corresponding ρ and Δφ are presented in Figs. 7(b) and (c), respectively. It can be found that m decreases as the loss increases. Since the amplitude response of the MRB-APF will attenuated severely if the microring loss exists, causing the power imbalance between the two arms of the MZ interferometer, the maximum modulation depth, defined as MDMax=ΔIoutMaxIoutMax,, of the transfer function given by Eq. (4) will becomes less than unit. It means that loss will introduce an intrinsic limitation to the linearity range of the MRA-MZ modulator. Replacing the denominator of Eq. (7) with ∆IoutMax and defining m'=IoutUIoutLΔIoutMax, we calculated m’, as shown by the dash line in Fig. 7(a) and found that m’ is always larger than 99% when σ is larger than 0.4. It means the intrinsic maximum modulation depth of the modulation curve is the main factor that limits the linearity range m.

 

Fig. 8. Modulation curve of the MRA-MZ modulator with (a) the imbalance ratio ζ = 1.4 and (b) the balance ratio ζ =1.0.

Download Full Size | PPT Slide | PDF

To improve the linearity range m, we can intentionally set the power imbalanced between the two arms of the MZ interferometer, which can be realized by properly setting the splitting ratio of the two Y-branch couplers, and then Eq. (4) should be revised as

Iout=I0σ0122(1+ζ2)[1+ζ2ar2(θ)+2ζar(θ)cos(Δφ+φr(θ))]

where ζ is the power imbalance factor introduced by the unequally splitting ratio of the two Y-branch couplers of the MZ interferometer. From Eq. (9), it can be noted that the intrinsic maximum modulation depth can be enlarged back to unit by increasing the factor ζ. Figure 8(a) shows an example, in which ζ is 1.4. Though the attenuation factor is 0.5, corresponding to the round-trip loss of about 6dB, the linearity range can still reach up to 98.6%. For comparison, the modulation curve of the MRA-MZ modulator with the balanced power ratio is illustrated in Fig. 8(b), in which the linearity range is only 77.2% while its m’ is 94.9%.

5. Conclusion

In this paper, the influence of the waveguide loss on the linearity of the MRA-MZ modulator is investigated. The linearity of the MRA-MZ modulator is greatly high, even at the low-loss case. The 2nd- and 3rd-order terms of the MRA-MZ modulator can be eliminated by properly setting the biasing phases Δφ and θ 0, and the maximum linearity range is larger than 90% when the attenuation factor σ is larger than 0.7. Analysis shows that the maximum modulation depth is the main factor limiting the linearity range of the modulation curve. By properly setting the power ratio between the two arms of the MZ interferometer, the intrinsic maximum modulation depth can be improved and the linearity range can be kept large even at large loss conditions.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 60377030, the Major State Basic Research Development Program under Grant G1999033104, and Chinese Academy of Science under Grant CXJJ-73.

References and links

1. R. Alferness, “Waveguide electrooptic modulators,” IEEE T. Microwave Theory and Techniques 82, 1121–1137 (1982) [CrossRef]  

2. J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica , 17, 581–585 & 782–785 (1997)

3. Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000) [CrossRef]  

4. J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004) [CrossRef]  

5. E. Zolotov and R. Tavlykaev, “Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,” Sov. J. Quantum Electron. 18, 401–402 (1988) [CrossRef]  

6. S. Korotky and R. Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990) [CrossRef]  

7. M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991) [CrossRef]  

8. A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869–872 (1992) [CrossRef]  

9. R. Tavlykaev and R. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17282–291 (1999) [CrossRef]  

10. Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004) [CrossRef]  

11. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998) [CrossRef]  

12. J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003) [CrossRef]  

13. Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004) [CrossRef]  

