Abstract

The success of transparent optical transport networks depends on the availability of optical cross-connect nodes (OXNs) that induce minimal impairments on the signals they cross-connect. This should extend the possible coverage and flexibility of path restoration within a meshed network topology by raising the upper bound on the achievable optical hop (traversable OXNs) number. We provide a brief survey and categorization of the currently proposed OXNs. Furthermore, the possible limits they impose on the number of hops are established by a series of transmission performance simulations. Microoptic and all-fiber OXNs are identified to be suitable for networks with a low connectivity and channel count. In case larger OXNs are needed, then microoptic and integrated OXNs provide a better option. The results obtained are applicable as guidelines for the deployment of future optical ring topologies.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Yoshimura, K. I. Sato and N. Takachio, "Future photonic transport networks based on WDM technologies," IEEE Commun. Mag. 37, 74-81 (1999).
    [CrossRef]
  2. T. Stern and K. Bala, "Multiwavelength optical networks: A layered approach," Addisson-Wesley, Reading (1999).
  3. E. L. Goldstein, L. Y. Lin and R. W. Tkach, "Multiwavelength opaque optical-crossconnect networks," IEICE Trans. Electron E82-C, 1361-1370 (1999).
  4. E. Iannone and R. Sabella, "Optical path technologies: A comparison among different crossconnect architectures," J. Lightwave Tech. 14, 2184-2196 (1996).
    [CrossRef]
  5. N. A. Jackman, S. H. Patel, B. P. Mikkelsen and S. K. Korotky, "Optical cross connects for optical networking," Bell Labs Technol. J. 4, 246-261 (1999).
  6. B. Ramamurthy, D. Datta, H. Feng, J. P. Heritage and B. Murkherjee, "Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks," J. Lightwave Tech.17, 1713-1723 (1999).
    [CrossRef]
  7. G. Wilfong, B. Mikkelsen, C. Doerr and M. Zirngibl, "WDM cross-connect architectures with reduced complexity," J. Lightwave Tech. 17, 1732-1741 (1999).
    [CrossRef]
  8. S. Chandrasekhar, H. K. Kim, C. R. Doerr, L. W. Stulz and L. L. Buhl, "All-optical dual ring internetworking with wavelength selective 2 �2 cross-connect," Electron. Lett. 36, 238-239 (2000).
    [CrossRef]
  9. S. Baroni, P. Bayvel, R. J. Gibbons and S. K. Korotky, "Analysis and design of resilient multifiber wavelength-routed optical transport networks," J. Lightwave Tech. 17, 743-758 (1999).
    [CrossRef]
  10. M. Sinclair, "Minimum cost wavelength-path routing and wavelength allocation using a genetic-algorithm/ heuristic hybrid approach," IEE Proc. Commun. 146, 1-7 (1999).
    [CrossRef]
  11. R. Sabella, E. Iannone, M. Listanti, M. Berdusco and S. Binetti, "Impact of transmission performance on path routing in all-optical transport networks," J. Lightwave Tech. 16, 1965-1972 (1998).
    [CrossRef]
  12. D. Tanis, "Carriers can maximize their dark-fiber returns," FiberSystems Europe 5, 41-44 (2001).
  13. E. Pennings, G. D. Khoe, M. K. Smit and T. Staring, "Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison," IEEE J. Select. Topics Quantum Electron. 2, 151-164 (1996).
    [CrossRef]
  14. A. Himeno, K. Kato and T. Miya, "Silicon-based planar lightwave circuits," IEEE J. Select. Topics Quantum Electron. 4, 913-924 (1998).
    [CrossRef]
  15. S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva and I. V. Mitchell, "Photonic integrated circuits fabricated using ion implantation," IEEE J. Select. Topics Quantum Electron. 4, 772-793 (1998).
    [CrossRef]
  16. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Tech. 15, 1263-1276 (1997).
    [CrossRef]
  17. H. G. Limberger, A. Iocco, R.P. Salathe, L. A. Everall, K. E. Chisholm and I. Bennion, "Wideband tunable fibre Bragg grating filters," Proc. 25th European Conf. Optic. Commun. 1, 156-159 (1999).
  18. H. Nakajima, "Development on guided-wave switch arrays," IEICE Trans. Electron. E82-C, 1263-1276 (1997).
  19. K. McGreer, "Arrayed waveguide for wavelength routing," IEEE Commun. Mag. 36, 62-68 (1998).
    [CrossRef]
  20. C. G. P. Herben, D. H. P. Maat, X. J. M. Leijtens, M. R. Leys, Y. S. Oei and M. K. Smit, "Polarization independent dilated WDM cross-connect on InP," IEEE Photon. Techn. Lett. 11, 1599-1601 (1999).
    [CrossRef]
  21. D. A. Smith, A. D'Alessandro, J. E. Baran, D. J. Fritz, J. L. Jackel and R. S. Chakravarthy, "Multiwavelength performance of an apodized acoustic-optic switch," J. Lightwave Tech. 14, 2044-2051 (1996).
    [CrossRef]
  22. M Janson, L. Lundgren, A. -C. M�rner, M. Rask, B. Stoltz, M. Gustavsson and L. Thylen, "Monolithically integrated 2x2 {InGaAs/InP} laser amplifier gate switch arrays," Electron. Lett. 28, 776-778 (1992).
    [CrossRef]
