Abstract

We demonstrate the generation of symmetrical supercontinuum of over 40 nm in the 1.55 µm region (1540 – 1580 nm) by injecting 1562 nm, 2.2 ps, 40 GHz optical pulses into a 200 m-long, dispersion-flattened polarization-maintaining photonic crystal fiber. The chromatic dispersion and dispersion slope of the fiber at 1.55 µm are -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. This is the first report of 1.55 µm band supercontinuum generation in a dispersion-flattened and polarization-maintaining photonic crystal fiber.

©2003 Optical Society of America

1. Introduction

Photonic crystal fibers (PCFs) are attracting considerable interest as transmission media and optical functional devices [110]. Since the first realization of a PCF [1], intense research has been conducted to determine the propagation mode characteristics [4] and dispersion characteristics [7,9], as well as to reduce the propagation loss [2,3,8], and realize polarization maintaining characteristics [3] and highly nonlinear characteristics [5,6,10]. One of the promising applications of PCF is supercontinuum generation [6]. For efficient and symmetric supercontinuum generation, the PCF must offer low dispersion and low dispersion slope characteristics [7]. In addition, polarization-maintainability [3] is indispensable for stable operation.

This paper is the first to experimentally verify 1.55 µm band supercontinuum generation in a dispersion-flattened and polarization-maintaining (PM) PCF. Symmetric supercontinuum with a spectral width of over 40 nm is generated in a 200 m-long PM-PCF.

2. Design of the PM-PCF

Figure 1 shows a micrograph of the center of the PM-PCF. The four central air holes with large diameter provide high birefringence, which realizes polarization-maintaining operation. The parameters such as center core diameter, air hole diameter, and air hole pitch were designed to achieve low dispersion, low dispersion slope, and high nonlinearity. The fiber has a silica core with an elliptical Ge-doped center core. The Ge-doping enables us to not only reduce the confinement loss [5] but also control the dispersion characteristics of the PM-PCF. The dimensions of the Ge-doped elliptical core are 1.4 µm×1.1 µm. The ratio of large air hole diameter (d2) to air hole pitch size (Λ) is 0.77, while the ratio of small air hole diameter (d1) to Λ is 0.40.

 figure: Fig. 1.

Fig. 1. Micrograph of the center of the PM-PCF.

Download Full Size | PPT Slide | PDF

3. Characteristics of the PM-PCF

The PM-PCF was fabricated using the conventional capillary drawing method. The length of the PM-PCF examined was 200 m. Optical loss at 1.55 µm was 22 dB/km. Low dispersion of the PCF is essential for its application as a nonlinear device [5,6]. Unfortunately, the dispersion slopes of the reported PCF for nonlinear applications are quite high (e.g., approximately -0.25 ps/km/nm2 in [5]). We have realized low dispersion slope (i.e., dispersion-flattened) characteristics, which enable us to achieve a wide wavelength range with low dispersion. Figure 2 shows the measured chromatic dispersion characteristics of the PMPCF. Dispersion and dispersion slope at 1.55 µm were -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. These low values provide efficient and symmetric supercontinuum generation. The value of modal birefringence at 1.55 µm was 1.3×10-3, which is comparable to that of previously reported PM-PCF [3]. The nonlinear parameter γ(=n2ω/c/Aeff) of the PM-PCF at 1.55 µm was 19 [W-1 km-1], which is much larger than that of the dispersion shifted fiber (~ 2 [W-1 km-1]).

 figure: Fig. 2.

Fig. 2. Chromatic dispersion characteristics of the PM-PCF.

Download Full Size | PPT Slide | PDF

4. Supercontinuum generation

Symmetric supercontinuum generation in a dispersion-flattened PM-PCF was achieved by injecting 40 GHz optical pulses into the fiber. This is the first demonstration of the supercontinuum generation in a PM-PCF with dispersion-flattened characteristics. The optical pulse source was a mode-locked erbium doped fiber laser with center wavelength of 1562 nm and pulse width of 2.2 ps. The optical signal to noise ratio (OSNR) at the laser output was more than 35 dB. The pulses were amplified with an EDFA and coupled into the PM-PCF. Figures 3(a)(d) show the measured optical spectra. Figure 3(a) shows the 40 GHz fiber laser output spectrum. Figures 3(b) and (c) show the whole profile of the generated supercontinuum spectra at the output of PM-PCF where average coupled powers into the PM-PCF were set at 25 and 28 dBm, which correspond to the peak powers of 3.2 and 6.3 W, respectively. Figure 3(d) shows the magnified structure of the supercontinuum spectrum in Fig. 3(c) near the center wavelength. In Fig. 3(c), we can see that the optical spectrum was broadened symmetrically over 40 nm. Although the peak level decreased as the spectrum broadened, no increase in the noise level was observed. By reducing the optical loss of the PM-PCF, supercontinuum generation with less pumping power, around 20 dBm, is expected. This fiber is applicable to a multi channel optical source for WDM communication and photonic network systems.

 figure: Fig. 3.