14. C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (John Wiley & Sons, Inc., New York, 1999)

15. X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003) [CrossRef]  

16. G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986) [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. Alferness, “Waveguide electrooptic modulators,” IEEE T. Microwave Theory and Techniques 82, 1121–1137 (1982)
    [Crossref]
  2. J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)
  3. Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
    [Crossref]
  4. J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
    [Crossref]
  5. E. Zolotov and R. Tavlykaev, “Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,” Sov. J. Quantum Electron. 18, 401–402 (1988)
    [Crossref]
  6. S. Korotky and R. Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990)
    [Crossref]
  7. M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
    [Crossref]
  8. A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869–872 (1992)
    [Crossref]
  9. R. Tavlykaev and R. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17282–291 (1999)
    [Crossref]
  10. Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
    [Crossref]
  11. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
    [Crossref]
  12. J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
    [Crossref]
  13. Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
    [Crossref]
  14. C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (John Wiley & Sons, Inc., New York, 1999)
  15. X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
    [Crossref]
  16. G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
    [Crossref]

2004 (3)

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
[Crossref]

2003 (2)

X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

2000 (1)

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

1999 (1)

1998 (1)

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

1997 (1)

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

1992 (1)

A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869–872 (1992)
[Crossref]

1991 (1)

M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
[Crossref]

1990 (1)

S. Korotky and R. Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990)
[Crossref]

1988 (1)

E. Zolotov and R. Tavlykaev, “Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,” Sov. J. Quantum Electron. 18, 401–402 (1988)
[Crossref]

1986 (1)

G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
[Crossref]

1982 (1)

R. Alferness, “Waveguide electrooptic modulators,” IEEE T. Microwave Theory and Techniques 82, 1121–1137 (1982)
[Crossref]

Alferness, R.

R. Alferness, “Waveguide electrooptic modulators,” IEEE T. Microwave Theory and Techniques 82, 1121–1137 (1982)
[Crossref]

Bechtel, J.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Betts, G.

G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
[Crossref]

Chang, W.

M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
[Crossref]

G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
[Crossref]

Chen, R.

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

Chow, F.

X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
[Crossref]

Chu, S.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Dalton, L.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Djupsjobacka, A.

A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869–872 (1992)
[Crossref]

Farwell, M.

M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
[Crossref]

Foresi, J.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Greene, W.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Hanai, T.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
[Crossref]

Hatakeyama, Y.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
[Crossref]

Haus, H.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Howley, B.

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

Ippen, E.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Jiang, X.

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

Jiang, Y.

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

Kang, J.

X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
[Crossref]

Khurgin, J.

X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
[Crossref]

Kimerling, L.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Kokubun, Y.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
[Crossref]

Korotky, S.

S. Korotky and R. Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990)
[Crossref]

Lin, Z.

M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
[Crossref]

Little, B.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Madsen, C.

C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (John Wiley & Sons, Inc., New York, 1999)

Mathis, R.

G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
[Crossref]

Ramaswamy, R.

Ridder, R.

S. Korotky and R. Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990)
[Crossref]

Robinson, B.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Shi, Z.

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

Steier, W.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Steinmeyer, G.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Suzuki, S.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
[Crossref]

Tada, K.

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Takahasi, Y.

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Tavlykaev, R.

R. Tavlykaev and R. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol. 17282–291 (1999)
[Crossref]

E. Zolotov and R. Tavlykaev, “Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,” Sov. J. Quantum Electron. 18, 401–402 (1988)
[Crossref]

Thoen, E.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Walpita, L.

G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
[Crossref]

Wang, M.

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Wooten, E.

M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
[Crossref]

Wu, T.

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Wu, Z.

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Xie, X.

X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
[Crossref]

Yang, J.

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Zhao, F.

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

Zhao, J.

C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (John Wiley & Sons, Inc., New York, 1999)

Zhou, Q.

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

Zolotov, E.

E. Zolotov and R. Tavlykaev, “Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,” Sov. J. Quantum Electron. 18, 401–402 (1988)
[Crossref]

Acta Optica Sinica (1)

J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, and K. Tada, “GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment,” Acta Optica Sinica,  17, 581–585 & 782–785 (1997)

IEEE J. Quantum Electron. (1)

G. Betts, L. Walpita, W. Chang, and R. Mathis, “On the linear dynamic range of integrated electrooptical modulators,” IEEE J. Quantum Electron. 22, 1009–1011 (1986)
[Crossref]

IEEE J. Select. Areas Commun. (1)