  23. A. Watanabe, S. Okamoto and K. I. Sato, "Optical path cross-connect system architecture suitable for large scale expansion," J. Lightwave Tech. 14, 2162-2172 (1996).
    [CrossRef]
  24. K. -H. Kim, S. -W. Kwon, J. -W. Park, S. -B. Leeand S. -S. Choi," Anewall-fiber bi-directional optical cross-connect with tunable fiber Bragg gratings," Tech. Digest Optic. Commun. Conf. 1, 261-263 (1999).
  25. S. -K Park, J. -W. Park, S. -R. Lee, H. Yoon, S. -B. Lee and S. -S. Cho Multiwavelength Bidirectional Optical Crossconnect Using Fiber {B}ragg Gratings and Polarization Beam Splitter," IEEE Photon. Techn. Lett. 10, 531-533 (1998).
  26. D. Hjelme, H. Storoy and J. Skaar, "Reconfigurable all-fiber all-optical cross-connect node using synthesized fiber Bragg gratings for both demultiplexing and switching," Tech. Digest Optic. Commun. Conf. 1, 65-66 (1998).
  27. Y. K. Chen and C. C. Lee, "Fiber Bragg grating-based large nonblocking multiwavelength cross-connects," J. Lightwave Tech. 16, 1746-1756 (1998).
    [CrossRef]
  28. C. Marxer and N. F. de Rooij, "Micro-opto-mechanical 2x2 switch for single-mode fiber based on plasma-etched silicon mirror and electrostatic actuation," J. Lightwave Tech. 17, 2-6 (1999).
    [CrossRef]
  29. J. Skinner and C. H. R. Lane, "A low crosstalk microoptic liquid crystal switch," IEEE J. Select. Areas Commun. 6, 1178-1185 (1998).
    [CrossRef]
  30. R. Laughlin and T. Hazelton, "Frustrated total internal reflection an alternative for optical cross-connect architecture," Proc. 11 th IEEE/LEOS Annual Meeting. 2, 171-172 (1998).
  31. J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lighwave circuit," Tech. Digest Optic. Commun. Conf. 1, TuM1-1 (2000).
  32. J. L. Jackel, J. J. Johnson and W. J. Tomlinson, "Bistable optical switching using electromagnetically generating bubbles," Opt. Lett. 15, 1470-1472 (1990).
    [CrossRef]
  33. M. Sato, M. Makihara, F. Shimokawa and Y. Nishida, "Self-latching waveguide optical switch basd on thermo-capillarity," Proc. 23 rd European Conf. Optic. Commun. 2, 73-76 (1997).
  34. N. Riza, "High-optical-isolation low-loss moderate-switching-speed nemetic liquid-crystal optical switch," Opt. Lett. 19, 1780-1782 (1994).
    [CrossRef]
  35. J. Kim, J. Jung, S. Kim and B. Lee, "Reconfigurable optical cross-connect using WDM MUX/DEMUX pair and tunable fibre Bragg gratings," Electron. Lett. 36, 1470-1472 (1990).
  36. T. A. Birks, D. O. Culverhouse, S. G. Farwell and P. S. J. Russell, "2x2 single-mode fiber routing switch," Opt. Lett. 10, 722-724 (1996).
    [CrossRef]
  37. A. E. Fatatry, S. P. Shipley and R. Tyson, "4x4 all-fiber optical switching matrix," Electron. Lett. 24, 339-340 (1996).
    [CrossRef]
  38. S. Nagaoka, "Compact latching-type single-mode-fiber switches fabricated by a fiber-micromachining technique and their practical applications," IEEE J. Select. Topics Quantum Electron. 5, 36-45 (1999).
    [CrossRef]
  39. A. Lowery, O. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A. Richter, S. Georgi, D. Breuer and H. Hamster, "Multiple Signal Respresentation Simulation of Photonic Devices, System and Networks," IEEE J. Select. Topics Quantum Electron. 6, 282-296 (2000).
    [CrossRef]
  40. E. Mutafungwa, "Circulating loop simulations for transmission performance comparison of various node architectures," J. Opt. A: Pure Appl. Opt. 3, 255-261 (2001).
    [CrossRef]
  41. D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena and X. J. M. Leijtens Polarization-independent dilated InP-based space switch with low crosstalk," IEEE Photon. Technol. Lett. 12, 284-286 (2000).
    [CrossRef]
  42. Y. Pan, C. Qiao and Y. Yang, "Optical mulstistage interconnection networks: New chanllenges and approaches," IEEE Commun. Mag. 37, 50-56 (1999).
    [CrossRef]
  43. R. Kasahara, M. Yanagisawa, A. Sugita, T. Goh, M. Yasu, A. Himeno and S. Matsui, "Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate," IEEE Photon. Technol. Lett. 11, 1132-1134 (1999).
    [CrossRef]
  44. A. Kaneko, A. Sugita and K. Okamoto, "Recent progress on arrayed waveguide gratings for DWDM applications," IEICE Trans. Electron. E83-C, 860-868 (2000).
  45. A. Carballer, M. A. Muriel and J. Azana, "Fiber grating filter for WDM systems: An improved design," IEEE Photon. Technol. Lett. 11, 694-696 (1999).
    [CrossRef]
  46. N. Goto and Y. Miyazaki, "Wavelength-division-multiplexing photonic switching system using integrated acoustooptic switches," Japan. J. Appl. Phy.: Part 1 39, 3078-3082 (2000).
    [CrossRef]
  47. D. O. Culverhouse, R. I. Laming, S. G. Farwell, T. A. Birks and M. N. Zervas, "All Fiber 2x2 Polarization Insensitive Switch," IEEE Photon. Technol. Lett. 9, 455-457 (1997).
    [CrossRef]
  48. E. Ciaramella, "Introducing wavelength granularity to reduce the complexity of optical cross-connects," IEEE Photon. Technol. Lett. 12, 699-701 (2000).
    [CrossRef]

