Abstract

We demonstrate unrestricted superlensing in a triangular two-dimensional photonic crystal. We investigate simple two-point light sources imaged by a slab lenses made of this photonic crystal, and show that the refraction of light follows simple rules of geometric optics with the Snell’s-law refraction at each interface, and an effective isotropic refractive index n=-1 for light propagating inside the crystal. We contrast this behavior with that of a square two-dimensional photonic crystal in the first photonic band, where the effective dielectric response is anisotropic. This leads to a restricted superlensing, which does not follow the geometric optics.

©2004 Optical Society of America

Materials with isotropic refractive index n=-1 have exotic optical properties. Such materials restore not only phases of the transmitted propagating waves, but also amplitudes of the evanescent waves, that are responsible for the subwavelength details of source geometry, and were proposed to make a superlens capable of subwavelength imaging [12]. Since such materials do not exist naturally, proposals have been put forth in recent years to artificially synthesize them. In one scheme [36], an effective medium made of metallic rods, and the so-called split-ring resonators, has been shown to act as such a metamedium in the microwave frequency range. Other similar schemes have also been proposed [78].

In another approach, it has been shown that a two-dimensional photonic crystal (2D-PC) can act as a metamedium [911], however the superlensisng has not been demonstrated. Recently, it was shown that the propagation of light in a square 2D-PC in the first photonic band leads to an all angle negative refraction (AANR), which leads to superlensing, but where an isotropic negative refractive index cannot be defined [12]. The negative refraction and the slab focusing in the second photonic band have recently been demonstrated experimentally in square 2D-PC, again in the microwave frequency range [13]. However, in the theoretical and experimental imaging studies [1216], the distance between the point source and the edge of the PC slab was less than the lattice constant of the PC. Recently, it was shown that imaging in a square 2D-PC, in the AANR mode, does not follow rules of geometric optics, and that a channeling, rather than isotropic wave propagation occurs inside the PC [17]. This shows that the imaging capabilities are restricted in this PC. In this paper we clarify this issue, and identify a 2D-PC capable of efficient, unrestricted superlensing.

 figure: Fig. 1.

Fig. 1. Calculated photonic band structures for (a) square 2DPC with air-holes of radius r=0.35a, in a dielectric matrix with ε=12, and (b) triangular 2DPC with air-holes of radius r=0.4a, in a dielectric matrix with ε=12.96. Insets: constant frequency contours for (a) ω 1=0.192 and (b) ω 2=0.305.

Download Full Size | PPT Slide | PDF

The PCs studied in this letter consist of a periodic (in the x-y plane) array of infinitely long, cylindrical (along z-direction) air-holes of radius r, embedded in a thick slab of dielectric matrix. Each PC is assumed to have a finite width in the x-direction, but is unrestricted in the y direction. We obtain photonic band structures by numerically solving the Maxwell equations. We employ here the standard plane wave expansion [18]. To obtain maps of propagating waves, we use the finite-difference time-domain (FDTD) simulations with perfectly matched layer boundary conditions [1921].

We first study the square PC, which became a structure of choice in the experimental studies of the negative refraction. It was shown, that AANR can occur in this PC [12]. We choose parameters of Ref. [12], i.e., hole radius r=0.35a, where the lattice constant is a, and the dielectric matrix with dielectric constant ε=12. The calculated band structure (normalized frequency ω=a/λ vs. wave vector k) for the transverse electric (TE) mode (the magnetic field parallel to air holes) is shown in Fig. 1(a). The AANR occurs at the top of the first band (around the M-point), indicated by the horizontal dashed line for ω=ω 1. The inset in Fig. 1(a) shows the constant frequency contour obtained by crossing the first band with the equal energy surface for ω=ω 1. The fact that it is not circular, suggest a strong anisotropy of the wave propagation in this PC. As a result, the PC cannot be represented as an effective medium with an isotropic refractive index, and instead a refractive index tensor must be used. In fact, a channeling of the wave propagation in the ΓM and equivalent directions is expected [17], due to larger group velocities of propagating waves in these directions.

 figure: Fig. 2.

Fig. 2. (a) The propagation map (magnetic field distribution across space) for a slab of the square 2D-PC (the corresponding band structure in Fig.1a), for two thicknesses of the slab, and the point source frequency ω 1=0.192. (b) The corresponding sketches of geometric optics analysis, showing that for a thicker slab (lower panel) the image must be further away from the crystal edge.