S. Korotky and R. Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun. 8, 1377–1381 (1990)
[Crossref]

IEEE Photon. Technol. Lett. (6)

M. Farwell, Z. Lin, E. Wooten, and W. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–795 (1991)
[Crossref]

A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869–872 (1992)
[Crossref]

J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, “Polymer-based electro-optical circular-polarization modulator,” IEEE Photon. Technol. Lett. 16, 96–98 (2004)
[Crossref]

X. Xie, J. Khurgin, J. Kang, and F. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003)
[Crossref]

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998)
[Crossref]

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett. 16, 473–475 (2004)
[Crossref]

IEEE T. Microwave Theory and Techniques (1)

R. Alferness, “Waveguide electrooptic modulators,” IEEE T. Microwave Theory and Techniques 82, 1121–1137 (1982)
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, and R. Chen, “Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,” Opt. Commun. 22891–98 (2003)
[Crossref]

Opt. Eng. (1)

Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, “Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator,” Opt. Eng. 43, 806–811 (2004)
[Crossref]

Science (1)

Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000)
[Crossref]

Sov. J. Quantum Electron. (1)

E. Zolotov and R. Tavlykaev, “Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,” Sov. J. Quantum Electron. 18, 401–402 (1988)
[Crossref]

Other (1)

C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (John Wiley & Sons, Inc., New York, 1999)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the linearity-enhanced MZ modulator with a microring resonator coupled to one of its arms. The modulation signal is applied to the microring.

Fig. 2.
Fig. 2.

General case of modulation curve (solid) and relocation of the biasing phase θ 0.

Fig. 3.
Fig. 3.

Phase bias applied on the arms, at which the 2nd -order harmonic term of the modulation curve vanishes. The corresponding 3rd-order term is shown in (b).

Fig. 4.
Fig. 4.

(a) Transmission coefficient, with which both the 2nd- and 3rd-order harmonic terms of the modulation curve vanish, and (b) the corresponding phase bias applied on the arms of the MZ interferometer. The 1st- and 5th-order terms are in (c).

Fig. 5.
Fig. 5.

(a) Linearity range m of the MRA-MZ modulator at the loss-free case. (b) Modulation curve of the MRA-MZ modulator with the transmission coefficient of 0.35 and the deviation.

Fig. 6.
Fig. 6.

Linearity range versus transmission coefficient under different attenuation factors.

Fig. 7.
Fig. 7.

(a) Maximum linearity range m and m’ of the MRA-MZ modulator with various attenuation factors, and (b) the corresponding transmission coefficient. The corresponding phase bias applied on the arms of the MZ interferometer is in (c).

Fig. 8.
Fig. 8.

Modulation curve of the MRA-MZ modulator with (a) the imbalance ratio ζ = 1.4 and (b) the balance ratio ζ =1.0.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I out = I 0 4 [ σ 01 2 a r 2 ( θ ) + σ 02 2 + 2 σ 01 σ 02 a r ( θ ) cos ( φ 1 + φ r ( θ ) φ 2 ) ]
a r 2 ( θ ) = ρ 2 + σ 2 2 σρ cos θ 1 + σ 2 ρ 2 2 σρ cos θ
φ r ( θ ) = arctan [ ( 1 + ρ 2 ) σ sin θ ( 1 + σ 2 ) ρ σ cos θ ( 1 + ρ 2 ) ]
I out = I 0 σ 01 2 4 [ 1 + a r 2 ( θ ) + 2 a r ( θ ) cos ( Δ φ + φ r ( θ ) ) ]
I out ( Δ θ ) = I 0 σ 01 2 n 1 n I ( n ) ( 0 ) ( Δ θ ) n
θ 0 = θ Max + θ Min 2
m = I out U I out L I out Max
I out ( Δ θ ) f ( Δ θ ) η Δ I out Max , where Δ θ L Δ θ Δ θ U
I out = I 0 σ 01 2 2 ( 1 + ζ 2 ) [ 1 + ζ 2 a r 2 ( θ ) + 2 ζ a r ( θ ) cos ( Δ φ + φ r ( θ ) ) ]

Metrics