Other (48)

H. Yoshimura, K. I. Sato and N. Takachio, "Future photonic transport networks based on WDM technologies," IEEE Commun. Mag. 37, 74-81 (1999).
[CrossRef]

T. Stern and K. Bala, "Multiwavelength optical networks: A layered approach," Addisson-Wesley, Reading (1999).

E. L. Goldstein, L. Y. Lin and R. W. Tkach, "Multiwavelength opaque optical-crossconnect networks," IEICE Trans. Electron E82-C, 1361-1370 (1999).

E. Iannone and R. Sabella, "Optical path technologies: A comparison among different crossconnect architectures," J. Lightwave Tech. 14, 2184-2196 (1996).
[CrossRef]

N. A. Jackman, S. H. Patel, B. P. Mikkelsen and S. K. Korotky, "Optical cross connects for optical networking," Bell Labs Technol. J. 4, 246-261 (1999).

B. Ramamurthy, D. Datta, H. Feng, J. P. Heritage and B. Murkherjee, "Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks," J. Lightwave Tech.17, 1713-1723 (1999).
[CrossRef]

G. Wilfong, B. Mikkelsen, C. Doerr and M. Zirngibl, "WDM cross-connect architectures with reduced complexity," J. Lightwave Tech. 17, 1732-1741 (1999).
[CrossRef]

S. Chandrasekhar, H. K. Kim, C. R. Doerr, L. W. Stulz and L. L. Buhl, "All-optical dual ring internetworking with wavelength selective 2 �2 cross-connect," Electron. Lett. 36, 238-239 (2000).
[CrossRef]

S. Baroni, P. Bayvel, R. J. Gibbons and S. K. Korotky, "Analysis and design of resilient multifiber wavelength-routed optical transport networks," J. Lightwave Tech. 17, 743-758 (1999).
[CrossRef]

M. Sinclair, "Minimum cost wavelength-path routing and wavelength allocation using a genetic-algorithm/ heuristic hybrid approach," IEE Proc. Commun. 146, 1-7 (1999).
[CrossRef]

