Abstract

The first microstructured polymer optical fibre is described. Both experimental and theoretical evidence is presented to establish that the fibre is effectively single moded at optical wavelengths. Polymer-based microstructured optical fibres offer key advantages over both conventional polymer optical fibres and glass microstructured fibres. The low-cost manufacturability and the chemical flexibility of the polymers provide great potential for applications in data communication networks and for the development of a range of new polymer-based fibre-optic components.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber”, J. Lightwave Tech. 18, 952–8 (2000).
    [CrossRef]
  2. T.A. Birks, J.C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  3. H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.
  4. J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1999).
    [CrossRef]
  5. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  6. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  7. J. K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  8. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
    [CrossRef]
  9. T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).
  10. M.J. Steel and R.M. Osgood, “Elliptical-hole photonic crystal fibres,” Opt. Lett. 26, 229–231 (2001).
    [CrossRef]
  11. J. Broeng, D. Mogilevtsev, S.E. Barkou Libori, and A. Bjarklev, “Polarisation-preserving holey fibers,” paper MA1-3, Pacific Rim Conference on Lasers and Electro-Optics, July 2001, Chiba, Japan.
  12. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly birefringent photonic crystal fibres,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  13. M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
    [CrossRef] [PubMed]
  14. C.J. Goh and N. Phan-Thien, “Fibre spinning: an optimal control problem,” in Proceedings of the Institution of Mechanical Engineers, Part E Journal of process mechanical engineering, Vol. 204 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 81–86.
    [CrossRef]

2001 (1)

2000 (4)

A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly birefringent photonic crystal fibres,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber”, J. Lightwave Tech. 18, 952–8 (2000).
[CrossRef]

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

1999 (2)

J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1999).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

Allen, D.C.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Arriaga, J.

Atkin, D.M.

Barkou Libori, S.E.

J. Broeng, D. Mogilevtsev, S.E. Barkou Libori, and A. Bjarklev, “Polarisation-preserving holey fibers,” paper MA1-3, Pacific Rim Conference on Lasers and Electro-Optics, July 2001, Chiba, Japan.

Birks, T.A.

Bjarklev, A.

J. Broeng, D. Mogilevtsev, S.E. Barkou Libori, and A. Bjarklev, “Polarisation-preserving holey fibers,” paper MA1-3, Pacific Rim Conference on Lasers and Electro-Optics, July 2001, Chiba, Japan.

Botten, L.C.

T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
[CrossRef]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

Broeng, J.

J. Broeng, D. Mogilevtsev, S.E. Barkou Libori, and A. Bjarklev, “Polarisation-preserving holey fibers,” paper MA1-3, Pacific Rim Conference on Lasers and Electro-Optics, July 2001, Chiba, Japan.

Canning, J.

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
[CrossRef] [PubMed]

Cregan, R.F.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1999).
[CrossRef]

de Sandro, J.-P.

J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1999).
[CrossRef]

de Sterke, C.M.

T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
[CrossRef]

Fujita, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

Goh, C.J.

C.J. Goh and N. Phan-Thien, “Fibre spinning: an optimal control problem,” in Proceedings of the Institution of Mechanical Engineers, Part E Journal of process mechanical engineering, Vol. 204 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 81–86.
[CrossRef]

Ishigure, T.

M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber”, J. Lightwave Tech. 18, 952–8 (2000).
[CrossRef]

Kakazawa, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

Kawanishi, S.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

Knight, J.C.

Koike, Y.

M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber”, J. Lightwave Tech. 18, 952–8 (2000).
[CrossRef]

Kubota, H.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

Kuhlmey, B.T.

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

Lyytikainen, K.

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
[CrossRef] [PubMed]

Mangan, B.J.

A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly birefringent photonic crystal fibres,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Martijn de Sterke, C.

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

Maystre, D.

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

McPhedran, R.C.

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
[CrossRef]

Mogilevtsev, D.

J. Broeng, D. Mogilevtsev, S.E. Barkou Libori, and A. Bjarklev, “Polarisation-preserving holey fibers,” paper MA1-3, Pacific Rim Conference on Lasers and Electro-Optics, July 2001, Chiba, Japan.

Ortigosa-Blanch, A.

Osgood, R.M.

Phan-Thien, N.

C.J. Goh and N. Phan-Thien, “Fibre spinning: an optimal control problem,” in Proceedings of the Institution of Mechanical Engineers, Part E Journal of process mechanical engineering, Vol. 204 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 81–86.
[CrossRef]

Ranka, J. K.

Renversez, G.

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

Roberts, P.J.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

Russell, P.St.J.

Ryan, T.

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
[CrossRef] [PubMed]

Sato, M.

M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber”, J. Lightwave Tech. 18, 952–8 (2000).
[CrossRef]

Steel, M.J.

M.J. Steel and R.M. Osgood, “Elliptical-hole photonic crystal fibres,” Opt. Lett. 26, 229–231 (2001).
[CrossRef]

T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
[CrossRef]

Stentz, A.J.

Suzuki, K.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

Tanaka, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

van Eijkelenborg, M.A.

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
[CrossRef] [PubMed]

Wadsworth, W.J.

White, T.P.

T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
[CrossRef]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

Windeler, R.S.

Electron. Lett. (1)

J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1999).
[CrossRef]

J. Lightwave Tech. (1)

M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber”, J. Lightwave Tech. 18, 952–8 (2000).
[CrossRef]

Opt. Lett. (5)

Optics Express (1)

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced colouring in a photonic crystal fibre,” Optics Express 7, 88–94 (2000).
[CrossRef] [PubMed]

Science (1)

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. St. J Russell, P.J. Roberts, and D.C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Other (5)

C.J. Goh and N. Phan-Thien, “Fibre spinning: an optimal control problem,” in Proceedings of the Institution of Mechanical Engineers, Part E Journal of process mechanical engineering, Vol. 204 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 81–86.
[CrossRef]

T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett., in press (2001).
[CrossRef]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibres I: Formulation,” in preparation (2001).

J. Broeng, D. Mogilevtsev, S.E. Barkou Libori, and A. Bjarklev, “Polarisation-preserving holey fibers,” paper MA1-3, Pacific Rim Conference on Lasers and Electro-Optics, July 2001, Chiba, Japan.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO2001, Baltimore, MD, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

Electron micrographs of the microstructured polymer optical fibre (MPOF).

Fig.2.
Fig.2.

Optical testing of the single mode guiding of the microstructured polymer optical fibre (MPOF). a) the mode pattern in the near field, b) a contour plot of the near field pattern, c) the far field mode pattern d) the interference pattern between a standard single-mode fibre and the MPOF. The white patches in the images a) and c) are due to overexposure of the camera.

Fig.3.
Fig.3.

Axial component of the Poynting vector for the first two degenerate modes of a two-ring MOF (d=1.3 µm, Λ=2.8 µm, matrix index n=1.4897, λ=632.8 nm). The holes of the fibre are located at the positions where indents are observed in the mode profile of the second mode.

Metrics