Abstract

The ability of confocal scanning laser tomography to quantify the subretinal features was investigated. The slope ratios (anterior slope/posterior slope) of the axial intensity profiles were analyzed. The data from normal subjects showed only minimal influence of individual ocular pigmentation. In the eyes with age-related macular degeneration, the light-tissue interactions vary according to the type of retinal features. Three-dimensional information could be obtained from the axial intensity profiles.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-40 (1999).
    [CrossRef] [PubMed]
  2. E. Beausencourt, A. Remky, A. E. Elsner, M. E. Hartnett, C. L. Trempe, "Infrared scanning laser tomography of macular cysts," Ophthalmol. 107, 375-85 (2000).
    [CrossRef]
  3. M. E. Hartnett, J. Weiter, G. Staurenghi, A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmol. 103, 2042-2053 (1996).
  4. A. J. Mueller, W. R. Freeman, R. Folberg, D. U. Bartsch, A. Scheider, U. Schaller, A. Kampik, "Evaluation of microvascularization pattern visibility in human choroidal melanomas: comparison of confocal fluorescein with indocyanine green angiography," Graefes Arch. Clin. Exp. Ophthalmol. 237, 448-56 (1999).
    [CrossRef] [PubMed]
  5. T. J. Holmes, "Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach," J. Opt. Soc. Am. A 9, 1052-61 (1992).
    [CrossRef] [PubMed]
  6. C. Hudson, J. G. Flanagan, G. S. Turner, D. McLeod, "Scanning laser tomography Z profile signal width as an objective index of macular retinal thickening," Br. J. Ophthalmol. 82, 121-30 (1998).
    [CrossRef] [PubMed]
  7. M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, K. Lashkari, M. E. Hartnett, C. L. Trempe, T. Hirose, "Cross-sectional analysis of age-related macular degeneration with confocal scanning laser tomography," Invest. Ophthalmol. Vis. Sci. 41, S162, Abstract Nr: 839 (2000).
  8. A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. Walker, G. P. Wing, P. Raskauskas, D. Fletcher, Q. Zhou, A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000), http://www.opticsexpress.org/oearchive/source/22805.htm.
    [CrossRef] [PubMed]
  9. A. W. Dreher, J. F. Bille, R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989).
    [CrossRef]
  10. F. C. Delori, K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1077 (1989).
    [CrossRef]
  11. A. E. Elsner, S. A. Burns, J. Weiter, F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
    [CrossRef] [PubMed]
  12. Macular Photocoagulation Study Group, "Five-year follow-up of fellow eyes of patients with age-related macular degeneration and unilateral extrafoveal choroidal neovascularization," Arch. Ophthalmol. 111, 1189-99 (1993).
    [PubMed]
  13. Macular Photocoagulation Study Group, "Krypton laser photocoagulation for idiopathic neovascular lesions. Results of a randomized clinical trial," Arch. Ophthalmol. 108, 832-37 (1990).
    [PubMed]

Other

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-40 (1999).
[CrossRef] [PubMed]

E. Beausencourt, A. Remky, A. E. Elsner, M. E. Hartnett, C. L. Trempe, "Infrared scanning laser tomography of macular cysts," Ophthalmol. 107, 375-85 (2000).
[CrossRef]

M. E. Hartnett, J. Weiter, G. Staurenghi, A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmol. 103, 2042-2053 (1996).

A. J. Mueller, W. R. Freeman, R. Folberg, D. U. Bartsch, A. Scheider, U. Schaller, A. Kampik, "Evaluation of microvascularization pattern visibility in human choroidal melanomas: comparison of confocal fluorescein with indocyanine green angiography," Graefes Arch. Clin. Exp. Ophthalmol. 237, 448-56 (1999).
[CrossRef] [PubMed]

T. J. Holmes, "Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach," J. Opt. Soc. Am. A 9, 1052-61 (1992).
[CrossRef] [PubMed]

C. Hudson, J. G. Flanagan, G. S. Turner, D. McLeod, "Scanning laser tomography Z profile signal width as an objective index of macular retinal thickening," Br. J. Ophthalmol. 82, 121-30 (1998).
[CrossRef] [PubMed]

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, K. Lashkari, M. E. Hartnett, C. L. Trempe, T. Hirose, "Cross-sectional analysis of age-related macular degeneration with confocal scanning laser tomography," Invest. Ophthalmol. Vis. Sci. 41, S162, Abstract Nr: 839 (2000).

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. Walker, G. P. Wing, P. Raskauskas, D. Fletcher, Q. Zhou, A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000), http://www.opticsexpress.org/oearchive/source/22805.htm.
[CrossRef] [PubMed]

A. W. Dreher, J. F. Bille, R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989).
[CrossRef]

F. C. Delori, K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1077 (1989).
[CrossRef]

A. E. Elsner, S. A. Burns, J. Weiter, F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Macular Photocoagulation Study Group, "Five-year follow-up of fellow eyes of patients with age-related macular degeneration and unilateral extrafoveal choroidal neovascularization," Arch. Ophthalmol. 111, 1189-99 (1993).
[PubMed]

Macular Photocoagulation Study Group, "Krypton laser photocoagulation for idiopathic neovascular lesions. Results of a randomized clinical trial," Arch. Ophthalmol. 108, 832-37 (1990).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Results of gain calibration using model eye. The scattergram represent the axial intensities between the two gain filters, and showed a linear relation between target intensity and output.

Fig. 2.
Fig. 2.

A. Infrared confocal images of the subject with light eye (image 16 of 32).

Fig. 2.
Fig. 2.

B. Axial intensity profiles for the fovea and a major retinal vessel.

Fig. 3.
Fig. 3.

(Upper Left, Upper Right) Infrared confocal images of the subject with dark eye (image 16 of 32). (Lower) Axial intensity profiles for the fovea and a major retinal vessel.

Fig. 4.
Fig. 4.

Summary of slope ratios of a normal subject. There were no significant differences between the fovea and retinal vessel, and no significant differences between light eyes and dark eyes.

Fig. 5.
Fig. 5.

1. Right eye of 73 yr old female with AMD. Infrared confocal image (image 16 of 32).

Fig. 5.
Fig. 5.

2. Axial intensity profiles of a choroidal neovascular membrane (CNV), more normal retina, and a retinal vessel.

Fig. 6.
Fig. 6.

Summary of slope ratios of 6 eyes with AMD in 3 regions of interest, CNV more normal retina, and retinal vessel. The slope ratios of retinal vessels were significantly larger than those of CNV. The vertical bars indicate the standard deviation of the mean slope ratios

Metrics