R. Sabella, E. Iannone, M. Listanti, M. Berdusco and S. Binetti, "Impact of transmission performance on path routing in all-optical transport networks," J. Lightwave Tech. 16, 1965-1972 (1998).
[CrossRef]

D. Tanis, "Carriers can maximize their dark-fiber returns," FiberSystems Europe 5, 41-44 (2001).

E. Pennings, G. D. Khoe, M. K. Smit and T. Staring, "Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison," IEEE J. Select. Topics Quantum Electron. 2, 151-164 (1996).
[CrossRef]

A. Himeno, K. Kato and T. Miya, "Silicon-based planar lightwave circuits," IEEE J. Select. Topics Quantum Electron. 4, 913-924 (1998).
[CrossRef]

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva and I. V. Mitchell, "Photonic integrated circuits fabricated using ion implantation," IEEE J. Select. Topics Quantum Electron. 4, 772-793 (1998).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Tech. 15, 1263-1276 (1997).
[CrossRef]

H. G. Limberger, A. Iocco, R.P. Salathe, L. A. Everall, K. E. Chisholm and I. Bennion, "Wideband tunable fibre Bragg grating filters," Proc. 25th European Conf. Optic. Commun. 1, 156-159 (1999).

H. Nakajima, "Development on guided-wave switch arrays," IEICE Trans. Electron. E82-C, 1263-1276 (1997).

K. McGreer, "Arrayed waveguide for wavelength routing," IEEE Commun. Mag. 36, 62-68 (1998).
[CrossRef]

C. G. P. Herben, D. H. P. Maat, X. J. M. Leijtens, M. R. Leys, Y. S. Oei and M. K. Smit, "Polarization independent dilated WDM cross-connect on InP," IEEE Photon. Techn. Lett. 11, 1599-1601 (1999).
[CrossRef]

D. A. Smith, A. D'Alessandro, J. E. Baran, D. J. Fritz, J. L. Jackel and R. S. Chakravarthy, "Multiwavelength performance of an apodized acoustic-optic switch," J. Lightwave Tech. 14, 2044-2051 (1996).
[CrossRef]

M Janson, L. Lundgren, A. -C. M�rner, M. Rask, B. Stoltz, M. Gustavsson and L. Thylen, "Monolithically integrated 2x2 {InGaAs/InP} laser amplifier gate switch arrays," Electron. Lett. 28, 776-778 (1992).
[CrossRef]

A. Watanabe, S. Okamoto and K. I. Sato, "Optical path cross-connect system architecture suitable for large scale expansion," J. Lightwave Tech. 14, 2162-2172 (1996).
[CrossRef]

K. -H. Kim, S. -W. Kwon, J. -W. Park, S. -B. Leeand S. -S. Choi," Anewall-fiber bi-directional optical cross-connect with tunable fiber Bragg gratings," Tech. Digest Optic. Commun. Conf. 1, 261-263 (1999).

S. -K Park, J. -W. Park, S. -R. Lee, H. Yoon, S. -B. Lee and S. -S. Cho Multiwavelength Bidirectional Optical Crossconnect Using Fiber {B}ragg Gratings and Polarization Beam Splitter," IEEE Photon. Techn. Lett. 10, 531-533 (1998).

D. Hjelme, H. Storoy and J. Skaar, "Reconfigurable all-fiber all-optical cross-connect node using synthesized fiber Bragg gratings for both demultiplexing and switching," Tech. Digest Optic. Commun. Conf. 1, 65-66 (1998).

Y. K. Chen and C. C. Lee, "Fiber Bragg grating-based large nonblocking multiwavelength cross-connects," J. Lightwave Tech. 16, 1746-1756 (1998).
[CrossRef]

C. Marxer and N. F. de Rooij, "Micro-opto-mechanical 2x2 switch for single-mode fiber based on plasma-etched silicon mirror and electrostatic actuation," J. Lightwave Tech. 17, 2-6 (1999).
[CrossRef]

J. Skinner and C. H. R. Lane, "A low crosstalk microoptic liquid crystal switch," IEEE J. Select. Areas Commun. 6, 1178-1185 (1998).
[CrossRef]

R. Laughlin and T. Hazelton, "Frustrated total internal reflection an alternative for optical cross-connect architecture," Proc. 11 th IEEE/LEOS Annual Meeting. 2, 171-172 (1998).

J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lighwave circuit," Tech. Digest Optic. Commun. Conf. 1, TuM1-1 (2000).