Download Full Size | PPT Slide | PDF

In order to study this effect in detail, we calculate the wave propagation maps. We turn-on a point source of cylindrical waves with frequency ω=ω 1 at time t 0, outside and to the left of the slab of the PC, and calculate the field patterns at some later time t. Figure 2 shows the calculated magnetic field pattern at the steady state (t→∞) for two different thicknesses of the slab, and demonstrates that the positions of the image and the source do not obey the geometric optics, since in order for this to happen, the distance of the image from the slab surface would have to be larger for a thicker slab. This is illustrated in Fig. 2 by sketches of geometric optics rays. In fact, a closer inspection of the images shows that instead of the expected focus inside the PC, there is a channel of propagation perpendicular to the slab surface (ΓM direction), in agreement with the argument based on the anisotropy of the equal frequency contour, as discussed above. Increasing the distance of the source from the slab surface, causes the image to disappear inside the slab. By plotting the light intensity across the image, we find that the spatial resolution in this case, as measured by full width at half maximum, is about ts=0.3λ . This all suggests, that the superlensing in this crystal is restricted, and the image formation possible only in the highly non-geometric near-lens mode.

 figure: Fig. 3.

Fig. 3. The propagation map (electric field distribution across space) for a slab of the triangular 2D-PC (the corresponding band structure in Fig.1b), for varying source positions and thickness of the slab. The point source frequency is ω 2=0.305. Positions of the images follow the geometric optics analysis, in which the PC is considered a metamedium with n=-1, and Snell’s-law refraction occurs at each interface.

Download Full Size | PPT Slide | PDF

Let’s now consider the triangular 2D-PC. Now we choose parameters used in Ref. [9], i.e., r=0.4a and ε=12.96. The photonic band structure for the transverse magnetic (TM) modes (the electric field parallel to cylindrical holes) is show in Fig. 1(b). The horizontal dashed line with frequency ω 2 indicates the best frequency for the superlensing. The corresponding constant frequency contour is now circular. The propagation of the waves is therefore isotropic, and one can define an isotropic effective refractive index. Fig. 3 shows the propagation maps for this case, for various positions of the point source, and thickness of the slab. It can be easily shown, for example by drawing traces of the rays between the sources and the corresponding images, that now the PC acts as a metamedium whit n=-1, and therefore the superlensing is unrestricted. Again, by plotting light intensity across the image, we find that the spatial resolution in this case is about tH=0.4λ.

 figure: Fig. 4.

Fig. 4. The propagation map (electric field distribution across space) for a slab of the triangular 2D-PC, for a two point source in a vertical (a), and horizontal (b) positions.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. Light intensity across the image of two vertical point sources for three different distances between sources.

Download Full Size | PPT Slide | PDF

In order to demonstrate the superlens imaging, we show in Fig. 4 wave propagation maps for a two-point source, differently located in front of the slab of the triangular 2D-PC. One obtains clear images of the two points in either horizontal, or vertical configurations. By reducing the distance between the two point sources well below the wavelength, we can test the possibility of the subwavelength resolution. Fig. 5 shows the light intensity across the image of two vertical point sources for different distances between the sources.

In conclusion, we show that the imaging is restricted only to the near-lens in the square crystal in the AANR mode of operation. We trace this to an anisotropic geometry of the constant frequency contour in the relevant section of the photonic band structure. In contrast, we show that in a triangular 2D-PC, a highly circular constant frequency contour can be chosen in a relevant band, and as a result an isotropic propagation of the refracted waves occurs. Thus this PC can act as an isotropic effective metamedium with an effective refractive index n=-1, and therefore capable of unrestricted superlensing. The possibility of improving the spatial resolution of the superlensing will be discussed elsewhere.

Acknowledgments

This work is supported by US Army Research Development and Engineering Command, Natick Soldier Center, under the grant DAAD16-03-C-0052.

References and links

1. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]   [PubMed]  

2. J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463 (2002). [CrossRef]  

3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999). [CrossRef]  

4. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996). [CrossRef]   [PubMed]  

5. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]   [PubMed]  

6. R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001). [CrossRef]   [PubMed]  

7. G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003). [CrossRef]  

8. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930 (2002). [CrossRef]  

9. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10 696 (2000). [CrossRef]  

10. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003). [CrossRef]   [PubMed]  

11. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003). [CrossRef]  

12. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]  

13. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003). [CrossRef]  

14. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003). [CrossRef]  

15. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003). [CrossRef]  

16. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef]   [PubMed]  

17. Zhi-Yuan Li and Lan-Lan Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003). [CrossRef]  

18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

19. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302 (1966). [CrossRef]  