Fig. 3. Optical spectra. (a) shows 40 GHz fiber laser output. (b) and (c) show the supercontinuum spectra at the output of PM-PCF with average coupled powers of 25 dBm and 28 dBm, respectively. (d) Longitudinal mode structure around the center wavelength in (c).

Download Full Size | PPT Slide | PDF

5. Conclusions

Efficient and symmetric supercontinuum generation was achieved for the first time using a polarization maintaining PCF with dispersion-flattened characteristics (dispersion; -0.23 ps/km/nm, dispersion slope; 0.01 ps/km/nm2 at 1.55 µm). Broadened optical spectrum with spectral width of over 40 nm was obtained from a 200 m-long PM-PCF and 28 dBm average coupled power.

Acknowledgements

The authors wish to thank Dr. M. Kawachi and Dr. K. Sato for their constant encouragement.

References and links

1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]   [PubMed]  

2. H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

3. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001). [CrossRef]  

4. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002). [CrossRef]  

5. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

6. Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

7. W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

8. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.

9. K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.

10. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  2. H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.
  3. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
    [Crossref]
  4. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
    [Crossref]
  5. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.
  6. Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.
  7. W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.
  8. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.
  9. K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.
  10. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[Crossref]

2001 (1)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

1996 (1)

Atkin, D. M.

Belardi, W.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

Birks, T. A.

Bjarklev, A.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.

Broeng, J.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Ebendorff-Heidepriem, H.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Folkenberg, J. R.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.

Framoton, K.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Fujita, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

Furusawa, K.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

Hansen, K. P.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.

Jacobsen, C.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Jensen, J. R.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Kawanishi, S.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

Knight, J.

W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

Knight, J. C.

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[Crossref]

Kubota, H.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

Mangan, B.

W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

Monro, T.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

Monro, T. M.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Moore, R. C.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Nakajima, K.

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.

Nakazawa, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

Petersson, A.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Petropoulos, P.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Peucheret, C.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.

Reeves, W.

W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

Richardson, D.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

Richardson, D. J.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Roberts, P.

W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

Russell, P.

W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

Russell, P. St. J.

Rutt, H. N.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[Crossref]

Sato, K.

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.

Simonsen, H. R.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Skovgaard, P. M. W.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Suzuki, K.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

Tajima, K.

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.

Tanaka, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

Teh, P.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

Yusoff, Z.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

Zhou, J.

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.

Electron. Lett. (1)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[Crossref]

Opt. Lett. (1)

Other (7)

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2-km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” in Proc. Conference on Lasers and Electro-Optics (CLEO) 2001, Vol. 56 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2001), postdeadline paper CPD3.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 µm,” in Proc. Optical Fiber Communication Conference (OFC) 2002, Vol. 70 of OSA Proceeding Series (Optical Society of America, Washington, D. C., 2002), postdeadline paper FA9.

Z. Yusoff, P. Teh, P. Petropoulos, K. Furusawa, W. Belardi, T. Monro, and D. Richardson, “24 channel×10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FH3.

W. Reeves, J. Knight, P. Russell, P. Roberts, and B. Mangan, “Dispersion-flattened photonic crystal fibers at 1550 nm,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), FI3.

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD1.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD2.

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Framoton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proc. Optical Fiber Communication Conference (OFC) 2003, OSA Proceeding Series (Optical Society of America, Washington, D. C., 2003), postdeadline paper PD3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Micrograph of the center of the PM-PCF.
Fig. 2.
Fig. 2. Chromatic dispersion characteristics of the PM-PCF.
Fig. 3.
Fig. 3. Optical spectra. (a) shows 40 GHz fiber laser output. (b) and (c) show the supercontinuum spectra at the output of PM-PCF with average coupled powers of 25 dBm and 28 dBm, respectively. (d) Longitudinal mode structure around the center wavelength in (c).

Metrics