J. L. Jackel, J. J. Johnson and W. J. Tomlinson, "Bistable optical switching using electromagnetically generating bubbles," Opt. Lett. 15, 1470-1472 (1990).
[CrossRef]

M. Sato, M. Makihara, F. Shimokawa and Y. Nishida, "Self-latching waveguide optical switch basd on thermo-capillarity," Proc. 23 rd European Conf. Optic. Commun. 2, 73-76 (1997).

N. Riza, "High-optical-isolation low-loss moderate-switching-speed nemetic liquid-crystal optical switch," Opt. Lett. 19, 1780-1782 (1994).
[CrossRef]

J. Kim, J. Jung, S. Kim and B. Lee, "Reconfigurable optical cross-connect using WDM MUX/DEMUX pair and tunable fibre Bragg gratings," Electron. Lett. 36, 1470-1472 (1990).

T. A. Birks, D. O. Culverhouse, S. G. Farwell and P. S. J. Russell, "2x2 single-mode fiber routing switch," Opt. Lett. 10, 722-724 (1996).
[CrossRef]

A. E. Fatatry, S. P. Shipley and R. Tyson, "4x4 all-fiber optical switching matrix," Electron. Lett. 24, 339-340 (1996).
[CrossRef]

S. Nagaoka, "Compact latching-type single-mode-fiber switches fabricated by a fiber-micromachining technique and their practical applications," IEEE J. Select. Topics Quantum Electron. 5, 36-45 (1999).
[CrossRef]

A. Lowery, O. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A. Richter, S. Georgi, D. Breuer and H. Hamster, "Multiple Signal Respresentation Simulation of Photonic Devices, System and Networks," IEEE J. Select. Topics Quantum Electron. 6, 282-296 (2000).
[CrossRef]

E. Mutafungwa, "Circulating loop simulations for transmission performance comparison of various node architectures," J. Opt. A: Pure Appl. Opt. 3, 255-261 (2001).
[CrossRef]

D. H. P. Maat, Y. C. Zhu, F. H. Groen, H. van Brug, H. J. Frankena and X. J. M. Leijtens Polarization-independent dilated InP-based space switch with low crosstalk," IEEE Photon. Technol. Lett. 12, 284-286 (2000).
[CrossRef]

Y. Pan, C. Qiao and Y. Yang, "Optical mulstistage interconnection networks: New chanllenges and approaches," IEEE Commun. Mag. 37, 50-56 (1999).
[CrossRef]

R. Kasahara, M. Yanagisawa, A. Sugita, T. Goh, M. Yasu, A. Himeno and S. Matsui, "Low-power consumption silica-based 2x2 thermooptic switch using trenched silicon substrate," IEEE Photon. Technol. Lett. 11, 1132-1134 (1999).
[CrossRef]

A. Kaneko, A. Sugita and K. Okamoto, "Recent progress on arrayed waveguide gratings for DWDM applications," IEICE Trans. Electron. E83-C, 860-868 (2000).

A. Carballer, M. A. Muriel and J. Azana, "Fiber grating filter for WDM systems: An improved design," IEEE Photon. Technol. Lett. 11, 694-696 (1999).
[CrossRef]

N. Goto and Y. Miyazaki, "Wavelength-division-multiplexing photonic switching system using integrated acoustooptic switches," Japan. J. Appl. Phy.: Part 1 39, 3078-3082 (2000).
[CrossRef]

D. O. Culverhouse, R. I. Laming, S. G. Farwell, T. A. Birks and M. N. Zervas, "All Fiber 2x2 Polarization Insensitive Switch," IEEE Photon. Technol. Lett. 9, 455-457 (1997).
[CrossRef]

E. Ciaramella, "Introducing wavelength granularity to reduce the complexity of optical cross-connects," IEEE Photon. Technol. Lett. 12, 699-701 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Excerpts of an (top) opaque optical network consisting of OXNs with in-built transponders and (bottom) transparent network with 5 optical hop path.

Fig. 2.
Fig. 2.

Simulation configuration of OXN circulating loop captured in PTDS simulation environment.

Fig. 4.
Fig. 4.

Simulated Q factor of the f 2b signal and received via various (a) integrated (b) all-fiber (c) microoptic and (d) hybrid OXNs.

Fig. 5.
Fig. 5.

Number of traversable OXNs assuming a Q factor requirement of 15.4 dB.

Tables (2)

Tables Icon

Table 1. The list of OXNs considered in the study

Tables Icon

Table 2. The main modules and parameter values used in the simulations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q = I 1 I 0 σ 1 + σ 0 ,
BER = exp ( Q 2 2 ) Q 2 π .

Metrics