20. A. Taflove, Computational Electrodynamics—the Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 1995).

21. J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref] [PubMed]
  2. J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463 (2002).
    [Crossref]
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
    [Crossref]
  4. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
    [Crossref] [PubMed]
  5. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
    [Crossref] [PubMed]
  6. R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001).
    [Crossref] [PubMed]
  7. G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
    [Crossref]
  8. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930 (2002).
    [Crossref]
  9. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10 696 (2000).
    [Crossref]
  10. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003).
    [Crossref] [PubMed]
  11. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
    [Crossref]
  12. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
    [Crossref]
  13. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
    [Crossref]
  14. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
    [Crossref]
  15. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
    [Crossref]
  16. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
    [Crossref] [PubMed]
  17. Zhi-Yuan Li and Lan-Lan Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
    [Crossref]
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  19. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302 (1966).
    [Crossref]
  20. A. Taflove, Computational Electrodynamics—the Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 1995).
  21. J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
    [Crossref]

2003 (8)

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003).
[Crossref] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[Crossref]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Zhi-Yuan Li and Lan-Lan Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[Crossref]

2002 (3)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930 (2002).
[Crossref]

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463 (2002).
[Crossref]

2001 (1)

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

2000 (3)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10 696 (2000).
[Crossref]

1999 (1)

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[Crossref]

1996 (1)

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

1994 (1)

J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302 (1966).
[Crossref]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Berenger, J.

J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Economou, E. N.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003).
[Crossref] [PubMed]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930 (2002).
[Crossref]

Foteinopoulou, S.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003).
[Crossref] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930 (2002).
[Crossref]

Holden, A.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[Crossref]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[Crossref]

Li, Zhi-Yuan

Zhi-Yuan Li and Lan-Lan Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[Crossref]

Lin, Lan-Lan

Zhi-Yuan Li and Lan-Lan Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[Crossref]

Lu, W. T.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
[Crossref]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Nemat-Nasser, S.C.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10 696 (2000).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Padilla, W.J.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Parimi, P. V.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
[Crossref]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[Crossref]

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463 (2002).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[Crossref]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

Pendry, J.B.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[Crossref]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463 (2002).
[Crossref]

Robbins, D.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[Crossref]

Schultz, S.

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Shelby, R.A.

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Shvets, G.

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

Smith, D.R.

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003).
[Crossref] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

Sridhar, S.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
[Crossref]

Stewart, W.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[Crossref]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Taflove, A.

A. Taflove, Computational Electrodynamics—the Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 1995).

Vier, D.C.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Vodo, P.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302 (1966).
[Crossref]

Youngs, I.

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302 (1966).
[Crossref]

IEEE Trans. Microwave Theory Technol. (1)

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[Crossref]

J. Appl. Phys. (1)

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930 (2002).
[Crossref]

J. Comput. Phys. (1)

J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

J. Phys.: Condens. Matter (1)

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463 (2002).
[Crossref]

Nature (London) (2)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature (London) 426, 404 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals,” Nature (London) 423, 604 (2003).
[Crossref]

Phys. Rev. B (6)

Zhi-Yuan Li and Lan-Lan Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[Crossref]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[Crossref]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10 696 (2000).
[Crossref]

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

Phys. Rev. Lett. (5)

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003).
[Crossref] [PubMed]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Science (1)

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

A. Taflove, Computational Electrodynamics—the Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Calculated photonic band structures for (a) square 2DPC with air-holes of radius r=0.35a, in a dielectric matrix with ε=12, and (b) triangular 2DPC with air-holes of radius r=0.4a, in a dielectric matrix with ε=12.96. Insets: constant frequency contours for (a) ω 1=0.192 and (b) ω 2=0.305.
Fig. 2.
Fig. 2. (a) The propagation map (magnetic field distribution across space) for a slab of the square 2D-PC (the corresponding band structure in Fig.1a), for two thicknesses of the slab, and the point source frequency ω 1=0.192. (b) The corresponding sketches of geometric optics analysis, showing that for a thicker slab (lower panel) the image must be further away from the crystal edge.
Fig. 3.
Fig. 3. The propagation map (electric field distribution across space) for a slab of the triangular 2D-PC (the corresponding band structure in Fig.1b), for varying source positions and thickness of the slab. The point source frequency is ω 2=0.305. Positions of the images follow the geometric optics analysis, in which the PC is considered a metamedium with n=-1, and Snell’s-law refraction occurs at each interface.
Fig. 4.
Fig. 4. The propagation map (electric field distribution across space) for a slab of the triangular 2D-PC, for a two point source in a vertical (a), and horizontal (b) positions.
Fig. 5.
Fig. 5. Light intensity across the image of two vertical point sources for three different distances between sources.

Metrics